

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 7-chloro-1-cyclopropyl-6-fluoro-8nitro-4-oxo-1,4-dihydroquinoline-3carboxylate

Raed A. Al-Qawasmeh

Department of Chemistry, University of Jordan, Amman 11942, Jordan Correspondence e-mail: r.alqawasmeh@ju.edu.jo

Received 22 February 2012; accepted 15 March 2012

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (Wa) = 0.000 Å; R factor = 0.060; wR factor = 0.195; data-to-parameter ratio = 12.4.

In the title compound, $C_{15}H_{12}ClFN_2O_5$, molecules are packed in the crystal lattice in a parallel fashion sustained by various $C-H\cdots O$ [$C\cdots O = 3.065$ (5)–3.537 (5) Å] and $C-H\cdots Cl$ [3.431 (5)–3.735 (4) Å] interactions.

Related literature

For the biological activities of fluoroquinolone derivatives, see: Li *et al.* (2000); Mitscher (2005). For the synthesis of the title compound, see: Al-Qawasmeh *et al.* (2009); Al-Hiari *et al.* (2006).

Experimental

Crystal data

C ₁₅ H ₁₂ ClFN ₂ O ₅
$M_r = 354.72$
Triclinic, P1
a = 8.2339 (16) Å
b = 9.1523 (18) Å
c = 10.736 (2) Å
$\alpha = 85.60 \ (3)^{\circ}$
$\beta = 81.20 \ (3)^{\circ}$

```
\gamma = 74.13 (3)^{\circ}

V = 768.5 (3) \text{ Å}^{3}

Z = 2

Mo K\alpha radiation

\mu = 0.29 \text{ mm}^{-1}

T = 291 \text{ K}

0.96 \times 0.35 \times 0.21 \text{ mm}
```

4468 measured reflections

 $R_{\rm int} = 0.031$

2713 independent reflections 1617 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.857, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	218 parameters
$wR(F^2) = 0.195$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
2713 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14A\cdotsO1^{i}$	0.97	2.54	3.489 (4)	167
$C14-H14B\cdots O1^{ii}$	0.97	2.51	3.471 (5)	172
$C15-H15A\cdots O2^{iii}$	0.98	2.58	3.537 (5)	165
$C4-H4A\cdots O2^{iv}$	0.93	2.71	3.065 (5)	104
$C13-H13A\cdots O4^{ii}$	0.97	2.71	3.439 (5)	132
$C11-H11A\cdots Cl1^{v}$	0.97	2.91	3.431 (5)	115
$C13-H13A\cdots Cl1^{vi}$	0.97	2.89	3.735 (4)	146

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z - 1; (iii) -x + 1, -y - 1, -z; (iv) -x + 1, -y, -z; (v) x + 1, y, z - 1; (vi) -x, -y, -z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The author gratefully acknowledges financial support from the Deanship of Scientific Research at the University of Jordan (grant No. 7/1005/2006). Dr Murad AlDamen is acknowledged for collecting the data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2180).

References

Al-Hiari, Y. H., Khanfar, M. A., Qaisi, A. M., Abu Shuheil, M. Y., Elabadelah, M. M. & Boese, R. (2006). *Heterocycles*, pp. 1163–1172.

Al-Qawasmeh, R. A., Zahra, J. A., Zani, F., Vicini, P., Boese, B. & El-Abadelah, M. M. (2009). Arkivoc, pp. 322–336.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Li, Q., Mitscher, L. A. & Shen, L. L. (2000). Med. Res. Rev. 20, 231-293.

Mitscher, L. A. (2005). Chem. Rev. 105, 559-592.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2533 [https://doi.org/10.1107/S1600536812011373]

Ethyl 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate

Raed A. Al-Qawasmeh

S1. Comment

Fluoroquinolone derivatives have been widely investigated as drugs against bacterial infections. Ciprofloxacine, one derivative of fluoroquinolone, represents one of the most effective antiinfectious drugs currently in clinical use (Li *et al.*, 2000; Mitscher 2005). In the present paper, we describe the title compound, I, which has been synthesized from 2,4,-di chloro-5-fluoro-3-nitrobenzoic acid according to the published literature (Al-Hiari *et al.*, 2006) and (Al-Qawasmeh *et al.*, 2009). The title compound is an important synthetic intermediate for the synthesis of the analogues of the antimicrobial drug ciprofloxcaine. The title molecule crystallizes in the centrosymmetric triclinic space group P-1. In the crystal structure of (I), the molecules are held together by C—H…O [3.065 (5)-3.537 (5) Å] and C—H…Cl [3.431 (5)-3.735 (4) Å] (Table 1).

