# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis[ $\mu$ -bis(diphenylphosphanyl)methane- $\kappa^2 P:P'$ ]bis[(isoquinoline- $\kappa N$ )silver(I)] bis(trifluoromethanesulfonate)– isoquinoline (1/1)

# Xu Huang,<sup>a</sup> Jing Li,<sup>a</sup> Qi-Ming Qiu,<sup>a</sup> Min Liu<sup>b</sup> and Qiong-Hua Jin<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and <sup>b</sup>The College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China Correspondence e-mail: jingh204@163.com

Received 3 May 2012; accepted 27 June 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.038; wR factor = 0.103; data-to-parameter ratio = 12.9.

The title complex,  $[Ag_2(C_{25}H_{22}P_2)_2(C_9H_7N)_2](CF_3SO_3)_2$ . C<sub>9</sub>H<sub>7</sub>N, was prepared by the reaction of silver(I) trifluoromethanesulfonate with isoquinoline and bis(diphenylphosphanyl)methane (dppm). The dinuclear molecule is located about a center of inversion and the Ag<sup>I</sup> atom is coordinated by two dppm P atoms and one isoquinoline N atom, forming an eight-membered metalla ring. In addition, in the asymmetric unit, there is a half-molecule of isoquinoline located about a center of inversion. Since this molecule does not possess this symmetry, for one position in the ring there is superposition of both a C atom of a C-H group and the isoquinoline N atom. In the structure, the Ag-P distances [2.4296 (9) and 2.4368 (9) Å] agree with the corresponding distances in related structures, while the Ag-N bond length [2.489 (3) Å] is slightly longer than that in related structures. On the other hand, the P-Ag-P angle  $[156.44 (3)^{\circ}]$  is much larger than the corresponding angles in related structures. The trifluoromethanesulfonate anions do not coordinate to Ag<sup>I</sup> atoms. As is usually found for these anions, the  $-CF_3$  group is disordered over two orientations [occupancies = 0.57 (12) and 0.43 (12)].

## **Related literature**

For background to silver(I) complexes, see: Bowmaker *et al.* (1993); Cui *et al.* (2010*a,b*); Jin *et al.* (2010*a,b*); Meijboom *et al.* (2009); Mu *et al.* (2010). For related structures, see: Jin *et al.* (2008); Song *et al.* (2010); Wu *et al.* (2009).



## Experimental

Crystal data

 $[Ag_2(C_{25}H_{22}P_2)_2(C_9H_7N)_2]$ - $\beta = 100.382 \ (1)^{\circ}$ (CF<sub>3</sub>O<sub>3</sub>S)<sub>2</sub>·C<sub>9</sub>H<sub>7</sub>N  $\gamma = 110.289 \ (2)^{\circ}$  $M_r = 1670.08$ V = 1847.9 (3) Å<sup>3</sup> Triclinic,  $P\overline{1}$ 7 - 1a = 11.7730 (11) ÅMo  $K\alpha$  radiation b = 11.9269 (12) Å  $\mu = 0.74 \text{ mm}^{-1}$ c = 15.4151 (17) ÅT = 298 K $\alpha = 106.696 (1)^{\circ}$  $0.48 \times 0.39 \times 0.35 \text{ mm}$ 

#### Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007)  $T_{min} = 0.717, T_{max} = 0.781$ 

# Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$  $wR(F^2) = 0.103$ S = 1.036407 reflections 9230 measured reflections 6407 independent reflections 4969 reflections with  $I > 2\sigma(I)$ 

497 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.63 \text{ e } \text{ Å}_{-3}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$ 

 $R_{\rm int} = 0.026$ 

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT-Plus* (Bruker, 2007); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Science Foundation of China (grant No. 21171119), the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020) and the National High Technology Research and Development Program 863 of China (2012 A A063201).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2206).

### References

- Bowmaker, G. A., Effendy, H. J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387–1397.
- Bruker (2007). *SMART, SAINT-Plus* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010a). Acta Cryst. E66, m871.
- Cui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010b). Acta Cryst. E66, m969.

- Jin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 79-81.
- Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010*a*). *Polyhedron*, **29**, 441–445. Jin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010*b*).
- Inorg. Chem. Commun. 13, 62-65.
- Meijboom, R., Bowen, R. J., Berners, P. & Susan, J. (2009). Coord. Chem. Rev. 253, 325-342.
- Mu, K. J., Wang, R., Hu, K. Y., Cui, L. N., Liu, H., Jin, Q. H. & Zhang, C. L. (2010). Z. Kristallogr. New Cryst. Struct. 225, 645-648.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237-m1238.
- Wu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096m1097.

