Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2,6-Diisopropylphenoxy)-4-phenylphthalazine

Bihai Tong^a* and Qunying Mei^b

^aCollege of Metallurgy and Resources, Anhui University of Technology, Maanshan 243002, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, School Library, Anhui University of Technology, Maanshan 243002, People's Republic of China Correspondence e-mail: tongbihai@163.com

Received 12 July 2012; accepted 23 July 2012

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.165; data-to-parameter ratio = 13.5.

In the title molecule, $C_{26}H_{26}N_2O$, the phenyl and phenoxy rings form dihedral angles of 54.66(7) and $84.83(6)^{\circ}$, respectively, with the phthalazine mean plane. The crystal packing exhibits weak $C-H\cdots\pi$ interactions.

Related literature

For details of the synthesis, see: Tong et al. (2008, 2012). For related structures, see: Dilek et al. (2004); Rajnikant et al. (2006); Sakthivel et al. (2011).

Crystal data

$C_{26}H_{26}N_2O$	V = 2143 (3) Å ³
$M_r = 382.49$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.079 (10) Å	$\mu = 0.07 \text{ mm}^{-1}$
b = 8.369 (6) Å	T = 273 K
c = 19.244 (13) Å	$0.31 \times 0.29 \times 0.14 \text{ mm}$
$\beta = 109.104 \ (9)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.978, T_{\max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	267 parameters
$wR(F^2) = 0.165$	H-atom parameters constrained
S = 0.90	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
3596 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

9404 measured reflections

 $R_{\rm int} = 0.036$

3596 independent reflections

2028 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C15-C20 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C9-H9\cdots Cg$	0.93	2.77	3.624 (2)	154

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China for financial support (grant No. 50903001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5322).

References

- Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dilek, N., Gunes, B., Ide, S., Ozcan, Y. & Tezcan, H. (2004). Anal. Sci. 20, x157x158.
- Rajnikant, Dinesh, Kamni & Deshmukh, M. B. (2006). Crystallogr. Rep. 51, 615-618.

Sakthivel, K., Srinivasan, K. & Natarajan, S. (2011). Acta Cryst. E67, 03497. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Tong, B. H., Mei, Q. B., Wang, S. J., Meng, Y. Z. & Wang, B. (2008). J. Mater. Chem. 18, 1636-1639.
- Tong, B. H., Qiang, J. Y., Mei, Q. B., Wang, H. S. & Zhang, Q. F. (2012). Inorg. Chem. Commun. 17, 113-115.

supporting information

Acta Cryst. (2012). E68, o2578 [https://doi.org/10.1107/S1600536812033296]

1-(2,6-Diisopropylphenoxy)-4-phenylphthalazine

Bihai Tong and Qunying Mei

S1. Comment

Phthalazine is a well known heterocyclic system which is widely used in coordination chemistry and pharmaceutical chemistry. Recently, we have reported the direct synthesis of a series of highly efficient tris-cyclometalated iridium(III) complexes using phenylphthalazine derivatives as ligands (Tong *et al.*, 2008). However, the 2, 6-dimethylphenoxyl groups of phenylphthalazine derivatives hydrolyzate easily in the coordination procedure (Tong *et al.*, 2012). In order to suppress the hydrolyzation process, the title molecule was synthesized as the ligand of cyclometalated iridium(III) complexes.

In the title molecule (Fig. 1), the phthalazine moiety consists of a benzene and a pyridazine rings fused together and shows a planar conformation; the dihedral angle between these rings is 2.00 (6)°. A phenyl and a phenoxyl rings are substituted on the pyridazine ring and dihedral angle of these rings with the pyridazine ring are 54.66 (7) and 84.83 (6)°, respectively. The molecular dimensions in the title compound are in agreement with the corresponding molecular dimensions reported for closely related compounds (Dilek *et al.*, 2004; Rajnikant *et al.*, 2006; Sakthivel *et al.*, 2011). In the crystal, the molecules are held together *via* the weak C—H··· π interactions (Table 1).

S2. Experimental

The title compound was obtained in 89% yield by refluxing 1-chloro-4- phenylphthalazine (4.8 g, 20 mmol), 2,6-diisopropylphenol (2.5 g, 20 mmol) and potassium carbonate (2.8 g, 20 mmol) in *N*,*N*-dimethylformamide (50 ml) at 383 K for 5 h under nitrogen atmosphere. The crystals suitable for crystallographic study were grow from ethanol by slow evaporation at room temperature.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) $U_{eq}(C)$.

