Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*R**)-Methyl 2-(2,6-dimethoxy-3,5-dinitrobenzamido)propanoate

Xiaofei Li* and Yan Tong

College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China Correspondence e-mail: arphylee@126.com

Received 3 June 2012; accepted 1 July 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.153; data-to-parameter ratio = 16.3.

In the title molecule, $C_{13}H_{15}N_3O_9$, the nitro groups are tilted with respect to the benzene mean plane by 22.8 (3) and 31.6 (3)°. The methoxy groups are in a *cis* orientation relative to the ring. In the crystal, molecules are linked by strong N-H···O hydrogen bonds into *C*(3) chains along [100].

Related literature

For the biological activity of related compounds or for their use as prodrugs, see: Sykes *et al.* (1999). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{13}H_{15}N_3O_9$ $M_r = 357.28$

Orthorhombic, $P2_12_12_1$ *a* = 4.6933 (10) Å b = 17.501 (3) Å c = 19.917 (4) Å $V = 1635.9 (6) \text{ Å}^{3}$ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.962, T_{\rm max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.153$ S = 1.033683 reflections Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 296 K $0.31 \times 0.30 \times 0.09 \text{ mm}$

9526 measured reflections 3683 independent reflections 2824 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$

226 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3A\cdots O2^{i}$	0.86	2.02	2.850 (2)	162
Symmetry code: (i) x +	1			

Symmetry code: (i) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *publCIF* (Westrip, 2010).

The authors thank Henan University of Traditional Chinese Medicine for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2416).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sykes, B. M., Atwell, G. J., Hogg, A., Wilson, W. R., O'Connor, C. J. & Denny, W. A. (1999). J. Med. Chem. 42, 346–355.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2012). E68, o2386 [https://doi.org/10.1107/S1600536812029935]

(R*)-Methyl 2-(2,6-dimethoxy-3,5-dinitrobenzamido)propanoate

Xiaofei Li and Yan Tong

S1. Comment

Amides and Imides widely exist in many biological activity compounds or could be used as prodrugs (Sykes *et al.*, 1999). We synthesized the title compound and shall examine its biological activity. In the title molecule, $C_{13}H_{15}N_3O_9$, the nitro groups are tilted with respect to the benzene mean plane by 22.8 (3) and 31.6 (3)°. The methoxy groups are cis conformation. In the crystal structure the molecules are linked by strong N—H…O (H…O 2.02 Å; N…O 2.850 (2) Å; N—H…Oⁱ 162° symmetry code: (i) 1+x, y, z) hydrogen bonds into C(3) chains along [100] (Bernstein *et al.*, 1995).

S2. Experimental

To a solution of D-alanine methyl ester hydrochloride (0.7 g, 5 mmol) and triethylamine (0.5 ml) in dry methylene chloride (100 ml) was added 2,6-dimethoxy-3,5-dinitrobenzoyl chloride 1.4 g, 5 mmol in dry methylene chloride (50 ml) at 0°C. The mixture was allowed to warm to room temperature for 1 h. After concentration the residue was subjected to chromatography (petroleum ether/ ethyl acetate, 3:1) to provide the product as a yellow crystal (1.3 g, 74.5%).

S3. Refinement

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.98 Å for CH(aromatic), CH₃ and CH(methine) H-atoms, respectively, and N—H = 0.86 Å, with $U_{iso}(H) = k \tau imes U_{eq}$ (parent C-atom, N), where k = 1.5 for CH₃ H-atoms and k = 1.2 for all other H-atoms. Friedel pairs were merged and that absolute structure was determined relative to the known chiral centers.

A view of the molecular structure of the title compound; the displacement ellipsoids drawn at the 30% probability level.

Figure 2

Part of the crystal structure showing C(3) chains along [100] direction. The hydrogen bonds are shown as dashed lines.