# supporting information

Acta Cryst. (2012). E68, m1022-m1023 [https://doi.org/10.1107/S1600536812029236]

# Bis[ $\mu$ -bis(diphenylphosphanyl)methane- $\kappa^2 P: P'$ ]bis[(isoquinoline- $\kappa N$ )silver(I)] bis-(trifluoromethanesulfonate)–isoquinoline (1/1)

# Xu Huang, Jing Li, Qi-Ming Qiu, Min Liu and Qiong-Hua Jin

# S1. Comment

The coordination chemistry of silver(I) is of considerable interest because of its luminescence properties and potential applications in catalysis, cyanide, photography antimicrobial activities and electrochemical processes (Bowmaker *et al.*, 1993; Cui *et al.*, 2010*a*, 2010*b*; Jin *et al.*, 2010*a*, 2010*b*; Meijboom *et al.*, 2009;). Nitrogen heterocyclic ligands play significant roles in the construction of d<sub>10</sub> metal complexes with phosphine ligands. For examples,[Ag<sub>4</sub>(SCN)<sub>4</sub>(dppm)<sub>2</sub>] (Jin *et al.*, 2008), [Ag(SCN)(dppm)]<sub>2</sub> (Song *et al.*, 2010), [Ag(ClO<sub>4</sub>)(PPh<sub>3</sub>)<sub>3</sub>] (Cui *et al.*, 2010*a*), [Ag(ClO<sub>4</sub>) (PPh<sub>3</sub>)<sub>3</sub>(MeOH)] (Cui *et al.*, 2010*b*) and [Ag(PPh<sub>3</sub>)(CH<sub>3</sub>COO)]<sub>2</sub>.H<sub>2</sub>O.CH<sub>3</sub>OH (Mu *et al.*, 2010) were prepared under the catalysis of nitrogen heterocyclic ligands. Here we report the first silver (I) complex which combines isoquinoline and bis(diphenylphosphine)methane, [Ag<sub>2</sub>(dppm)<sub>2</sub>(C<sub>9</sub>H<sub>7</sub>N)<sub>2</sub>](CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>.C<sub>9</sub>H<sub>7</sub>N

In the compound,  $C_{79}H_{65}Ag_2F_6N_3O_6P_4S_2$ , the molecule is located on a center of inversion and each silver atom is coordinated by two phosphorus atoms from dppm and one nitrogen from isoquinoline to form a eight-member ring. In addition, in the asymmetric unit there is half a molecule of isoquinoline located on a center of inversion. Since this molecule does not possess this symmetry, for one position in the ring there is superposition of both a C-H and N.

In the compound, Ag—P distances (2.4296 (2)–2.4368 (9) Å), agree with the corresponding distances in  $[Ag_4(SCN)_4(dppm)_2]$  (2.399 Å) and  $[Ag(SCN)(dppm)]_2$  (2.450 (2),2.451 (2)). The Ag—N bond distance(2.489 (3) Å) is longer than that in  $[Ag(C_{12}H_8N_2)(C_{18}H_{15}P)(2.376 (8) Å)$  (Wu *et al.*, 2009). The P—Ag—P angle (156.44°) is much larger than the corresponding angles in  $[Ag(SCN)(dppm)]_2$  (120.0 and 120.8 (1)°). The trifluoromethanesulfonate anions do not coordinate to silver atoms. As is usually found for these anions, the CF<sub>3</sub> group is disordered over two orientations with occupancies of 0.57 (12)/0.43 (12).

# **S2. Experimental**

A mixture of silver(I) trifluoromethanesulfonate, bis(diphenylphosphanyl)methane (molar ratio 1:1) and isoquinoline (0.5 ml) in the mixed solution of  $CH_3OH$  (5 ml) and  $CH_2Cl_2(5 ml)$  was stirred for 5 h at ambient temperature. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature for about one month to yield white crystals. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

# **S3. Refinement**

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on  $F^2$ . The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Data collection: *SMART* (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: *SAINT-Plus*; program(*s*) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(*s*) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.



# Figure 1

The ionic entities of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.

Bis[ $\mu$ -bis(diphenylphosphanyl)methane-  $\kappa^2 P: P'$ ]bis[(isoquinoline- $\kappa N$ )silver(I)] bis(trifluoromethanesulfonate)isoquinoline (1/1)

# Crystal data

| $[Ag_2(C_{25}H_{22}P_2)_2(C_9H_7N)_2](CF_3O_3S)_2 \cdot C_9H_7N$ | Z = 1                                                 |
|------------------------------------------------------------------|-------------------------------------------------------|
| $M_r = 1670.08$                                                  | F(000) = 848                                          |
| Triclinic, $P\overline{1}$                                       | $D_{\rm x} = 1.501 { m Mg m^{-3}}$                    |
| Hall symbol: -P 1                                                | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 11.7730 (11)  Å                                              | Cell parameters from 4635 reflections                 |
| b = 11.9269 (12)  Å                                              | $\theta = 2.5 - 28.1^{\circ}$                         |
| c = 15.4151 (17)  Å                                              | $\mu=0.74~\mathrm{mm^{-1}}$                           |
| $\alpha = 106.696 \ (1)^{\circ}$                                 | T = 298  K                                            |
| $\beta = 100.382 \ (1)^{\circ}$                                  | Prism, white                                          |
| $\gamma = 110.289 \ (2)^{\circ}$                                 | $0.48 \times 0.39 \times 0.35 \text{ mm}$             |
| V = 1847.9 (3) Å <sup>3</sup>                                    |                                                       |
| Data collection                                                  |                                                       |
| Bruker SMART 1000 CCD                                            | Absorption correction: multi-scan                     |
| diffractometer                                                   | (SADABS; Bruker, 2007)                                |
| Radiation source: fine-focus sealed tube                         | $T_{\min} = 0.717, \ T_{\max} = 0.781$                |
| Graphite monochromator                                           | 9230 measured reflections                             |
| phi and $\omega$ scans                                           | 6407 independent reflections                          |
| -                                                                | 4969 reflections with $I > 2\sigma(I)$                |

