Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

($1^{\prime} S, 6^{\prime} S, 8^{\prime} S, 9^{\prime} R$)-9'-Bromo-12'-oxaspiro-[1,3-dioxolane-2,4'-tricyclo[6.3.1.0 ${ }^{1,6}$]dodecane]

Goverdhan Mehta ${ }^{\mathrm{a}, \mathrm{b} *}$ and Tabrez Babu Khan ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\mathbf{b}}$ School of Chemistry, University of Hyderabad, Hyderabad 500 046, A.P. India
Correspondence e-mail: gmsc@uohyd.ernet.in, gm@orgchem.iisc.ernet.in

Received 15 June 2012; accepted 29 June 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.030 ; w R$ factor $=0.076$; data-to-parameter ratio $=15.4$.

In an endeavor directed towards the construction of the oxabicyclic[3.2.1]octane segment present in the bioactive natural products of cortistatins and icetexanes genre, the title compound, $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrO}_{3}$, was synthesized from ($4 \mathrm{a} R, 9 \mathrm{a} S$)-1,3,4,4a,5,6,9,9a-octahydrospiro[benzo[7]annulene-2,2'-[1,3]-dioxolane]-4a-ol via a transannular bromo-etherification protocol. The six-membered ring adopts a twist-boat conformation, while the fused cycloheptane ring adopts a chair conformation. The crystal packing is effected through two distinct intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond patterns and molecules are arranged to define an interesting motif along the b axis.

Related literature

For the isolation and biological activity of cortistatins, see: Aoki et al. (2006, 2007); Watanabe et al. (2007); Zhao (2010) and for icetexanes, see: Esquivel et al. (1995); Uchiyama et al. (2005). For synthetic approaches towards the construction of the oxabicyclic core of cortistatins, see: Zhao (2010); Hardin Narayan et al. (2010) and references cited therein. For their use in the treatment of blindness, see: Czako et al. (2009). For the construction of relevant $6 / 7$ fused-ring systems involving ring-closing metathesis, see: Mehta \& Likhite (2008, 2009). For an example of the exploitation of transannular bromoetherification towards natural products synthesis, see: Mehta \& Sen (2010); Mehta \& Yaragorla (2011).

Experimental

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrO}_{3}$
$M_{r}=303.19$
Monoclinic, $P 2_{1} / c$
$a=11.0159$ (3) \AA
$b=12.6619$ (3) A
$c=10.2763$ (2) \AA
$\beta=117.044$ (1) ${ }^{\circ}$
$V=1276.63(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=3.21 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.446, T_{\text {max }}=0.644$
11338 measured reflections 2368 independent reflections 1859 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030 \quad 154$ parameters
$w R\left(F^{2}\right)=0.076 \quad$?
$S=1.02$
2368 reflections
$\Delta \rho_{\max }=0.25 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{OO}^{\mathrm{i}}$	0.98	2.53	$3.445(3)$	156
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.57	$3.471(3)$	153

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

TBK thanks the University Grants Commission, India for the award of Dr Kothari post-doctoral fellowship. We thank Mr Saikat Sen for his help in determining the X-ray crystal structure at the CCD facility of the Indian Institute of Science (IISc), Bangalore. GM acknowledges the research support from Eli Lilly and Jubilant-Bhartia Foundations.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2204).

References

Aoki, S., Watanabe, Y., Sanagawa, M., Setiawan, A., Kotoku, N. \& Kobayashi, M. (2006). J. Am. Chem. Soc. 128, 3148-3149.

Aoki, S., Watanabe, Y., Tanabe, D., Setiawan, A., Arai, M. \& Kobayashi, M. (2007). Tetrahedron Lett. 48, 4485-4488.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Czako, B., Kurti, L., Mammoto, A., Ingber, D. E. \& Corey, E. J. (2009). J. Am. Chem. Soc. 131, 9014-90.
Esquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. \& Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139-143.
Hardin Narayan, A. R., Simmons, E. M. \& Sarpong, R. (2010). Eur. J. Org. Chem. pp. 3553-3567.
Mehta, G. \& Likhite, N. S. (2008). Tetrahedron Lett. 49, 7113-7116.
Mehta, G. \& Likhite, N. S. (2009). Tetrahedron Lett. 50, 5263-5266.
Mehta, G. \& Sen, S. (2010). Tetrahedron Lett. 51, 503-507.