(*R**)-Methyl 2-(2,6-dimethoxy-3,5-dinitrobenzamido)propanoate

Crystal data	
$C_{13}H_{15}N_{3}O_{9}$ $M_{r} = 357.28$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 4.6933 (10) Å b = 17.501 (3) Å c = 19.917 (4) Å $V = 1635.9 (6) Å^{3}$ Z = 4 F(000) = 744	$D_x = 1.451 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9565 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 296 K Block, yellow $0.31 \times 0.30 \times 0.09 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.962, T_{\max} = 0.989$	9526 measured reflections 3683 independent reflections 2824 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -5 \rightarrow 6$ $k = -22 \rightarrow 15$ $l = -25 \rightarrow 25$
Refinement Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.153$ S = 1.03 3683 reflections 226 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.22$ e Å ⁻³ $\Delta\rho_{min} = -0.17$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.7640 (5)	1.00166 (13)	0.58894 (9)	0.0458 (5)
H1A	0.8771	1.0043	0.6272	0.055*
C2	0.6630 (5)	1.06770 (14)	0.56054 (9)	0.0443 (5)
C3	0.4986 (5)	1.06566 (13)	0.50149 (9)	0.0415 (5)
C4	0.4388 (4)	0.99479 (13)	0.47345 (9)	0.0376 (4)
C5	0.5350 (5)	0.92644 (13)	0.50238 (10)	0.0412 (5)
C6	0.6998 (5)	0.93146 (13)	0.56147 (9)	0.0424 (5)
C7	0.6194 (8)	1.17734 (18)	0.44049 (16)	0.0750 (9)
H7A	0.5299	1.2192	0.4176	0.113*
H7B	0.7360	1.1493	0.4095	0.113*
H7C	0.7360	1.1967	0.4763	0.113*
C8	0.0896 (12)	1.1761 (2)	0.26985 (16)	0.1048 (14)
H8A	0.1719	1.2205	0.2905	0.157*
H8B	-0.1055	1.1712	0.2836	0.157*
H8C	0.0984	1.1813	0.2219	0.157*
С9	0.6995 (7)	0.81397 (17)	0.44691 (14)	0.0634 (7)
H9A	0.6247	0.7695	0.4248	0.095*
H9B	0.8128	0.7985	0.4847	0.095*
H9C	0.8154	0.8424	0.4160	0.095*
C10	0.3449 (5)	0.97587 (18)	0.28526 (10)	0.0609 (7)
H10A	0.5105	0.9771	0.2553	0.073*
C11	0.1574 (6)	1.04345 (19)	0.26521 (11)	0.0605 (7)
C12	0.2859 (4)	0.99044 (13)	0.40660 (10)	0.0414 (5)
C13	0.2023 (7)	0.8995 (2)	0.27420 (14)	0.0836 (10)
H13A	0.3295	0.8592	0.2875	0.125*
H13B	0.1556	0.8938	0.2275	0.125*
H13C	0.0314	0.8968	0.3006	0.125*
N1	0.7169 (6)	1.13899 (13)	0.59792 (10)	0.0603 (6)
N2	0.7960 (5)	0.86403 (13)	0.59826 (9)	0.0540 (5)
N3	0.4560 (4)	0.98513 (13)	0.35366 (8)	0.0513 (5)
H3A	0.6373	0.9872	0.3596	0.062*
01	-0.0446 (5)	1.03749 (15)	0.22813 (10)	0.0861 (7)
O2	0.0251 (3)	0.99289 (11)	0.40308 (7)	0.0561 (5)
O3	0.2451 (5)	1.10947 (14)	0.29000 (8)	0.0787 (6)
O4	0.4046 (4)	1.12770 (10)	0.46763 (8)	0.0550 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