| $R_{\rm int} = 0.026$                                           | $k = -13 \rightarrow 14$ |
|-----------------------------------------------------------------|--------------------------|
| $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.5^\circ$ | $l = -18 \rightarrow 16$ |
| $h = -13 \rightarrow 14$                                        |                          |

| - <u>j</u>                                      |                                                           |
|-------------------------------------------------|-----------------------------------------------------------|
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.103$                               | neighbouring sites                                        |
| <i>S</i> = 1.03                                 | H-atom parameters constrained                             |
| 6407 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0425P)^2 + 1.3004P]$         |
| 497 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                            |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta  ho_{ m min} = -0.57 \ { m e} \ { m \AA}^{-3}$    |
|                                                 |                                                           |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|            | x            | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------------|--------------|--------------|-------------|-----------------------------|-----------|
| Ag1        | 0.52538 (2)  | 0.63477 (3)  | 0.59947 (2) | 0.04145 (11)                |           |
| F1         | 0.401 (2)    | 0.509 (5)    | 0.1002 (15) | 0.115 (8)                   | 0.57 (12) |
| F2         | 0.194 (4)    | 0.430 (4)    | 0.0409 (18) | 0.099 (6)                   | 0.57 (12) |
| F3         | 0.283 (8)    | 0.305 (4)    | 0.0602 (16) | 0.114 (11)                  | 0.57 (12) |
| F1′        | 0.225 (5)    | 0.290 (3)    | 0.061 (2)   | 0.101 (7)                   | 0.43 (12) |
| F2′        | 0.406 (3)    | 0.450 (9)    | 0.0954 (18) | 0.123 (12)                  | 0.43 (12) |
| F3′        | 0.233 (7)    | 0.462 (6)    | 0.037 (2)   | 0.095 (9)                   | 0.43 (12) |
| N1         | 0.5661 (3)   | 0.8428 (3)   | 0.7245 (2)  | 0.0493 (8)                  |           |
| N2         | 0.641 (11)   | 0.001 (13)   | 0.139 (8)   | 0.12 (12)                   | 0.50      |
| O1         | 0.3089 (4)   | 0.6036 (3)   | 0.2444 (2)  | 0.0848 (11)                 |           |
| O2         | 0.3653 (4)   | 0.4369 (4)   | 0.2676 (2)  | 0.0887 (11)                 |           |
| O3         | 0.1465 (4)   | 0.3951 (4)   | 0.2050 (3)  | 0.1093 (15)                 |           |
| P1         | 0.73017 (8)  | 0.71398 (8)  | 0.57100 (6) | 0.0300 (2)                  |           |
| P2         | 0.70533 (8)  | 0.45711 (8)  | 0.44043 (6) | 0.0304 (2)                  |           |
| <b>S</b> 1 | 0.27513 (11) | 0.46881 (11) | 0.21639 (7) | 0.0556 (3)                  |           |
| C1         | 0.6518 (4)   | 0.8795 (4)   | 0.8064 (3)  | 0.0489 (10)                 |           |
| H1         | 0.6667       | 0.8162       | 0.8238      | 0.059*                      |           |
| C2         | 0.5452 (4)   | 0.9371 (4)   | 0.7002 (3)  | 0.0606 (12)                 |           |
| H2         | 0.4847       | 0.9123       | 0.6423      | 0.073*                      |           |
| C3         | 0.6075 (4)   | 1.0645 (4)   | 0.7555 (3)  | 0.0618 (12)                 |           |
| Н3         | 0.5892       | 1.1247       | 0.7357      | 0.074*                      |           |
| C4         | 0.7006 (4)   | 1.1052 (4)   | 0.8437 (3)  | 0.0551 (11)                 |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C5         | 0.7229 (4)           | 1.0103 (4)             | 0.8701 (3)             | 0.0499 (10)          |
|------------|----------------------|------------------------|------------------------|----------------------|
| C6         | 0.8170 (5)           | 1.0448 (5)             | 0.9551 (3)             | 0.0677 (13)          |
| H6         | 0.8317               | 0.9814                 | 0.9725                 | 0.081*               |
| C7         | 0.8866 (5)           | 1.1717 (6)             | 1.0119 (4)             | 0.0865 (18)          |
| H7         | 0.9491               | 1.1948                 | 1.0683                 | 0.104*               |
| C8         | 0.8658 (6)           | 1.2661 (6)             | 0.9871 (4)             | 0.0915 (19)          |
| H8         | 0.9150               | 1.3523                 | 1.0269                 | 0.110*               |