Figure 1

The molecular structure of (I), showing the atomic labeling and 30% probability displacement ellipsoids. H atoms omitted for clarity.

1-(2,6-Diisopropylphenoxy)-4-phenylphthalazine

Crystal data

C₂₆H₂₆N₂O $M_r = 382.49$ Monoclinic, P2₁/c Hall symbol: -P 2ybc a = 14.079 (10) Å b = 8.369 (6) Å c = 19.244 (13) Å $\beta = 109.104 (9)^{\circ}$ $V = 2143 (3) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.978, T_{\max} = 0.990$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.165$ S = 0.90 F(000) = 816 $D_x = 1.186 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1750 reflections $\theta = 2.7-22.8^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 273 KBlock, colourless $0.31 \times 0.29 \times 0.14 \text{ mm}$

9404 measured reflections 3596 independent reflections 2028 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -16 \rightarrow 12$ $k = -9 \rightarrow 9$ $l = -22 \rightarrow 22$

3596 reflections267 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} < 0.001$
map	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$
neighbouring sites	Extinction correction: SHELXL97 (Sheldrick,
H-atom parameters constrained	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$	Extinction coefficient: 0.0064 (16)
where $P = (F_0^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.34098 (10)	0.39831 (14)	0.11904 (7)	0.0538 (4)	
N1	0.21896 (13)	0.28031 (18)	0.02336 (10)	0.0589 (5)	
N2	0.13859 (13)	0.29298 (18)	-0.04103 (10)	0.0586 (5)	
C1	-0.05395 (18)	0.5056 (3)	-0.26486 (13)	0.0669 (7)	
H1	-0.0493	0.5583	-0.3061	0.080*	
C2	0.02474 (16)	0.5119 (2)	-0.19941 (12)	0.0585 (6)	
H2	0.0821	0.5702	-0.1967	0.070*	
C3	0.01925 (14)	0.4318 (2)	-0.13752 (12)	0.0476 (5)	
C4	-0.06648 (16)	0.3467 (3)	-0.14229 (13)	0.0598 (6)	
H4	-0.0711	0.2920	-0.1015	0.072*	
C5	-0.14592 (17)	0.3428 (3)	-0.20810 (15)	0.0703 (7)	
H5	-0.2041	0.2866	-0.2110	0.084*	
C6	-0.13891 (19)	0.4214 (3)	-0.26883 (15)	0.0707 (8)	
H6	-0.1921	0.4175	-0.3129	0.085*	
C7	0.11235 (17)	0.7351 (2)	-0.05706 (12)	0.0573 (6)	
H7	0.0554	0.7465	-0.0982	0.069*	
C8	0.16031 (18)	0.8674 (2)	-0.02080 (13)	0.0628 (7)	
H8	0.1361	0.9684	-0.0379	0.075*	
C9	0.24466 (17)	0.8534 (2)	0.04120 (12)	0.0605 (6)	
H9	0.2776	0.9448	0.0645	0.073*	
C10	0.27973 (15)	0.7063 (2)	0.06820 (12)	0.0519 (6)	
H10	0.3353	0.6973	0.1106	0.062*	
C11	0.23150 (14)	0.5686 (2)	0.03174 (11)	0.0443 (5)	
C12	0.14875 (14)	0.5808 (2)	-0.03242 (11)	0.0452 (5)	
C13	0.10543 (15)	0.4343 (2)	-0.06729 (11)	0.0480 (5)	
C14	0.26126 (14)	0.4091 (2)	0.05578 (11)	0.0471 (5)	
C15	0.38186 (15)	0.2456 (2)	0.14320 (11)	0.0474 (5)	
C16	0.46379 (16)	0.1981 (2)	0.12297 (12)	0.0560 (6)	
C17	0.50782 (17)	0.0537 (3)	0.15145 (14)	0.0668 (7)	

