Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1'S,6'S,8'S,9'R)-9'-Bromo-12'-oxaspiro-[1.3-dioxolane-2.4'-tricvclo[6.3.1.0^{1,6}]dodecane1

Goverdhan Mehta^{a,b}* and Tabrez Babu Khan^{a,b}

^aDepartment of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^bSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, A.P. India

Correspondence e-mail: gmsc@uohyd.ernet.in, gm@orgchem.iisc.ernet.in

Received 15 June 2012; accepted 29 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.076; data-to-parameter ratio = 15.4.

In an endeavor directed towards the construction of the oxabicyclic[3.2.1]octane segment present in the bioactive natural products of cortistatins and icetexanes genre, the title compound, C₁₃H₁₉BrO₃, was synthesized from (4aR,9aS)-1,3,4,4a,5,6,9,9a-octahydrospiro[benzo[7]annulene-2,2'-[1,3]dioxolane]-4a-ol via a transannular bromo-etherification protocol. The six-membered ring adopts a twist-boat conformation, while the fused cycloheptane ring adopts a chair conformation. The crystal packing is effected through two distinct intermolecular C-H···O hydrogen-bond patterns and molecules are arranged to define an interesting motif along the b axis.

Related literature

For the isolation and biological activity of cortistatins, see: Aoki et al. (2006, 2007); Watanabe et al. (2007); Zhao (2010) and for icetexanes, see: Esquivel et al. (1995); Uchiyama et al. (2005). For synthetic approaches towards the construction of the oxabicyclic core of cortistatins, see: Zhao (2010); Hardin Narayan et al. (2010) and references cited therein. For their use in the treatment of blindness, see: Czako et al. (2009). For the construction of relevant 6/7 fused-ring systems involving ring-closing metathesis, see: Mehta & Likhite (2008, 2009). For an example of the exploitation of transannular bromoetherification towards natural products synthesis, see: Mehta & Sen (2010); Mehta & Yaragorla (2011).

2368 independent reflections

 $R_{\rm int} = 0.027$

1859 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{13}H_{19}BrO_3$	V = 1276.63 (5) Å ³
$M_r = 303.19$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 11.0159 (3) Å	$\mu = 3.21 \text{ mm}^{-1}$
b = 12.6619 (3) Å	T = 296 K
c = 10.2763 (2) Å	$0.30 \times 0.20 \times 0.15 \text{ mm}$
$\beta = 117.044 \ (1)^{\circ}$	
Data collection	
Bruker APEXII CCD	11338 measured reflections

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.446, \ T_{\max} = 0.644$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	154 parameters
$wR(F^2) = 0.076$?
S = 1.02	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
2368 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11\cdots O2^{i}$	0.98	2.53	3.445 (3)	156
$C1 - H1 \cdots O1^{ii}$	0.98	2.57	3.471 (3)	153
Symmetry codes: (i) _	$x \pm 1 = y \pm 1$	$-\pi \pm 1$: (ii) x -	$y \pm 1 = 1$	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

TBK thanks the University Grants Commission, India for the award of Dr Kothari post-doctoral fellowship. We thank Mr Saikat Sen for his help in determining the X-ray crystal structure at the CCD facility of the Indian Institute of Science (IISc), Bangalore. GM acknowledges the research support from Eli Lilly and Jubilant-Bhartia Foundations.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2204).

References

Aoki, S., Watanabe, Y., Sanagawa, M., Setiawan, A., Kotoku, N. & Kobayashi, M. (2006). J. Am. Chem. Soc. 128, 3148-3149.

Aoki, S., Watanabe, Y., Tanabe, D., Setiawan, A., Arai, M. & Kobayashi, M. (2007). Tetrahedron Lett. 48, 4485-4488.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Czako, B., Kurti, L., Mammoto, A., Ingber, D. E. & Corey, E. J. (2009). J. Am. Chem. Soc. 131, 9014-90.

Esquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. & Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139-143.

Hardin Narayan, A. R., Simmons, E. M. & Sarpong, R. (2010). Eur. J. Org. Chem. pp. 3553-3567.