organic compounds

Mehta, G. \& Yaragorla, S. (2011). Tetrahedron Lett. 52, 4485-4489
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Uchiyama, N., Kabututu, Z., Kubata, B. K., Kiuchi, F., Ito, M., NakajimaShimada, J., Aoki, T., Ohkubo, K., Fukuzumi, S., Martin, S. K., Honda, G. \&

Urade, Y. (2005). Antimicrob. Agents Chemother. 49, 5123-5126.
Watanabe, Y., Aoki, S., Tanabe, D., Setiawan, A. \& Kobayashi, M. (2007).
Tetrahedron, 63, 4074-4079
Zhao, W. (2010). Chem. Rev. 110, 1706-1745.

supporting information

Acta Cryst. (2012). E68, o2411-o2412 [https://doi.org/10.1107/S1600536812029777]
($1^{\prime} S, 6$ 'S, $8^{\prime} S, 9^{\prime} R$)-9'-Bromo-12'-oxaspiro[1,3-dioxolane-2,4'-tricyclo[6.3.1.0 ${ }^{1,6}$]dodecane]

Goverdhan Mehta and Tabrez Babu Khan

S1. Comment

The oxabicyclic [3,2,1] octane scaffold manifest itself in a variety of terpenoids class of natural products viz. icetexanes (Fig. 1; Esquivel et al., 1995 \& Uchiyama et al., 2005) and cortistatin family (Fig. 1; Aoki et al., 2006, 2007 \& Watanabe et al., 2007). In particular, cortistatin A and its structural siblings isolated in trace amounts by Kobayashi \& coworkers from an Indonesian marine sponge corticium simplex were shown to possess novel architecture and exhibited potent and promising anti-angiogenic activity (Zhao, 2010) and were effective in treating blindness (Czako et al., 2009), thereby triggering interest to devise tactics for their total synthesis and diversity creation. These attributes of cortistatins encouraged us to devise a strategy to gain rapid access to the oxatricyclic ABC core present in cortistatins.

Several synthetic approaches to cortistatins have been reported utilizing ring-expansion approach, oxidative dearomatization, electrocyclization, 1,3-dipolar cycloaddition/electrocyclization cascade, transannular [4+3] cycloaddition, classical Michael/aldol condensation cascade cyclization as the key strategic steps to access the oxatricyclic segment (Hardin Narayan et al., 2010). However, the present strategy employs a stepwise transannular bromoetherification sequence (Mehta \& Sen, 2010; Mehta \& Yaragorla, 2011) on a readily accessible bicyclic compound obtained via RCM (Fig. 2; Mehta \& Likhite, 2008, 2009).

A two step transannular bromoetherification protocol on 7 furnished the title compound $\mathbf{3}$ (Fig. 2) as the major product corresponding to the oxatricyclic core present in icetexanes along with a minor regioisomeric compound 4 representing the oxatricyclic segment present in cortistatins.
The title compound $\mathbf{3}$ was crystallized from ethylacetate-hexane(1:1) and the structure was solved and refined in monoclinic $P 2{ }_{1} / c$ space group with one molecule of $\mathbf{3}$ in the asymmetric unit. An ORTEP diagram of $\mathbf{3}$ drawn at 30% ellipsoidal probability is depicted in Fig 3. From the packing diagram it can be seen that the centrosymmetric molecules are connected by weak $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O} 2\left(2.53 \AA, 156^{\circ}\right)$ hydrogen bonds forming a dimeric motif and these dimeric units are further connected by $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1\left(2.57 \AA, 153^{\circ}\right)$) hydrogen bonds, three dimensionally (Fig. 4).These two hydrogen bond patterns link the molecules to define an interesting motif along the b axis.