supporting information

H17	0.5622	0.0166	0.1387	0.080*
C18	0.47331 (18)	-0.0360 (3)	0.19788 (13)	0.0666 (7)
H18	0.5039	-0.1328	0.2160	0.080*
C19	0.39335 (17)	0.0175 (2)	0.21759 (12)	0.0612 (6)
H19	0.3707	-0.0437	0.2494	0.073*
C20	0.34555 (15)	0.1613 (2)	0.19098 (11)	0.0517 (6)
C21	0.5026 (2)	0.2971 (3)	0.07181 (16)	0.0760 (8)
H21	0.4835	0.4084	0.0759	0.091*
C22	0.4544 (2)	0.2473 (4)	-0.00709 (16)	0.1097 (11)
H22A	0.4731	0.1392	-0.0132	0.165*
H22B	0.4767	0.3166	-0.0384	0.165*
H22C	0.3826	0.2543	-0.0200	0.165*
C23	0.6165 (2)	0.2921 (4)	0.09240 (17)	0.1019 (10)
H23A	0.6368	0.1891	0.0804	0.153*
H23B	0.6465	0.3109	0.1442	0.153*
H23C	0.6382	0.3731	0.0656	0.153*
C24	0.25826 (17)	0.2197 (3)	0.21399 (14)	0.0654 (7)
H24	0.2486	0.3334	0.2016	0.079*
C25	0.16130 (18)	0.1335 (4)	0.17186 (16)	0.0937 (9)
H25A	0.1694	0.0209	0.1815	0.141*
H25B	0.1459	0.1524	0.1201	0.141*
H25C	0.1075	0.1729	0.1874	0.141*
C26	0.2778 (2)	0.2039 (3)	0.29605 (15)	0.0852 (8)
H26A	0.2816	0.0929	0.3092	0.128*
H26B	0.2240	0.2535	0.3085	0.128*
H26C	0.3401	0.2555	0.3224	0.128*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0598 (9)	0.0348 (7)	0.0532 (9)	0.0037 (6)	0.0002 (7)	0.0011 (6)
N1	0.0646 (11)	0.0363 (9)	0.0595 (12)	-0.0007 (8)	-0.0018 (9)	0.0003 (8)
N2	0.0653 (11)	0.0372 (9)	0.0587 (12)	-0.0017 (8)	0.0003 (9)	0.0007 (8)
C1	0.0774 (16)	0.0641 (14)	0.0521 (15)	0.0064 (13)	0.0114 (12)	-0.0010 (11)
C2	0.0643 (13)	0.0506 (12)	0.0563 (15)	-0.0018 (10)	0.0138 (11)	-0.0013 (11)
C3	0.0519 (12)	0.0370 (10)	0.0505 (14)	0.0041 (9)	0.0121 (10)	-0.0036 (9)
C4	0.0614 (14)	0.0543 (13)	0.0605 (15)	-0.0038 (11)	0.0155 (12)	-0.0015 (11)
C5	0.0563 (14)	0.0654 (15)	0.0784 (19)	-0.0089 (12)	0.0072 (13)	-0.0137 (13)
C6	0.0710 (16)	0.0656 (15)	0.0588 (17)	0.0075 (13)	-0.0016 (13)	-0.0094 (12)
C7	0.0664 (13)	0.0404 (11)	0.0563 (14)	0.0078 (10)	0.0081 (11)	0.0039 (10)
C8	0.0878 (16)	0.0348 (10)	0.0587 (15)	0.0072 (11)	0.0145 (13)	0.0019 (10)
C9	0.0790 (16)	0.0352 (11)	0.0620 (15)	-0.0052 (10)	0.0157 (13)	-0.0046 (10)
C10	0.0599 (13)	0.0419 (11)	0.0499 (13)	-0.0044 (9)	0.0127 (10)	-0.0039 (9)
C11	0.0489 (11)	0.0346 (10)	0.0489 (13)	-0.0002 (8)	0.0150 (10)	0.0007 (8)
C12	0.0499 (11)	0.0380 (10)	0.0471 (13)	0.0017 (9)	0.0151 (10)	0.0000 (8)
C13	0.0511 (11)	0.0382 (10)	0.0516 (14)	0.0016 (9)	0.0124 (10)	0.0012 (9)
C14	0.0503 (12)	0.0363 (10)	0.0499 (13)	0.0009 (9)	0.0100 (10)	0.0011 (9)
C15	0.0531 (12)	0.0356 (10)	0.0431 (12)	0.0004 (9)	0.0015 (10)	-0.0001 (8)