Mehta, G. & Likhite, N. S. (2008). Tetrahedron Lett. 49, 7113-7116.

Mehta, G. & Likhite, N. S. (2009). Tetrahedron Lett. 50, 5263-5266.

Mehta, G. & Sen, S. (2010). Tetrahedron Lett. 51, 503-507.

- Mehta, G. & Yaragorla, S. (2011). Tetrahedron Lett. 52, 4485-4489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Uchiyama, N., Kabututu, Z., Kubata, B. K., Kiuchi, F., Ito, M., Nakajima-Shimada, J., Aoki, T., Ohkubo, K., Fukuzumi, S., Martin, S. K., Honda, G. &

Urade, Y. (2005). Antimicrob. Agents Chemother. 49, 5123-5126.

- Watanabe, Y., Aoki, S., Tanabe, D., Setiawan, A. & Kobayashi, M. (2007). *Tetrahedron*, **63**, 4074–4079.
- Zhao, W. (2010). Chem. Rev. 110, 1706–1745.

supporting information

Acta Cryst. (2012). E68, o2411–o2412 [https://doi.org/10.1107/S1600536812029777] (1'S,6'S,8'S,9'R)-9'-Bromo-12'-oxaspiro[1,3-dioxolane-2,4'-tricyclo-[6.3.1.0^{1,6}]dodecane]

Goverdhan Mehta and Tabrez Babu Khan

S1. Comment

The oxabicyclic[3,2,1]octane scaffold manifest itself in a variety of terpenoids class of natural products *viz*. icetexanes (Fig. 1; Esquivel *et al.*, 1995 & Uchiyama *et al.*, 2005) and cortistatin family (Fig. 1; Aoki *et al.*, 2006, 2007 & Watanabe *et al.*, 2007). In particular, cortistatin A and its structural siblings isolated in trace amounts by Kobayashi & coworkers from an Indonesian marine sponge *corticium simplex* were shown to possess novel architecture and exhibited potent and promising anti-angiogenic activity (Zhao, 2010) and were effective in treating blindness (Czako *et al.*, 2009), thereby triggering interest to devise tactics for their total synthesis and diversity creation. These attributes of cortistatins encouraged us to devise a strategy to gain rapid access to the oxatricyclic ABC core present in cortistatins.

Several synthetic approaches to cortistatins have been reported utilizing ring-expansion approach, oxidative dearomatization, electrocyclization, 1,3-dipolar cycloaddition/electrocyclization cascade, transannular [4 + 3] cyclo-addition, classical Michael/aldol condensation cascade cyclization as the key strategic steps to access the oxatricyclic segment (Hardin Narayan *et al.*, 2010). However, the present strategy employs a stepwise transannular bromo-etherification sequence (Mehta & Sen, 2010; Mehta & Yaragorla, 2011) on a readily accessible bicyclic compound obtained *via* RCM (Fig. 2; Mehta & Likhite, 2008, 2009).

A two step transannular bromoetherification protocol on 7 furnished the title compound 3 (Fig. 2) as the major product corresponding to the oxatricyclic core present in icetexanes along with a minor regioisomeric compound 4 representing the oxatricyclic segment present in cortistatins.

The title compound **3** was crystallized from ethylacetate-hexane(1:1) and the structure was solved and refined in monoclinic $P_{2_1/c}$ space group with one molecule of **3** in the asymmetric unit. An *ORTEP* diagram of **3** drawn at 30% ellipsoidal probability is depicted in Fig 3. From the packing diagram it can be seen that the centrosymmetric molecules are connected by weak C11–H11···O2 (2.53 Å, 156°) hydrogen bonds forming a dimeric motif and these dimeric units are further connected by C1–H1···O1 (2.57 Å, 153°)) hydrogen bonds, three dimensionally (Fig. 4). These two hydrogen bond patterns link the molecules to define an interesting motif along the *b* axis.