S2. Experimental

The synthesis of the title compound $\mathbf{3}$ as depicted in Fig. 2 emanates from the known 7-(prop-2-en-1-yl)-1,4-dioxaspiro-[4.5]decan-8-one 5 through addition of butenylmagnesium bromide (1.5 equiv.) in THF at r.t. to furnish the desired RCM precursor 6 in decent yield. Exposure of $\mathbf{6}$ to Grubbs-1s t generation catalyst ($10 \mathrm{~mol} \%$) in benzene at r.t. gave the bicyclic compound 7 in good yield. Finally, the stepwise transannular bromotherification on 7 was executed via bromination with $\mathrm{pyH}^{+} \mathrm{Br}_{3}{ }^{-}\left(1.2\right.$ equiv.) in DCM at $0^{\circ} \mathrm{C}$ followed by etherification in the presence of $10 \mathrm{Maq} . \mathrm{NaOH}$ in THF at $60^{\circ} \mathrm{C}$ for 4 h to deliver $\mathbf{3}, \mathrm{mp} .78-80^{\circ} \mathrm{C}$, as a colorless crystalline compound in 51% yield.

S3. Refinement

All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms on the C atoms were introduced on calculated positions and were included in the refinement riding on their respective parent atoms

Figure 1
Representative example of cortistatin family (cortistatin A 1) \& icetexane family (salviasperanol 2).

Figure 2
The synthesis of the title compound.

Figure 3
The molecular structure of the title compound 3, with the atom numbering scheme. Dispalcement ellipsoids for non-H atoms are drawn at 30% probability.

Figure 4
A packing diagram of the title compound 3, viewed along the b axis. Dotted lines indicate the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
(1'S,6'S, $8^{\prime} S, 9^{\prime} R$)-9'-Bromo-12'-oxaspiro[1,3- dioxolane-2,4'-tricyclo[6.3.1.0 ${ }^{1,6}$]dodecane]

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{BrO}_{3}$
$M_{r}=303.19$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=11.0159$ (3) \AA
$b=12.6619$ (3) \AA
$c=10.2763$ (2) \AA
$\beta=117.044(1)^{\circ}$
$V=1276.63(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.446, T_{\text {max }}=0.644$
$F(000)=624$
$D_{\mathrm{x}}=1.577 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4277 reflections
$\theta=2.6-24.2^{\circ}$
$\mu=3.21 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

11338 measured reflections
2368 independent reflections
1859 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-13 \rightarrow 12$
$k=-15 \rightarrow 14$
$l=-9 \rightarrow 12$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0436 P)^{2}+0.2892 P\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

supporting information

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.25 \mathrm{e}^{-3}$

$$
\Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	0.70444 (3)	0.11259 (2)	0.71170 (3)	0.06222 (13)
O1	0.66345 (15)	0.35583 (12)	0.61783 (15)	0.0391 (4)
O2	0.7122 (2)	0.73040 (14)	0.57865 (18)	0.0640 (5)
O3	0.84162 (18)	0.72842 (13)	0.82550 (18)	0.0529 (4)
C1	0.6947 (2)	0.24005 (18)	0.8181 (2)	0.0424 (5)
H1	0.6541	0.2205	0.8820	0.051*
C11	0.6034 (2)	0.32101 (18)	0.7079 (2)	0.0404 (5)
H11	0.5125	0.2915	0.6480	0.048*
C13	0.7789 (3)	0.8290 (2)	0.7886 (3)	0.0547 (7)
H13A	0.8441	0.8848	0.8377	0.066*
H13B	0.7043	0.8344	0.8138	0.066*
C4	0.7757 (2)	0.42229 (17)	0.7136 (2)	0.0348 (5)
C2	0.8358 (2)	0.2838 (2)	0.9109 (3)	0.0479 (6)
H2A	0.8985	0.2259	0.9566	0.057*
H2B	0.8345	0.3275	0.9878	0.057*
C7	0.7737 (2)	0.66148 (18)	0.7019 (2)	0.0439 (5)
C5	0.8222 (3)	0.48727 (18)	0.6187 (3)	0.0482 (6)
H5A	0.8906	0.4482	0.6038	0.058*
H5B	0.7453	0.4997	0.5239	0.058*
C3	0.8863 (2)	0.34948 (19)	0.8204 (3)	0.0439 (5)
H3A	0.9638	0.3916	0.8854	0.053*
H3B	0.9165	0.3025	0.7663	0.053*
C9	0.7113 (2)	0.49168 (18)	0.7904 (2)	0.0371 (5)
H9	0.7779	0.5045	0.8922	0.044*
C8	0.6607 (2)	0.59613 (19)	0.7111 (3)	0.0463 (6)
H8A	0.6205	0.6371	0.7613	0.056*
H8B	0.5900	0.5822	0.6130	0.056*
C6	0.8809 (3)	0.59178 (19)	0.6909 (3)	0.0510 (6)
H6A	0.9192	0.6282	0.6350	0.061*
H6B	0.9540	0.5790	0.7881	0.061*
C12	0.7281 (3)	0.8340 (2)	0.6265 (3)	0.0637 (7)
H12A	0.6419	0.8713	0.5805	0.076*
H12B	0.7934	0.8703	0.6032	0.076*