| C9         | 0.7745 (5)           | 1.2365 (5)             | 0.9052 (4)             | 0.0777 (16)          |
| Н9         | 0.7609               | 1.3018                 | 0.8899                 | 0.093*               |
| C10        | 0.8032 (3)           | 0.5997 (3)             | 0.5509(2)              | 0.0325 (8)           |
| H10A       | 0.8122               | 0.5727                 | 0.6044                 | 0.039*               |
| H10B       | 0.8876               | 0.6419                 | 0.5465                 | 0.039*               |
| C11        | 0.8524 (3)           | 0.8601 (3)             | 0.6680 (2)             | 0.0356 (8)           |
| C12        | 0.8431(4)            | 0.9755 (4)             | 0.6772(3)              | 0.0443(9)            |
| H12        | 0.7779               | 0.9761                 | 0.6334                 | 0.053*               |
| C13        | 0.9295 (4)           | 1.0896 (4)             | 0.7509 (3)             | 0.0587(12)           |
| H13        | 0.9222               | 1 1664                 | 0.7565                 | 0.070*               |
| C14        | 1.0252(5)            | 1 0893 (5)             | 0.8153(3)              | 0.0699(15)           |
| H14        | 1.0232 (3)           | 1 1662                 | 0.8644                 | 0.084*               |
| C15        | 1.0349 (4)           | 0.9760(5)              | 0.8078 (3)             | 0.0684 (14)          |
| H15        | 1.0999               | 0.9766                 | 0.8525                 | 0.082*               |
| C16        | 0.9488(4)            | 0.8598(4)              | 0.0322<br>0.7342(3)    | 0.0509(10)           |
| H16        | 0.9560               | 0.7833                 | 0.7296                 | 0.061*               |
| C17        | 0.7319(3)            | 0.7611 (3)             | 0.7290<br>0.4689 (2)   | 0.001                |
| C18        | 0.7519(3)            | 0.7011(3)<br>0.8180(4) | 0.4009(2)<br>0.4524(3) | 0.0333(0)            |
| H18        | 0.0400 (3)           | 0.8355                 | 0.4953                 | 0.0412 ())           |
| C19        | 0.9223<br>0.8473 (4) | 0.8488(4)              | 0.3733 (3)             | 0.079                |
| H10        | 0.0473(4)            | 0.8875                 | 0.3733 (3)             | 0.0550 (11)          |
| C20        | 0.7244<br>0.7351 (5) | 0.8226(4)              | 0.3095 (3)             | 0.004<br>0.0570(12)  |
| H20        | 0.7351 (3)           | 0.8220 (4)             | 0.3093 (3)             | 0.0579 (12)          |
| C21        | 0.7502               | 0.0450<br>0.7660 (4)   | 0.2257                 | 0.009                |
| U21        | 0.0221 (3)           | 0.7009 (4)             | 0.3240 (3)             | 0.0388(12)<br>0.071* |
| C22        | 0.5402               | 0.7488<br>0.7370 (4)   | 0.2808<br>0.4048 (3)   | $0.071^{\circ}$      |
| U22        | 0.0197 (4)           | 0.7370 (4)             | 0.4048 (3)             | 0.0439 (9)           |
| П22<br>С23 | 0.3423<br>0.7603 (3) | 0.7007<br>0.4031(3)    | 0.4130<br>0.3477(2)    | $0.033^{\circ}$      |
| C23        | 0.7093(3)            | 0.4931(3)              | 0.3477(2)              | 0.0333(8)            |
| C24        | 0.0509 (4)           | 0.5270 (4)             | 0.3343 (3)             | 0.0482 (10)          |
| П24<br>C25 | 0.9337               | 0.5501                 | 0.4090                 | $0.038^{\circ}$      |
| C25        | 0.9397 (4)           | 0.5496 (4)             | 0.2798 (3)             | 0.0609 (12)          |
| H23        | 1.0247               | 0.5700                 | 0.2657                 | $0.075^{\circ}$      |
| C26        | 0.8500 (5)           | 0.5401 (4)             | 0.2009 (3)             | 0.0664 (14)          |
| H26        | 0.8857               | 0.5556                 | 0.1514                 | 0.080*               |
| C27        | 0.7308 (5)           | 0.5080 (4)             | 0.1941 (3)             | 0.0601 (12)          |
| H27        | 0.6/52               | 0.5028                 | 0.1403                 | 0.072*               |
| 028        | 0.6864 (4)           | 0.4834 (4)             | 0.2666 (3)             | 0.0440 (9)           |
| H28        | 0.6007               | 0.4602                 | 0.2612                 | 0.053*               |
| C29        | 0./519(3)            | 0.3338(3)              | 0.4608 (2)             | 0.0341 (8)           |
| 030        | 0.7968 (3)           | 0.2631 (4)             | 0.3987 (3)             | 0.0419 (9)           |
| H30        | 0.8126               | 0.2836                 | 0.3470                 | 0.050*               |