S2. Experimental

The synthesis of the title compound **3** as depicted in Fig. 2 emanates from the known 7-(prop-2-en-1-yl)-1,4-dioxaspiro-[4.5]decan-8-one **5** through addition of butenylmagnesium bromide (1.5 equiv.) in THF at r.t. to furnish the desired RCM precursor **6** in decent yield. Exposure of **6** to Grubbs-1s t generation catalyst (10 mol%) in benzene at r.t. gave the bicyclic compound **7** in good yield. Finally, the stepwise transannular bromotherification on **7** was executed *via* bromination with pyH⁺Br₃⁻ (1.2 equiv.) in DCM at 0 °C followed by etherification in the presence of 10 *M* aq. NaOH in THF at 60 °C for 4 h to deliver **3**, mp. 78–80 °C, as a colorless crystalline compound in 51% yield.

S3. Refinement

All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms on the C atoms were introduced on calculated positions and were included in the refinement riding on their respective parent atoms

Figure 1

Representative example of cortistatin family (cortistatin A 1) & icetexane family (salviasperanol 2).

Figure 2

The synthesis of the title compound.

Figure 3

The molecular structure of the title compound **3**, with the atom numbering scheme. Dispalcement ellipsoids for non-H atoms are drawn at 30% probability.

Figure 4

A packing diagram of the title compound 3, viewed along the b axis. Dotted lines indicate the C—H…O hydrogen bonds.

(1'S,6'S,8'S,9'R)-9'-Bromo-12'-oxaspiro[1,3- dioxolane-2,4'-tricyclo[6.3.1.0^{1,6}]dodecane]

Crystal data

C₁₃H₁₉BrO₃ $M_r = 303.19$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.0159 (3) Å b = 12.6619 (3) Å c = 10.2763 (2) Å $\beta = 117.044$ (1)° V = 1276.63 (5) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.446, T_{\max} = 0.644$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.076$ S = 1.022368 reflections 154 parameters 0 restraints F(000) = 624 $D_x = 1.577 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4277 reflections $\theta = 2.6-24.2^{\circ}$ $\mu = 3.21 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.30 \times 0.20 \times 0.15 \text{ mm}$

11338 measured reflections 2368 independent reflections 1859 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.4^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 12$ $k = -15 \rightarrow 14$ $l = -9 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites $w = 1/[\sigma^2(F_o^2) + (0.0436P)^2 + 0.2892P]$ where $P = (F_o^2 + 2F_c^2)/3$

supporting information

$$(\Delta/\sigma)_{\rm max} = 0.001$$

 $\Delta\rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$

$$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.70444 (3)	0.11259 (2)	0.71170 (3)	0.06222 (13)	
01	0.66345 (15)	0.35583 (12)	0.61783 (15)	0.0391 (4)	
O2	0.7122 (2)	0.73040 (14)	0.57865 (18)	0.0640 (5)	
O3	0.84162 (18)	0.72842 (13)	0.82550 (18)	0.0529 (4)	
C1	0.6947 (2)	0.24005 (18)	0.8181 (2)	0.0424 (5)	
H1	0.6541	0.2205	0.8820	0.051*	
C11	0.6034 (2)	0.32101 (18)	0.7079 (2)	0.0404 (5)	
H11	0.5125	0.2915	0.6480	0.048*	
C13	0.7789 (3)	0.8290 (2)	0.7886 (3)	0.0547 (7)	
H13A	0.8441	0.8848	0.8377	0.066*	
H13B	0.7043	0.8344	0.8138	0.066*	
C4	0.7757 (2)	0.42229 (17)	0.7136 (2)	0.0348 (5)	
C2	0.8358 (2)	0.2838 (2)	0.9109 (3)	0.0479 (6)	
H2A	0.8985	0.2259	0.9566	0.057*	
H2B	0.8345	0.3275	0.9878	0.057*	
C7	0.7737 (2)	0.66148 (18)	0.7019 (2)	0.0439 (5)	
C5	0.8222 (3)	0.48727 (18)	0.6187 (3)	0.0482 (6)	
H5A	0.8906	0.4482	0.6038	0.058*	
H5B	0.7453	0.4997	0.5239	0.058*	
C3	0.8863 (2)	0.34948 (19)	0.8204 (3)	0.0439 (5)	
H3A	0.9638	0.3916	0.8854	0.053*	
H3B	0.9165	0.3025	0.7663	0.053*	
C9	0.7113 (2)	0.49168 (18)	0.7904 (2)	0.0371 (5)	
H9	0.7779	0.5045	0.8922	0.044*	
C8	0.6607 (2)	0.59613 (19)	0.7111 (3)	0.0463 (6)	
H8A	0.6205	0.6371	0.7613	0.056*	
H8B	0.5900	0.5822	0.6130	0.056*	
C6	0.8809 (3)	0.59178 (19)	0.6909 (3)	0.0510 (6)	
H6A	0.9192	0.6282	0.6350	0.061*	
H6B	0.9540	0.5790	0.7881	0.061*	
C12	0.7281 (3)	0.8340 (2)	0.6265 (3)	0.0637 (7)	
H12A	0.6419	0.8713	0.5805	0.076*	
H12B	0.7934	0.8703	0.6032	0.076*	