C10	$0.5940(2)$	$0.4216(2)$	$0.7848(3)$	$0.0467(6)$
H10A	0.6061	0.4061	0.8825	0.056^{*}
H10B	0.5065	0.4560	0.7300	0.056^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0895(3)$	$0.04123(17)$	$0.0633(2)$	$-0.00573(13)$	$0.04119(18)$	$-0.00022(12)$
O1	$0.0431(9)$	$0.0423(8)$	$0.0294(8)$	$-0.0076(7)$	$0.0142(7)$	$-0.0022(6)$
O2	$0.0890(14)$	$0.0478(10)$	$0.0373(10)$	$-0.0019(10)$	$0.0129(10)$	$0.0008(8)$
O3	$0.0545(10)$	$0.0443(9)$	$0.0425(9)$	$0.0021(8)$	$0.0068(8)$	$-0.0056(7)$
C1	$0.0489(14)$	$0.0453(13)$	$0.0364(12)$	$-0.0032(10)$	$0.0223(11)$	$0.0011(10)$
C11	$0.0321(12)$	$0.0482(13)$	$0.0380(13)$	$-0.0066(10)$	$0.0134(10)$	$0.0023(10)$
C13	$0.0602(17)$	$0.0420(14)$	$0.0590(17)$	$-0.0012(12)$	$0.0246(14)$	$-0.0077(12)$
C4	$0.0335(12)$	$0.0383(11)$	$0.0327(12)$	$-0.0032(9)$	$0.0153(10)$	$-0.0047(10)$
C2	$0.0453(14)$	$0.0514(14)$	$0.0364(13)$	$0.0075(11)$	$0.0094(11)$	$0.0049(11)$
C7	$0.0488(14)$	$0.0384(12)$	$0.0372(13)$	$-0.0014(11)$	$0.0132(11)$	$-0.0032(10)$
C5	$0.0584(16)$	$0.0430(13)$	$0.0569(15)$	$-0.0040(11)$	$0.0382(13)$	$-0.0051(11)$
C3	$0.0313(12)$	$0.0458(12)$	$0.0504(14)$	$0.0011(10)$	$0.0149(11)$	$-0.0047(11)$
C9	$0.0325(12)$	$0.0443(12)$	$0.0337(12)$	$0.0026(9)$	$0.0144(10)$	$-0.0042(10)$
C8	$0.0370(12)$	$0.0462(14)$	$0.0493(15)$	$0.0067(10)$	$0.0140(11)$	$-0.0024(11)$
C6	$0.0516(15)$	$0.0453(14)$	$0.0621(16)$	$-0.0098(11)$	$0.0311(13)$	$-0.0067(12)$
C12	$0.075(2)$	$0.0490(16)$	$0.0596(17)$	$0.0066(14)$	$0.0237(15)$	$0.0063(13)$
C10	$0.0399(13)$	$0.0549(14)$	$0.0508(14)$	$0.0033(11)$	$0.0255(12)$	$0.0035(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	$1.979(2)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{O} 1-\mathrm{C} 11$	$1.430(3)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.519(3)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.449(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.533(4)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.384(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.511(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.430(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{O} 3-\mathrm{C} 13$	$1.416(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{O} 3-\mathrm{C} 7$	$1.424(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
$\mathrm{C} 1-\mathrm{C} 2$	$1.512(3)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9700
$\mathrm{C} 1-\mathrm{C} 11$	$1.519(3)$	$\mathrm{C} 9-\mathrm{C} 8$	$1.520(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9800	$\mathrm{C} 9-\mathrm{C} 10$	$1.547(3)$
$\mathrm{C} 11-\mathrm{C} 10$	$1.528(3)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9800
$\mathrm{C} 11-\mathrm{H} 11$	0.9800	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 13-\mathrm{C} 12$	$1.498(4)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	0.9700	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9700
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	0.9700	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{C} 4-\mathrm{C} 3$	$1.524(3)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{C} 5$	$1.531(3)$	$\mathrm{C} 10-\mathrm{H} 12 \mathrm{~B} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 4-\mathrm{C} 9$	$1.552(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.529(3)$	0.9700	
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700		