S2. Experimental

The title compound was synthesized according to the published literature (Al-Hiari *et al.*, 2006) and it has been recrystallized from hot ethanol to produce a yellow crystalline material

S3. Refinement

Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc.and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atom was located from difference Fourier syntheses and its position and isotropic displacement parameter refined freely.

Figure 1

Molecular structure of the title compound. The thermal ellipsoids are drawn at the 30% probability level.

Molecular packing displaying C-H···Cl and C-H···O interactions in the title compound (I).

Ethyl 7-chloro-1-cyclopropyl-6-fluoro-8-nitro-4-oxo-1,4-dihydroquinoline-3-carboxylate

Crystal data

2	
$C_{15}H_{12}CIFN_2O_5$	F(000) = 364
$M_r = 354.72$	none
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.533 { m Mg} { m m}^{-3}$
Hall symbol: -P 1	Melting point: 438 K
a = 8.2339 (16) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.1523 (18) Å	Cell parameters from 1074 reflections
c = 10.736 (2) Å	$\theta = 3.1 - 29.0^{\circ}$
$\alpha = 85.60 \ (3)^{\circ}$	$\mu = 0.29 ext{ mm}^{-1}$
$\beta = 81.20 \ (3)^{\circ}$	T = 291 K
$\gamma = 74.13 \ (3)^{\circ}$	Needle, yellow
V = 768.5 (3) Å ³	$0.96 \times 0.35 \times 0.21 \text{ mm}$
7 = 2	

Data collection

Oxford Diffraction Xcalibur Eos diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.0534 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.857, T_{\max} = 1.000$	4468 measured reflections 2713 independent reflections 1617 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -8 \rightarrow 9$ $k = -8 \rightarrow 10$ $l = -12 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.060$ $wR(F^2) = 0.195$ S = 1.05 2713 reflections 218 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0824P)^2 + 0.0377P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.29$ e Å ⁻³ $\Delta\rho_{min} = -0.26$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2\theta)] ^{-1/4} Extinction coefficient: 0.013 (5)

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. (CrysAlisPro; Oxford Diffraction, 2009) **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. The H atom was located from difference Fourier syntheses and its position and isotropic displacement parameter refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.12355 (14)	0.02366 (11)	0.15569 (10)	0.0800 (4)	
N2	0.4807 (4)	-0.2165 (3)	-0.2558 (3)	0.0577 (8)	
F1	0.1920 (3)	0.2933 (2)	0.0257 (2)	0.0921 (8)	
N1	0.2887 (5)	-0.2409 (3)	0.0032 (3)	0.0651 (8)	
01	0.5691 (4)	0.1923 (3)	-0.3780 (3)	0.0833 (9)	
C1	0.3081 (4)	-0.0978 (3)	-0.0616 (3)	0.0571 (9)	
O3	0.1470 (4)	-0.2615 (3)	0.0265 (3)	0.0833 (9)	
C3	0.2613 (5)	0.1687 (4)	-0.0426 (4)	0.0663 (10)	
05	0.8693 (4)	-0.2246 (3)	-0.5300 (3)	0.0892 (10)	
O4	0.8073 (4)	0.0240 (3)	-0.5725 (3)	0.0872 (9)	
C7	0.5977 (5)	-0.2042 (4)	-0.3557 (3)	0.0616 (10)	