05	0.4680 (4)	0.86110 (9)	0.46968 (8)	0.0529 (4)
06	0.9142 (7)	1.13948 (14)	0.63661 (12)	0.1064 (10)
O7	0.5635 (7)	1.19271 (14)	0.58904 (12)	0.0949 (8)
08	1.0181 (5)	0.87020 (14)	0.63012 (10)	0.0811 (7)
09	0.6518 (5)	0.80595 (12)	0.59661 (10)	0.0734 (6)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0423 (11)	0.0649 (13)	0.0303 (8)	-0.0062 (11)	-0.0056 (8)	0.0043 (10)
C2	0.0437 (11)	0.0547 (13)	0.0345 (9)	-0.0068 (10)	-0.0009 (9)	-0.0023 (9)
C3	0.0314 (10)	0.0576 (13)	0.0354 (9)	-0.0007 (10)	0.0013 (9)	0.0037 (9)
C4	0.0228 (8)	0.0588 (12)	0.0310 (8)	0.0009 (9)	0.0004 (7)	0.0008 (9)
C5	0.0260 (9)	0.0566 (13)	0.0410 (10)	-0.0022 (9)	0.0015 (9)	-0.0031 (9)
C6	0.0336 (11)	0.0581 (13)	0.0354 (9)	0.0022 (10)	0.0008 (9)	0.0048 (9)
C7	0.078 (2)	0.0735 (19)	0.0740 (17)	0.0061 (16)	0.0089 (16)	0.0259 (14)
C8	0.129 (4)	0.123 (3)	0.0616 (17)	0.032 (3)	-0.001 (2)	0.0052 (19)
C9	0.0620 (18)	0.0638 (16)	0.0644 (14)	0.0038 (13)	0.0064 (14)	-0.0134 (12)
C10	0.0324 (11)	0.118 (2)	0.0326 (9)	-0.0047 (13)	0.0007 (9)	-0.0132 (12)
C11	0.0410 (12)	0.110 (2)	0.0305 (9)	-0.0086 (14)	-0.0010 (10)	0.0026 (12)
C12	0.0239 (10)	0.0637 (14)	0.0365 (9)	-0.0017 (9)	-0.0035 (7)	-0.0036 (10)
C13	0.068 (2)	0.125 (3)	0.0582 (15)	-0.001 (2)	-0.0094 (16)	-0.0271 (17)
N1	0.0736 (16)	0.0621 (14)	0.0453 (10)	-0.0049 (12)	-0.0063 (12)	-0.0047 (10)
N2	0.0506 (12)	0.0682 (14)	0.0431 (10)	0.0058 (11)	-0.0007 (10)	0.0072 (9)
N3	0.0228 (8)	0.0949 (15)	0.0361 (8)	-0.0030 (9)	-0.0030 (7)	-0.0052 (9)
01	0.0594 (12)	0.1340 (19)	0.0649 (11)	-0.0156 (13)	-0.0300 (11)	0.0121 (12)
O2	0.0222 (7)	0.1020 (13)	0.0441 (7)	-0.0014 (8)	-0.0028 (6)	-0.0035 (9)
O3	0.0758 (14)	0.1116 (17)	0.0487 (9)	0.0014 (14)	-0.0148 (10)	-0.0017 (10)
O4	0.0494 (10)	0.0585 (10)	0.0571 (9)	0.0025 (7)	-0.0093 (8)	0.0101 (8)
05	0.0432 (9)	0.0580 (9)	0.0576 (9)	-0.0037 (8)	-0.0076 (8)	-0.0111 (7)
06	0.139 (3)	0.0824 (15)	0.0981 (15)	-0.0124 (16)	-0.0724 (18)	-0.0102 (12)
O7	0.110 (2)	0.0825 (15)	0.0920 (14)	0.0233 (15)	-0.0242 (16)	-0.0324 (12)
08	0.0694 (14)	0.0956 (15)	0.0782 (13)	0.0171 (12)	-0.0322 (12)	0.0102 (11)
09	0.0795 (14)	0.0658 (12)	0.0747 (12)	-0.0045 (11)	-0.0042 (11)	0.0178 (10)

Geometric parameters (Å, °)

C1—C2	1.371 (3)	C9—O5	1.438 (3)	
C1—C6	1.378 (3)	С9—Н9А	0.9600	
C1—H1A	0.9300	C9—H9B	0.9600	
C2—C3	1.407 (3)	С9—Н9С	0.9600	
C2—N1	1.475 (3)	C10—N3	1.468 (3)	
C3—O4	1.352 (3)	C10—C13	1.512 (5)	
C3—C4	1.389 (3)	C10-C11	1.527 (4)	
C4—C5	1.402 (3)	C10—H10A	0.9800	
C4—C12	1.514 (3)	C11—O1	1.207 (3)	
C5—O5	1.353 (3)	C11—O3	1.322 (4)	
C5—C6	1.411 (3)	C12—O2	1.227 (2)	