supporting information

C10	0.5940 (2)	0.4216 (2)	0.7848 (3)	0.0467 (6)
H10A	0.6061	0.4061	0.8825	0.056*
H10B	0.5065	0.4560	0.7300	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0895 (3)	0.04123 (17)	0.0633 (2)	-0.00573 (13)	0.04119 (18)	-0.00022 (12)
01	0.0431 (9)	0.0423 (8)	0.0294 (8)	-0.0076 (7)	0.0142 (7)	-0.0022 (6)
O2	0.0890 (14)	0.0478 (10)	0.0373 (10)	-0.0019 (10)	0.0129 (10)	0.0008 (8)
03	0.0545 (10)	0.0443 (9)	0.0425 (9)	0.0021 (8)	0.0068 (8)	-0.0056 (7)
C1	0.0489 (14)	0.0453 (13)	0.0364 (12)	-0.0032 (10)	0.0223 (11)	0.0011 (10)
C11	0.0321 (12)	0.0482 (13)	0.0380 (13)	-0.0066 (10)	0.0134 (10)	0.0023 (10)
C13	0.0602 (17)	0.0420 (14)	0.0590 (17)	-0.0012 (12)	0.0246 (14)	-0.0077 (12)
C4	0.0335 (12)	0.0383 (11)	0.0327 (12)	-0.0032 (9)	0.0153 (10)	-0.0047 (10)
C2	0.0453 (14)	0.0514 (14)	0.0364 (13)	0.0075 (11)	0.0094 (11)	0.0049 (11)
C7	0.0488 (14)	0.0384 (12)	0.0372 (13)	-0.0014 (11)	0.0132 (11)	-0.0032 (10)
C5	0.0584 (16)	0.0430 (13)	0.0569 (15)	-0.0040 (11)	0.0382 (13)	-0.0051 (11)
C3	0.0313 (12)	0.0458 (12)	0.0504 (14)	0.0011 (10)	0.0149 (11)	-0.0047 (11)
C9	0.0325 (12)	0.0443 (12)	0.0337 (12)	0.0026 (9)	0.0144 (10)	-0.0042 (10)
C8	0.0370 (12)	0.0462 (14)	0.0493 (15)	0.0067 (10)	0.0140 (11)	-0.0024 (11)
C6	0.0516 (15)	0.0453 (14)	0.0621 (16)	-0.0098 (11)	0.0311 (13)	-0.0067 (12)
C12	0.075 (2)	0.0490 (16)	0.0596 (17)	0.0066 (14)	0.0237 (15)	0.0063 (13)
C10	0.0399 (13)	0.0549 (14)	0.0508 (14)	0.0033 (11)	0.0255 (12)	0.0035 (12)

Geometric parameters (Å, °)