supporting information

C16	0.0579 (13)	0.0504 (12)	0.0547 (14)	0.0041 (11)	0.0115 (11)	-0.0023 (10)
C17	0.0661 (14)	0.0667 (14)	0.0645 (16)	0.0174 (12)	0.0169 (12)	0.0064 (12)
C18	0.0709 (15)	0.0567 (13)	0.0616 (16)	0.0210 (12)	0.0072 (13)	0.0125 (11)
C19	0.0735 (15)	0.0501 (12)	0.0541 (15)	0.0063 (11)	0.0128 (12)	0.0103 (10)
C20	0.0558 (12)	0.0428 (11)	0.0486 (13)	0.0022 (9)	0.0062 (10)	-0.0012 (9)
C21	0.0927 (19)	0.0602 (14)	0.086 (2)	0.0058 (13)	0.0440 (16)	0.0081 (13)
C22	0.117 (2)	0.139 (3)	0.069 (2)	0.004 (2)	0.0252 (18)	0.0288 (19)
C23	0.095 (2)	0.127 (3)	0.095 (2)	-0.0228 (19)	0.0463 (18)	-0.0186 (19)
C24	0.0721 (15)	0.0506 (12)	0.0747 (18)	0.0056 (11)	0.0255 (13)	0.0055 (11)
C25	0.0593 (16)	0.127 (2)	0.092 (2)	0.0058 (16)	0.0200 (15)	0.0062 (18)
C26	0.0941 (19)	0.0898 (19)	0.074 (2)	-0.0024 (15)	0.0309 (16)	-0.0057 (15)

Geometric parameters (Å, °)

01—C14	1.362 (2)	C15—C20	1.383 (3)	
O1—C15	1.416 (2)	C15—C16	1.391 (3)	
N1-C14	1.289 (2)	C16—C17	1.386 (3)	
N1—N2	1.382 (2)	C16—C21	1.519 (3)	
N2-C13	1.311 (2)	C17—C18	1.372 (3)	
C1—C6	1.369 (3)	C17—H17	0.9300	
C1—C2	1.380(3)	C18—C19	1.375 (3)	
C1—H1	0.9300	C18—H18	0.9300	
С2—С3	1.390 (3)	C19—C20	1.392 (3)	
С2—Н2	0.9300	C19—H19	0.9300	
C3—C4	1.379 (3)	C20—C24	1.517 (3)	
C3—C13	1.492 (3)	C21—C22	1.505 (4)	
C4—C5	1.389 (3)	C21—C23	1.522 (4)	
C4—H4	0.9300	C21—H21	0.9800	
С5—С6	1.373 (4)	C22—H22A	0.9600	
С5—Н5	0.9300	C22—H22B	0.9600	
С6—Н6	0.9300	C22—H22C	0.9600	
С7—С8	1.364 (3)	C23—H23A	0.9600	
C7—C12	1.412 (3)	C23—H23B	0.9600	
С7—Н7	0.9300	C23—H23C	0.9600	
С8—С9	1.386 (3)	C24—C26	1.518 (4)	
С8—Н8	0.9300	C24—C25	1.522 (3)	
C9—C10	1.364 (3)	C24—H24	0.9800	
С9—Н9	0.9300	C25—H25A	0.9600	
C10-C11	1.403 (3)	C25—H25B	0.9600	
C10—H10	0.9300	C25—H25C	0.9600	
C11—C12	1.397 (3)	C26—H26A	0.9600	
C11—C14	1.430 (3)	C26—H26B	0.9600	
C12—C13	1.435 (3)	С26—Н26С	0.9600	
C14—O1—C15	118.74 (13)	C15—C16—C21	122.17 (19)	
C14—N1—N2	118.87 (15)	C18—C17—C16	121.8 (2)	
C13—N2—N1	119.92 (15)	C18—C17—H17	119.1	
C6-C1-C2	119.8 (2)	C16—C17—H17	119.1	