C6N2	1 461 (3)	C12N3	1 326 (3)
C7-04	1.436(4)	C13_H13A	0.9600
C7 H7	0.0600	C13 H13R	0.9600
C7_117A	0.9000		0.9600
С7—П7В	0.9000	NI 07	1,107(2)
C^{2}	0.9000	NI-O/	1.197 (3)
C_{8}	1.433 (4)	NI	1.205 (3)
C8—H8A	0.9600	N209	1.222 (3)
C8—H8B	0.9600	N2	1.225 (3)
С8—Н8С	0.9600	N3—H3A	0.8600
C2—C1—C6	120.80 (18)	О5—С9—Н9С	109.5
C2—C1—H1A	119.6	Н9А—С9—Н9С	109.5
C6—C1—H1A	119.6	H9B—C9—H9C	109.5
C1—C2—C3	120.86 (19)	N3—C10—C13	113.0 (2)
C1—C2—N1	116.46 (19)	N3—C10—C11	111.2 (2)
C3—C2—N1	122.5 (2)	C13—C10—C11	113.1 (2)
04-C3-C4	116.79 (17)	N3—C10—H10A	106.3
04-C3-C2	125.1(2)	C13-C10-H10A	106.3
C4-C3-C2	118.00(18)	C11—C10—H10A	106.3
$C_{3} - C_{4} - C_{5}$	$122 \ 10 \ (17)$	01-C11-03	123 3 (3)
C_{3} C_{4} C_{12}	119.61 (18)	01 - C11 - C10	123.5(3) 123.1(3)
$C_{5} - C_{4} - C_{12}$	118 10 (19)	03 - C11 - C10	113.6 (2)
05-C5-C4	116.62 (18)	02 - C12 - N3	123 90 (18)
05 - 05 - 01	125.6(2)	02 - C12 - C4	121.40 (18)
C_{4}	125.0(2) 117 79 (19)	N_{3} C_{12} C_{4}	114 68 (16)
$C_{1} - C_{5} - C_{5}$	117.79(19) 1204(2)	C10-C13-H13A	109 5
C1 - C6 - C3	120.4(2) 116.07(18)	C10 C13 H13R	109.5
$C_1 = C_0 = N_2$	122.5(2)	$H_{13A} = C_{13} = H_{13B}$	109.5
$O_{1} C_{2} H_{2}$	100 5	C10 C13 H13C	109.5
$O_4 = C_7 = H_7 R$	109.5	$H_{13} \wedge C_{13} H_{13} C$	109.5
	109.5	H13R C13 H13C	109.5
$\Pi/A = C = \Pi/B$	109.5	07 N1 06	109.3 122.4(2)
U_{4} U_{7} U_{7} U_{7} U_{7}	109.5	0/-N1-00	123.4(2)
H/A - C - H/C	109.5	O/-NI-C2	119.1(2)
H/B = C/ = H/C	109.5	00-N1-C2	117.4 (2)
$O_3 = C_8 = H_8 A$	109.5	09 - N2 - 08	124.0(2)
	109.5	09-N2-C6	119.2 (2)
H8A—C8—H8B	109.5	08-N2-C6	116.8 (2)
03—C8—H8C	109.5	C12—N3— $C10$	122.15 (17)
H&A-C&-H&C	109.5	C12—N3—H3A	118.9
нав—Са—Нас	109.5	C10—N3—H3A	118.9
U5—C9—H9A	109.5	C11—O3—C8	116.6 (3)
O5—C9—H9B	109.5	C3—O4—C7	116.4 (2)
Н9А—С9—Н9В	109.5	C5—O5—C9	117.5 (2)
Hydrogen-bond geometry (Å,	<i>°</i>)		

D—H···A	D—H	H…A	D····A	D—H···A

N3—H3 A ···O2 ⁱ 0.86 2.02 2.850 (2) 162						
	N3—H3A···O2 ⁱ	0.86	2.02	2.850 (2)	162	

Symmetry code: (i) x+1, y, z.