supporting information

H7A	0.6527	-0.2921	-0.3992	0.074*
O2	0.4183 (4)	-0.3294 (3)	0.0328 (3)	0.0830 (9)
C2	0.2348 (4)	0.0321 (4)	0.0076 (3)	0.0611 (9)
C5	0.4362 (4)	0.0483 (4)	-0.2238 (3)	0.0572 (9)
C9	0.5534 (5)	0.0667 (4)	-0.3412 (4)	0.0607 (9)
C6	0.4075 (4)	-0.0917 (3)	-0.1800 (3)	0.0544 (9)
C8	0.6428 (5)	-0.0756 (4)	-0.3988 (3)	0.0615 (10)
C10	0.7786 (5)	-0.0812 (4)	-0.5092 (4)	0.0673 (10)
C15	0.4290 (5)	-0.3592 (4)	-0.2387 (4)	0.0669 (11)
H15A	0.4878	-0.4359	-0.1803	0.080*
C4	0.3601 (5)	0.1772 (4)	-0.1551 (4)	0.0668 (11)
H4A	0.3768	0.2704	-0.1862	0.080*
C14	0.3847 (5)	-0.4180 (4)	-0.3509 (4)	0.0797 (13)
H14A	0.4181	-0.5271	-0.3605	0.096*
H14B	0.3885	-0.3580	-0.4292	0.096*
C13	0.2480 (5)	-0.3550 (4)	-0.2451 (4)	0.0774 (12)
H13A	0.1693	-0.2570	-0.2595	0.093*
H13B	0.1989	-0.4262	-0.1907	0.093*
C11	1.0073 (6)	-0.2448 (5)	-0.6353 (5)	0.1002 (16)
H11A	0.9628	-0.2012	-0.7124	0.120*
H11B	1.0908	-0.1937	-0.6197	0.120*
C12	1.0855 (8)	-0.4041 (6)	-0.6479 (6)	0.146 (3)
H12A	1.1749	-0.4193	-0.7182	0.219*
H12B	1.0016	-0.4540	-0.6617	0.219*
H12C	1.1322	-0.4457	-0.5722	0.219*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0797 (8)	0.0847 (8)	0.0611 (7)	-0.0052 (6)	0.0105 (5)	-0.0156 (5)
N2	0.0693 (19)	0.0411 (14)	0.0518 (19)	-0.0083 (13)	0.0134 (15)	-0.0013 (12)
F1	0.0937 (18)	0.0661 (13)	0.104 (2)	-0.0100 (12)	0.0191 (15)	-0.0361 (12)
N1	0.075 (2)	0.0571 (18)	0.053 (2)	-0.0090 (17)	0.0059 (17)	-0.0042 (14)
01	0.107 (2)	0.0508 (14)	0.083 (2)	-0.0210 (14)	0.0142 (17)	0.0036 (13)
C1	0.057 (2)	0.0463 (18)	0.061 (2)	-0.0079 (16)	0.0012 (18)	-0.0004 (16)
03	0.080 (2)	0.0817 (18)	0.079 (2)	-0.0246 (16)	0.0223 (16)	-0.0017 (15)
C3	0.071 (2)	0.0511 (19)	0.071 (3)	-0.0066 (18)	0.001 (2)	-0.0195 (18)
05	0.084 (2)	0.0671 (16)	0.091 (2)	-0.0053 (15)	0.0381 (17)	-0.0004 (15)
O4	0.089 (2)	0.0769 (17)	0.084 (2)	-0.0202 (16)	0.0145 (17)	0.0147 (15)
C7	0.066 (2)	0.0482 (18)	0.056 (2)	-0.0011 (17)	0.0079 (19)	0.0019 (16)
O2	0.093 (2)	0.0639 (15)	0.080(2)	-0.0013 (15)	-0.0148 (17)	0.0056 (14)
C2	0.054 (2)	0.063 (2)	0.057 (2)	-0.0038 (17)	0.0024 (18)	-0.0075 (17)
C5	0.061 (2)	0.0502 (18)	0.055 (2)	-0.0107 (16)	0.0004 (18)	-0.0015 (16)
C9	0.066 (2)	0.0518 (19)	0.059 (2)	-0.0126 (17)	-0.0004 (19)	0.0021 (16)
C6	0.055 (2)	0.0463 (18)	0.054 (2)	-0.0047 (15)	0.0003 (17)	-0.0010 (15)
C8	0.064 (2)	0.056 (2)	0.057 (2)	-0.0111 (17)	0.0043 (19)	0.0020 (16)
C10	0.067 (2)	0.068 (2)	0.058 (3)	-0.012 (2)	0.0045 (19)	0.0027 (19)
C15	0.080 (3)	0.0407 (18)	0.063 (3)	-0.0031 (18)	0.017 (2)	0.0002 (16)

supporting information

C4	0.074 (3)	0.0480 (19)	0.071 (3)	-0.0110 (18)	0.004 (2)	-0.0055 (17)
C14	0.109 (3)	0.0484 (19)	0.071 (3)	-0.021 (2)	0.027 (2)	-0.0162 (18)
C13	0.081 (3)	0.057 (2)	0.084 (3)	-0.017 (2)	0.023 (2)	-0.0202 (19)
C11	0.081 (3)	0.094 (3)	0.096 (4)	-0.007 (3)	0.047 (3)	0.001 (3)
C12	0.147 (5)	0.108 (4)	0.131 (5)	0.004 (4)	0.075 (4)	-0.005 (4)

Geometric parameters (Å, °)