| C31 | 0.8182 (4) | 0.1615 (4)  | 0.4140 (3)  | 0.0517 (10) |      |
|-----|------------|-------------|-------------|-------------|------|
| H31 | 0.8483     | 0.1145      | 0.3723      | 0.062*      |      |
| C32 | 0.7953 (4) | 0.1303 (4)  | 0.4895 (3)  | 0.0565 (11) |      |
| H32 | 0.8093     | 0.0620      | 0.4990      | 0.068*      |      |
| C33 | 0.7515 (4) | 0.1998 (4)  | 0.5517 (3)  | 0.0553 (11) |      |
| H33 | 0.7370     | 0.1791      | 0.6036      | 0.066*      |      |
| C34 | 0.7290 (4) | 0.3006 (4)  | 0.5373 (3)  | 0.0433 (9)  |      |
| H34 | 0.6982     | 0.3465      | 0.5791      | 0.052*      |      |
| C35 | 0.2884 (7) | 0.4224 (6)  | 0.0981 (4)  | 0.0783 (16) |      |
| C36 | 0.641 (14) | 0.001 (15)  | 0.139 (10)  | 0.12 (14)   | 0.50 |
| H36 | 0.7001     | 0.0233      | 0.1969      | 0.144*      | 0.50 |
| C37 | 0.6164 (7) | 0.0911 (10) | 0.1179 (5)  | 0.118 (3)   |      |
| H37 | 0.6571     | 0.1756      | 0.1623      | 0.142*      |      |
| C38 | 0.5330 (5) | 0.0643 (6)  | 0.0327 (4)  | 0.0837 (18) |      |
| C39 | 0.5054 (8) | 0.1618 (8)  | 0.0075 (6)  | 0.115 (2)   |      |
| H39 | 0.5456     | 0.2481      | 0.0487      | 0.137*      |      |
| C40 | 0.4179 (8) | 0.1228 (10) | -0.0790 (7) | 0.115 (3)   |      |
| H40 | 0.3988     | 0.1841      | -0.0966     | 0.138*      |      |
|     |            |             |             |             |      |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Ag1 | 0.03004 (16) | 0.04394 (19) | 0.04563 (19) | 0.01163 (13) | 0.01270 (12) | 0.01485 (13) |
| F1  | 0.135 (9)    | 0.147 (18)   | 0.098 (6)    | 0.068 (10)   | 0.082 (6)    | 0.057 (8)    |
| F2  | 0.128 (14)   | 0.105 (10)   | 0.051 (5)    | 0.035 (10)   | 0.003 (7)    | 0.045 (5)    |
| F3  | 0.17 (3)     | 0.111 (11)   | 0.079 (5)    | 0.102 (18)   | 0.034 (11)   | 0.014 (5)    |
| F1′ | 0.111 (17)   | 0.098 (9)    | 0.076 (7)    | 0.068 (10)   | 0.008 (8)    | -0.007 (6)   |
| F2′ | 0.116 (10)   | 0.16 (3)     | 0.110 (9)    | 0.069 (15)   | 0.063 (8)    | 0.034 (14)   |
| F3′ | 0.14 (2)     | 0.099 (17)   | 0.055 (6)    | 0.057 (16)   | 0.026 (11)   | 0.039 (9)    |
| N1  | 0.0474 (19)  | 0.041 (2)    | 0.046 (2)    | 0.0123 (16)  | 0.0156 (16)  | 0.0056 (16)  |
| N2  | 0.10 (18)    | 0.2 (3)      | 0.1 (2)      | 0.06 (18)    | 0.03 (15)    | 0.03 (19)    |
| O1  | 0.111 (3)    | 0.057 (2)    | 0.070 (2)    | 0.032 (2)    | 0.020 (2)    | 0.0112 (17)  |
| O2  | 0.099 (3)    | 0.094 (3)    | 0.065 (2)    | 0.040 (2)    | -0.0066 (19) | 0.039 (2)    |
| O3  | 0.077 (3)    | 0.116 (3)    | 0.101 (3)    | 0.003 (2)    | 0.025 (2)    | 0.044 (3)    |
| P1  | 0.0269 (4)   | 0.0286 (5)   | 0.0297 (5)   | 0.0088 (4)   | 0.0092 (4)   | 0.0081 (4)   |
| P2  | 0.0277 (4)   | 0.0300 (5)   | 0.0302 (5)   | 0.0111 (4)   | 0.0088 (4)   | 0.0081 (4)   |
| S1  | 0.0579 (7)   | 0.0556 (7)   | 0.0409 (6)   | 0.0125 (5)   | 0.0092 (5)   | 0.0192 (5)   |
| C1  | 0.058 (3)    | 0.040 (2)    | 0.046 (2)    | 0.017 (2)    | 0.024 (2)    | 0.0137 (19)  |
| C2  | 0.046 (3)    | 0.060 (3)    | 0.060 (3)    | 0.019 (2)    | 0.011 (2)    | 0.010 (2)    |
| C3  | 0.056 (3)    | 0.052 (3)    | 0.077 (3)    | 0.030 (2)    | 0.018 (2)    | 0.018 (2)    |
| C4  | 0.054 (3)    | 0.040 (2)    | 0.060 (3)    | 0.017 (2)    | 0.024 (2)    | 0.005 (2)    |
| C5  | 0.054 (2)    | 0.045 (2)    | 0.041 (2)    | 0.013 (2)    | 0.0222 (19)  | 0.0076 (19)  |
| C6  | 0.076 (3)    | 0.061 (3)    | 0.049 (3)    | 0.015 (3)    | 0.018 (2)    | 0.015 (2)    |
| C7  | 0.081 (4)    | 0.078 (4)    | 0.053 (3)    | 0.004 (3)    | 0.013 (3)    | 0.000 (3)    |
| C8  | 0.089 (4)    | 0.054 (4)    | 0.077 (4)    | 0.004 (3)    | 0.019 (3)    | -0.015 (3)   |
| C9  | 0.077 (4)    | 0.046 (3)    | 0.089 (4)    | 0.019 (3)    | 0.027 (3)    | 0.003 (3)    |
| C10 | 0.0318 (18)  | 0.0319 (19)  | 0.0309 (18)  | 0.0119 (15)  | 0.0092 (14)  | 0.0103 (15)  |
| C11 | 0.0324 (18)  | 0.033 (2)    | 0.0344 (19)  | 0.0063 (15)  | 0.0166 (15)  | 0.0091 (15)  |