C6—C1—H1	120.1	C17—C18—C19	119.9 (2)
C2—C1—H1	120.1	C17—C18—H18	120.1
C1—C2—C3	120.7 (2)	C19—C18—H18	120.1
C1—C2—H2	119.6	C18—C19—C20	121.4 (2)
C3—C2—H2	119.6	С18—С19—Н19	119.3
C4-C3-C2	119.00 (19)	C_{20} C_{19} H_{19}	119.3
C4-C3-C13	120 14 (19)	C_{15} C_{20} C_{19} C_{19}	119.5 116.5(2)
$C_2 C_3 C_{13}$	120.11(19) 120.84(19)	$C_{15} C_{20} C_{24}$	12273(18)
$C_2 = C_3 = C_{13}$	120.04(1)) 110.0(2)	$C_{19} = C_{20} = C_{24}$	122.75(10) 120.8(2)
$C_3 = C_4 = C_3$	119.9 (2)	$C_{19} = C_{20} = C_{24}$	120.0(2)
C5—C4—H4	120.0	$C_{22} = C_{21} = C_{10}$	111.3(2)
C5—C4—H4	120.0	$C_{22} = C_{21} = C_{23}$	110.1 (2)
C6-C5-C4	120.3 (2)	C16-C21-C23	112.9 (2)
С6—С5—Н5	119.9	C22—C21—H21	107.4
C4—C5—H5	119.9	C16—C21—H21	107.4
C1—C6—C5	120.3 (2)	C23—C21—H21	107.4
C1—C6—H6	119.9	C21—C22—H22A	109.5
С5—С6—Н6	119.9	C21—C22—H22B	109.5
C8—C7—C12	120.4 (2)	H22A—C22—H22B	109.5
С8—С7—Н7	119.8	C21—C22—H22C	109.5
С12—С7—Н7	119.8	H22A—C22—H22C	109.5
С7—С8—С9	120.84 (19)	H22B—C22—H22C	109.5
С7—С8—Н8	119.6	C21—C23—H23A	109.5
С9—С8—Н8	119.6	С21—С23—Н23В	109.5
C10—C9—C8	120.39 (18)	H23A—C23—H23B	109.5
С10—С9—Н9	119.8	C21—C23—H23C	109.5
С8—С9—Н9	119.8	H23A—C23—H23C	109.5
C9—C10—C11	119.66 (19)	H23B—C23—H23C	109.5
C9—C10—H10	120.2	C20—C24—C26	112.8 (2)
C11—C10—H10	120.2	C20—C24—C25	111.3 (2)
C12—C11—C10	120.60 (16)	C26—C24—C25	109.8 (2)
C12—C11—C14	115.19 (16)	C20—C24—H24	107.6
C10-C11-C14	124 21 (18)	C26—C24—H24	107.6
$C_{11} - C_{12} - C_{7}$	118 01 (16)	$C_{25} - C_{24} - H_{24}$	107.6
$C_{11} - C_{12} - C_{13}$	117.06 (16)	C_{24} C_{25} H_{25A}	109.5
C7-C12-C13	124 90 (18)	C_{24} C_{25} H_{25R}	109.5
$N_2 C_{12} C_{12}$	124.90(10) 123.21(18)	H25A C25 H25B	109.5
$N_2 = C_{13} = C_{12}$	125.21(16) 114.73(16)	C_{24} C_{25} H_{25} H_{25}	109.5
12 - 013 - 03	114.75(10) 122.06(16)	H_{25}^{-1} H_{25}^{-1} H_{25}^{-1} H_{25}^{-1}	109.5
C12 - C13 - C3	122.00(10) 110.47(16)	$H_{25}A = C_{25} = H_{25}C$	109.5
N1 = C14 = C11	119.47(10) 125.72(19)	$\frac{1125B}{225} - \frac{125C}{125C}$	109.5
	125.72 (18)	C_{24} C_{20} H_{20} H_{20} H_{20}	109.5
	114.81 (16)	C24—C26—H26B	109.5
120-15-16	124.11 (18)	$H_20A - C_20 - H_20B$	109.5
C20—C15—O1	118.68 (18)	C24—C26—H26C	109.5
C16—C15—O1	116.85 (18)	H26A—C26—H26C	109.5
C17—C16—C15	116.3 (2)	H26B—C26—H26C	109.5
C17—C16—C21	121.5 (2)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С9—Н9…Сд	0.93	2.77	3.624 (2)	154