Cl1—C2	1.716 (4)	C5—C6	1.399 (4)	
N2—C7	1.347 (4)	C5—C9	1.494 (5)	
N2-C6	1.396 (4)	C9—C8	1.442 (5)	
N2-C15	1.471 (4)	C8—C10	1.494 (5)	
F1—C3	1.345 (4)	C15—C14	1.487 (5)	
N1-03	1.218 (4)	C15—C13	1.492 (5)	
N102	1.220 (4)	C15—H15A	0.9800	
N1—C1	1.471 (4)	C4—H4A	0.9300	
O1—C9	1.221 (4)	C14—C13	1.498 (5)	
C1—C2	1.391 (5)	C14—H14A	0.9700	
C1—C6	1.408 (5)	C14—H14B	0.9700	
C3—C4	1.358 (5)	C13—H13A	0.9700	
C3—C2	1.382 (5)	C13—H13B	0.9700	
O5—C10	1.336 (5)	C11—C12	1.431 (7)	
O5—C11	1.459 (5)	C11—H11A	0.9700	
O4—C10	1.192 (4)	C11—H11B	0.9700	
С7—С8	1.357 (4)	C12—H12A	0.9600	
C7—H7A	0.9300	C12—H12B	0.9600	
C5—C4	1.384 (5)	C12—H12C	0.9600	
C7—N2—C6	118.9 (3)	N2-C15-C14	117.5 (3)	
C7—N2—C15	117.2 (3)	N2-C15-C13	119.2 (3)	
C6—N2—C15	123.7 (3)	C14—C15—C13	60.4 (3)	
O3—N1—O2	124.7 (3)	N2—C15—H15A	116.1	
O3—N1—C1	119.0 (3)	C14—C15—H15A	116.1	
O2—N1—C1	116.3 (3)	C13—C15—H15A	116.1	
C2—C1—C6	121.3 (3)	C3—C4—C5	120.6 (3)	
C2-C1-N1	115.2 (3)	C3—C4—H4A	119.7	
C6-C1-N1	123.2 (3)	C5—C4—H4A	119.7	
F1-C3-C4	120.4 (3)	C15—C14—C13	60.0 (3)	
F1—C3—C2	118.0 (3)	C15—C14—H14A	117.8	
C4—C3—C2	121.6 (3)	C13—C14—H14A	117.8	
C10-05-C11	115.8 (3)	C15—C14—H14B	117.8	
N2—C7—C8	126.1 (3)	C13—C14—H14B	117.8	
N2—C7—H7A	116.9	H14A—C14—H14B	114.9	
С8—С7—Н7А	116.9	C15—C13—C14	59.7 (2)	
C3—C2—C1	118.4 (3)	C15—C13—H13A	117.8	
C3—C2—Cl1	120.0 (3)	C14—C13—H13A	117.8	
C1—C2—C11	121.5 (3)	C15—C13—H13B	117.8	
C4—C5—C6	120.2 (3)	C14—C13—H13B	117.8	

C4—C5—C9	116.7 (3)	H13A—C13—H13B	114.9
C6—C5—C9	123.1 (3)	C12—C11—O5	108.5 (4)
O1—C9—C8	126.4 (3)	C12—C11—H11A	110.0
O1—C9—C5	120.5 (3)	O5—C11—H11A	110.0
C8—C9—C5	113.1 (3)	C12—C11—H11B	110.0
N2—C6—C5	117.9 (3)	O5—C11—H11B	110.0
N2-C6-C1	124.2 (3)	H11A—C11—H11B	108.4
C5—C6—C1	117.9 (3)	C11—C12—H12A	109.5
С7—С8—С9	119.6 (3)	C11—C12—H12B	109.5
C7—C8—C10	119.8 (3)	H12A—C12—H12B	109.5
C9—C8—C10	120.6 (3)	C11—C12—H12C	109.5
O4—C10—O5	122.6 (4)	H12A—C12—H12C	109.5
O4—C10—C8	126.8 (4)	H12B—C12—H12C	109.5
O5—C10—C8	110.6 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H…A
C14—H14 <i>A</i> …O1 ⁱ	0.97	2.54	3.489 (4)	167
C14—H14 <i>B</i> …O1 ⁱⁱ	0.97	2.51	3.471 (5)	172
C15—H15A····O2 ⁱⁱⁱ	0.98	2.58	3.537 (5)	165
C4—H4 A ····O2 ^{iv}	0.93	2.71	3.065 (5)	104
C13—H13A····O4 ⁱⁱ	0.97	2.71	3.439 (5)	132
C11—H11A···Cl1 ^v	0.97	2.91	3.431 (5)	115
C13—H13A····Cl1 ^{vi}	0.97	2.89	3.735 (4)	146

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*, -*z*-1; (iii) -*x*+1, -*y*-1, -*z*; (iv) -*x*+1, -*y*, -*z*; (v) *x*+1, *y*, *z*-1; (vi) -*x*, -*y*, -*z*.