# supporting information

| C12 | 0.043 (2)   | 0.038 (2)   | 0.042 (2)   | 0.0089 (18) | 0.0196 (17) | 0.0094 (17) |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C13 | 0.061 (3)   | 0.037 (2)   | 0.054 (3)   | 0.002 (2)   | 0.026 (2)   | 0.002 (2)   |
| C14 | 0.068 (3)   | 0.050 (3)   | 0.047 (3)   | -0.009 (2)  | 0.020 (2)   | -0.004 (2)  |
| C15 | 0.054 (3)   | 0.080 (4)   | 0.038 (2)   | 0.008 (3)   | 0.000 (2)   | 0.012 (2)   |
| C16 | 0.047 (2)   | 0.050 (3)   | 0.040 (2)   | 0.011 (2)   | 0.0058 (18) | 0.0106 (19) |
| C17 | 0.0355 (19) | 0.0293 (19) | 0.0319 (18) | 0.0119 (15) | 0.0121 (15) | 0.0073 (15) |
| C18 | 0.040 (2)   | 0.042 (2)   | 0.041 (2)   | 0.0151 (18) | 0.0146 (17) | 0.0155 (17) |
| C19 | 0.062 (3)   | 0.048 (3)   | 0.050 (2)   | 0.016 (2)   | 0.028 (2)   | 0.022 (2)   |
| C20 | 0.080 (3)   | 0.051 (3)   | 0.043 (2)   | 0.023 (2)   | 0.018 (2)   | 0.024 (2)   |
| C21 | 0.065 (3)   | 0.058 (3)   | 0.045 (2)   | 0.026 (2)   | 0.001 (2)   | 0.019 (2)   |
| C22 | 0.039 (2)   | 0.043 (2)   | 0.048 (2)   | 0.0166 (18) | 0.0090 (17) | 0.0180 (18) |
| C23 | 0.0374 (19) | 0.0305 (19) | 0.0347 (19) | 0.0159 (16) | 0.0147 (15) | 0.0110 (15) |
| C24 | 0.043 (2)   | 0.050 (2)   | 0.048 (2)   | 0.0163 (19) | 0.0166 (18) | 0.0155 (19) |
| C25 | 0.055 (3)   | 0.058 (3)   | 0.069 (3)   | 0.017 (2)   | 0.037 (2)   | 0.021 (2)   |
| C26 | 0.090 (4)   | 0.058 (3)   | 0.046 (3)   | 0.020 (3)   | 0.037 (3)   | 0.017 (2)   |
| C27 | 0.074 (3)   | 0.062 (3)   | 0.038 (2)   | 0.022 (2)   | 0.013 (2)   | 0.021 (2)   |
| C28 | 0.046 (2)   | 0.045 (2)   | 0.038 (2)   | 0.0181 (19) | 0.0117 (17) | 0.0152 (17) |
| C29 | 0.0289 (17) | 0.0313 (19) | 0.0349 (19) | 0.0094 (15) | 0.0073 (15) | 0.0085 (15) |
| C30 | 0.044 (2)   | 0.042 (2)   | 0.039 (2)   | 0.0192 (18) | 0.0142 (17) | 0.0125 (17) |
| C31 | 0.060 (3)   | 0.046 (2)   | 0.057 (3)   | 0.032 (2)   | 0.023 (2)   | 0.017 (2)   |
| C32 | 0.068 (3)   | 0.047 (3)   | 0.063 (3)   | 0.033 (2)   | 0.018 (2)   | 0.023 (2)   |
| C33 | 0.073 (3)   | 0.052 (3)   | 0.051 (2)   | 0.029 (2)   | 0.023 (2)   | 0.028 (2)   |
| C34 | 0.048 (2)   | 0.043 (2)   | 0.044 (2)   | 0.0236 (19) | 0.0178 (18) | 0.0159 (18) |
| C35 | 0.109 (5)   | 0.082 (4)   | 0.051 (3)   | 0.049 (4)   | 0.022 (3)   | 0.026 (3)   |
| C36 | 0.1 (2)     | 0.2 (4)     | 0.1 (3)     | 0.1 (2)     | 0.03 (18)   | 0.0 (2)     |
| C37 | 0.095 (5)   | 0.150 (8)   | 0.081 (5)   | 0.041 (5)   | 0.030 (4)   | 0.017 (5)   |
| C38 | 0.064 (3)   | 0.122 (5)   | 0.055 (3)   | 0.037 (3)   | 0.030 (3)   | 0.015 (3)   |
| C39 | 0.115 (6)   | 0.118 (6)   | 0.099 (6)   | 0.046 (5)   | 0.049 (5)   | 0.020 (5)   |
| C40 | 0.123 (7)   | 0.138 (8)   | 0.108 (7)   | 0.070 (6)   | 0.052 (6)   | 0.053 (6)   |
|     |             |             |             |             |             |             |