Br1—C1	1.979 (2)	C2—H2B	0.9700
01—C11	1.430 (3)	C7—C6	1.519 (3)
O1—C4	1.449 (3)	С7—С8	1.533 (4)
O2—C12	1.384 (3)	C5—C6	1.511 (3)
O2—C7	1.430 (3)	С5—Н5А	0.9700
O3—C13	1.416 (3)	C5—H5B	0.9700
O3—C7	1.424 (3)	С3—НЗА	0.9700
C1—C2	1.512 (3)	C3—H3B	0.9700
C1-C11	1.519 (3)	C9—C8	1.520 (3)
C1—H1	0.9800	C9—C10	1.547 (3)
C11—C10	1.528 (3)	С9—Н9	0.9800
C11—H11	0.9800	C8—H8A	0.9700
C13—C12	1.498 (4)	C8—H8B	0.9700
C13—H13A	0.9700	С6—Н6А	0.9700
C13—H13B	0.9700	С6—Н6В	0.9700
C4—C3	1.524 (3)	C12—H12A	0.9700
C4—C5	1.531 (3)	C12—H12B	0.9700
C4—C9	1.552 (3)	C10—H10A	0.9700
C2—C3	1.529 (3)	C10—H10B	0.9700
C2—H2A	0.9700		

C11—O1—C4	104.04 (15)	С4—С5—Н5А	109.5
C12—O2—C7	109.37 (19)	C6—C5—H5B	109.5
C13—O3—C7	107.58 (18)	C4—C5—H5B	109.5
C2-C1-C11	111.43 (19)	H5A—C5—H5B	108.1
C2-C1-Br1	110.40 (16)	C4—C3—C2	111.99 (18)
C11—C1—Br1	108.80 (15)	C4—C3—H3A	109.2
C2—C1—H1	108.7	С2—С3—НЗА	109.2
C11—C1—H1	108.7	C4—C3—H3B	109.2
Br1—C1—H1	108.7	C2—C3—H3B	109.2
O1—C11—C1	110.25 (17)	H3A—C3—H3B	107.9
O1—C11—C10	103.78 (17)	C8—C9—C10	112.51 (19)
C1-C11-C10	110.77 (19)	C8—C9—C4	111.12 (18)
O1—C11—H11	110.6	C10—C9—C4	102.94 (18)
C1-C11-H11	110.6	С8—С9—Н9	110.0
C10—C11—H11	110.6	С10—С9—Н9	110.0
O3—C13—C12	103.1 (2)	С4—С9—Н9	110.0
O3—C13—H13A	111.2	C9—C8—C7	113.1 (2)
C12—C13—H13A	111.2	C9—C8—H8A	108.9
O3—C13—H13B	111.2	С7—С8—Н8А	108.9
C12—C13—H13B	111.2	C9—C8—H8B	108.9
H13A—C13—H13B	109.1	C7—C8—H8B	108.9
O1—C4—C3	107.08 (17)	H8A—C8—H8B	107.8
O1—C4—C5	107.98 (17)	C5—C6—C7	111.8 (2)
C3—C4—C5	113.22 (18)	С5—С6—Н6А	109.3
O1—C4—C9	103.17 (16)	С7—С6—Н6А	109.3
C3—C4—C9	112.15 (18)	С5—С6—Н6В	109.3
C5—C4—C9	112.49 (18)	C7—C6—H6B	109.3
C1—C2—C3	111.68 (18)	H6A—C6—H6B	107.9
C1—C2—H2A	109.3	O2—C12—C13	106.1 (2)
C3—C2—H2A	109.3	O2—C12—H12A	110.5
C1—C2—H2B	109.3	C13—C12—H12A	110.5
C3—C2—H2B	109.3	O2—C12—H12B	110.5
H2A—C2—H2B	107.9	C13—C12—H12B	110.5
O3—C7—O2	105.78 (18)	H12A—C12—H12B	108.7
O3—C7—C6	107.5 (2)	C11—C10—C9	104.20 (17)
O2—C7—C6	111.1 (2)	C11-C10-H10A	110.9
O3—C7—C8	112.2 (2)	C9—C10—H10A	110.9
O2—C7—C8	108.2 (2)	C11-C10-H10B	110.9
C6—C7—C8	111.80 (19)	C9—C10—H10B	110.9
C6—C5—C4	110.50 (19)	H10A—C10—H10B	108.9
С6—С5—Н5А	109.5		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11…O2 ⁱ	0.98	2.53	3.445 (3)	156

			supporting information		
C1—H1···O1 ⁱⁱ	0.98	2.57	3.471 (3)	153	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$;	(ii) $x, -y+1/2, z+1/2$.				