C11-O1-C4	104.04 (15)
C12-O2-C7	109.37 (19)
C13-O3-C7	107.58 (18)
C2-C1-C11	111.43 (19)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	110.40 (16)
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{Br} 1$	108.80 (15)
C2-C1-H1	108.7
$\mathrm{C} 11-\mathrm{C} 1-\mathrm{H} 1$	108.7
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{H} 1$	108.7
$\mathrm{O} 1-\mathrm{C} 11-\mathrm{C} 1$	110.25 (17)
O1-C11-C10	103.78 (17)
C1-C11-C10	110.77 (19)
O1-C11-H11	110.6
C1-C11-H11	110.6
C10-C11-H11	110.6
O3-C13-C12	103.1 (2)
O3-C13-H13A	111.2
C12-C13-H13A	111.2
$\mathrm{O} 3-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~B}$	111.2
C12-C13-H13B	111.2
H13A-C13-H13B	109.1
O1-C4-C3	107.08 (17)
O1-C4-C5	107.98 (17)
C3-C4-C5	113.22 (18)
O1-C4-C9	103.17 (16)
C3-C4-C9	112.15 (18)
C5-C4-C9	112.49 (18)
C1-C2-C3	111.68 (18)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.3
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.9
$\mathrm{O} 3-\mathrm{C} 7-\mathrm{O} 2$	105.78 (18)
O3-C7-C6	107.5 (2)
O2-C7-C6	111.1 (2)
O3-C7-C8	112.2 (2)
O2-C7-C8	108.2 (2)
C6-C7-C8	111.80 (19)
C6-C5-C4	110.50 (19)
C6-C5-H5A	109.5

C4-C5-H5A	109.5
C6-C5-H5B	109.5
C4-C5-H5B	109.5
H5A-C5-H5B	108.1
C4-C3-C2	111.99 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.2
C2-C3-H3B	109.2
H3A-C3-H3B	107.9
C8-C9-C10	112.51 (19)
C8-C9-C4	111.12 (18)
C10-C9-C4	102.94 (18)
C8-C9-H9	110.0
C10-C9-H9	110.0
C4-C9-H9	110.0
C9-C8-C7	113.1 (2)
C9-C8-H8A	108.9
C7-C8-H8A	108.9
C9-C8-H8B	108.9
C7-C8-H8B	108.9
H8A-C8-H8B	107.8
C5-C6-C7	111.8 (2)
C5-C6-H6A	109.3
C7-C6-H6A	109.3
C5-C6-H6B	109.3
C7-C6-H6B	109.3
H6A-C6-H6B	107.9
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 13$	106.1 (2)
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	110.5
C13-C12-H12A	110.5
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	110.5
C13-C12-H12B	110.5
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.7
C11-C10-C9	104.20 (17)
C11-C10-H10A	110.9
C9-C10-H10A	110.9
C11-C10-H10B	110.9
C9-C10-H10B	110.9
H10A-C10-H10B	108.9

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 \cdots 2^{\mathrm{i}}$	0.98	2.53	$3.445(3)$	156

supporting information

$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{ii}} 0.9$
0.98
2.57
3.471 (3)

153
Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+1 / 2, z+1 / 2$.