Geometric parameters (Å, °)

| Ag1—P2 <sup>i</sup>  | 2.4296 (9) | C14—H14 | 0.9300    |
|----------------------|------------|---------|-----------|
| Ag1—P1               | 2.4368 (9) | C15—C16 | 1.394 (6) |
| Ag1—N1               | 2.489 (3)  | C15—H15 | 0.9300    |
| F1—C35               | 1.35 (2)   | C16—H16 | 0.9300    |
| F2—C35               | 1.34 (3)   | C17—C22 | 1.381 (5) |
| F3—C35               | 1.33 (2)   | C17—C18 | 1.386 (5) |
| F1′—C35              | 1.37 (3)   | C18—C19 | 1.371 (6) |
| F2′—C35              | 1.32 (3)   | C18—H18 | 0.9300    |
| F3′—C35              | 1.33 (4)   | C19—C20 | 1.371 (6) |
| N1-C1                | 1.312 (5)  | C19—H19 | 0.9300    |
| N1-C2                | 1.366 (6)  | C20—C21 | 1.361 (6) |
| N2-C37               | 1.32 (13)  | C20—H20 | 0.9300    |
| N2-C40 <sup>ii</sup> | 1.33 (13)  | C21—C22 | 1.385 (6) |
| 01—S1                | 1.423 (4)  | C21—H21 | 0.9300    |
| O2—S1                | 1.430 (3)  | C22—H22 | 0.9300    |
| O3—S1                | 1.411 (4)  | C23—C24 | 1.388 (5) |
|                      |            |         |           |

| P1—C17                   | 1.818 (4)            | C23—C28                                                    | 1.388 (5)  |
|--------------------------|----------------------|------------------------------------------------------------|------------|
| P1—C11                   | 1.825 (3)            | C24—C25                                                    | 1.392 (6)  |
| P1—C10                   | 1.833 (3)            | C24—H24                                                    | 0.9300     |
| P2—C23                   | 1.820 (4)            | C25—C26                                                    | 1.366 (7)  |
| P2—C29                   | 1.823 (4)            | C25—H25                                                    | 0.9300     |
| P2—C10                   | 1.841 (3)            | C26—C27                                                    | 1.371 (7)  |
| P2—Ag1 <sup>i</sup>      | 2.4296 (9)           | C26—H26                                                    | 0.9300     |
| S1—C35                   | 1.800 (5)            | C27—C28                                                    | 1.380 (6)  |
| C1C5                     | 1.420 (5)            | C27—H27                                                    | 0.9300     |
| С1—Н1                    | 0.9300               | C28—H28                                                    | 0.9300     |
| $C^2 - C^3$              | 1 353 (6)            | $C_{29}$ $C_{34}$                                          | 1 388 (5)  |
| С2—Н2                    | 0.9300               | $C_{29} - C_{30}$                                          | 1.300 (5)  |
| $C_2 = H_2$              | 1 414 (6)            | $C_{23}^{(3)} = C_{31}^{(3)}$                              | 1.391(5)   |
| С3—Н3                    | 0.9300               | C30—H30                                                    | 0.9300     |
| $C_{1}$                  | 1 396 (6)            | $C_{31}$ $C_{32}$                                          | 1 364 (6)  |
| $C_4 = C_3$              | 1.390 (0)            | C31_H31                                                    | 0.0300     |
| $C_{4} - C_{5}$          | 1.420(0)<br>1.401(6) | $\begin{array}{c} C31 \\ C32 \\ C32 \\ C33 \\ \end{array}$ | 1 274 (6)  |
| $C_{2} = C_{0}$          | 1.401(0)             | $C_{32}$                                                   | 1.574 (0)  |
| C6C7                     | 1.300 (7)            | C32—H32                                                    | 0.9300     |
|                          | 0.9300               | $C_{33}$ — $C_{34}$                                        | 1.386 (5)  |
| C7—C8                    | 1.3/1 (8)            | C33—H33                                                    | 0.9300     |
| С/—Н/                    | 0.9300               | C34—H34                                                    | 0.9300     |
| C8—C9                    | 1.365 (8)            | $C_{36}$                                                   | 1.32 (15)  |
| С8—Н8                    | 0.9300               | C36—C40 <sup>n</sup>                                       | 1.33 (15)  |
| С9—Н9                    | 0.9300               | C36—H36                                                    | 0.9300     |
| C10—H10A                 | 0.9700               | C37—C38                                                    | 1.367 (9)  |
| C10—H10B                 | 0.9700               | С37—Н37                                                    | 0.9300     |
| C11—C16                  | 1.384 (5)            | C38—C38 <sup>ii</sup>                                      | 1.406 (12) |
| C11—C12                  | 1.387 (5)            | C38—C39                                                    | 1.443 (10) |
| C12—C13                  | 1.383 (5)            | C39—C40                                                    | 1.369 (10) |
| C12—H12                  | 0.9300               | С39—Н39                                                    | 0.9300     |
| C13—C14                  | 1.363 (7)            | C40—N2 <sup>ii</sup>                                       | 1.33 (13)  |
| C13—H13                  | 0.9300               | C40—C36 <sup>ii</sup>                                      | 1.33 (15)  |
| C14—C15                  | 1.369 (7)            | C40—H40                                                    | 0.9300     |
|                          |                      |                                                            |            |
| P2 <sup>i</sup> —Ag1—P1  | 156.44 (3)           | C21—C20—H20                                                | 119.9      |
| P2 <sup>i</sup> —Ag1—N1  | 96.13 (8)            | C19—C20—H20                                                | 119.9      |
| P1—Ag1—N1                | 95.55 (8)            | C20—C21—C22                                                | 120.2 (4)  |
| C1—N1—C2                 | 117.3 (4)            | C20—C21—H21                                                | 119.9      |
| C1—N1—Ag1                | 116.6 (3)            | C22—C21—H21                                                | 119.9      |
| C2—N1—Ag1                | 120.8 (3)            | C17—C22—C21                                                | 120.1 (4)  |
| C37—N2—C40 <sup>ii</sup> | 122 (8)              | C17—C22—H22                                                | 119.9      |
| C17—P1—C11               | 101.96 (16)          | C21—C22—H22                                                | 119.9      |
| C17—P1—C10               | 102.83 (16)          | C24—C23—C28                                                | 119.1 (3)  |
| C11—P1—C10               | 104.74 (16)          | C24—C23—P2                                                 | 122.4 (3)  |
| C17—P1—Ag1               | 116.50 (12)          | C28—C23—P2                                                 | 118.4 (3)  |
| C11—P1—Ag1               | 114.01 (11)          | C23—C24—C25                                                | 120.0 (4)  |
| C10-P1-Ag1               | 115.11 (12)          | C23—C24—H24                                                | 120.0      |
| C23—P2—C29               | 105.89 (16)          | C25—C24—H24                                                | 120.0      |
|                          | /                    | · · · · · · · · · · · · · · · · · · ·                      |            |

| C23—P2—C10                           | 105.53 (16)          | C26—C25—C24                                      | 119.9 (4)                |
|--------------------------------------|----------------------|--------------------------------------------------|--------------------------|
| C29—P2—C10                           | 102.69 (16)          | C26—C25—H25                                      | 120.0                    |
| C23—P2—Ag1 <sup>i</sup>              | 115.97 (12)          | C24—C25—H25                                      | 120.0                    |
| C29—P2—Ag1 <sup><math>i</math></sup> | 105.64 (11)          | C25—C26—C27                                      | 120.6 (4)                |
| $C10$ — $P2$ — $Ag1^i$               | 119.53 (11)          | C25—C26—H26                                      | 119.7                    |
| 03-81-01                             | 113.6 (3)            | C27—C26—H26                                      | 119.7                    |
| 03 - 81 - 02                         | 115.2 (3)            | C26—C27—C28                                      | 120.2 (4)                |
| 01 - S1 - 02                         | 114.5(2)             | C26—C27—H27                                      | 119.9                    |
| 03 - 81 - 035                        | 1049(3)              | $C_{28} - C_{27} - H_{27}$                       | 119.9                    |
| 01 - 81 - C35                        | 1035(3)              | $C_{20} = C_{21} = C_{23}$                       | 120.2(4)                 |
| $0^{2}$ S1 C35                       | 103.3(3)<br>103.2(3) | $C_{27}$ $C_{28}$ $H_{28}$                       | 110.0                    |
| N1 C1 C5                             | 103.2(5)<br>123.8(4) | $C_{23}$ $C_{28}$ $H_{28}$                       | 119.9                    |
| NI = CI = CJ                         | 123.8 (4)            | $C_{23} - C_{28} - H_{28}$                       | 117.7                    |
| NI - CI - HI                         | 110.1                | $C_{24} = C_{29} = C_{30}$                       | 110.0(3)                 |
|                                      | 118.1                | $C_{34} - C_{29} - P_{2}$                        | 117.0(3)                 |
| $C_3 = C_2 = N_1$                    | 123.8 (4)            | $C_{30}$ $C_{29}$ $P_{2}$                        | 123.4(3)                 |
| C3—C2—H2                             | 118.1                | $C_{29} - C_{30} - C_{31}$                       | 120.1 (4)                |
| N1—C2—H2                             | 118.1                | C29—C30—H30                                      | 120.0                    |
| C2—C3—C4                             | 119.4 (4)            | C31—C30—H30                                      | 120.0                    |
| С2—С3—Н3                             | 120.3                | C32—C31—C30                                      | 120.5 (4)                |
| С4—С3—Н3                             | 120.3                | C32—C31—H31                                      | 119.7                    |
| C5—C4—C3                             | 117.7 (4)            | C30—C31—H31                                      | 119.7                    |
| C5—C4—C9                             | 118.4 (5)            | C31—C32—C33                                      | 120.0 (4)                |
| C3—C4—C9                             | 123.8 (5)            | C31—C32—H32                                      | 120.0                    |
| C4—C5—C6                             | 120.4 (4)            | C33—C32—H32                                      | 120.0                    |
| C4—C5—C1                             | 118.0 (4)            | C32—C33—C34                                      | 120.2 (4)                |
| C6—C5—C1                             | 121.5 (4)            | С32—С33—Н33                                      | 119.9                    |
| C7—C6—C5                             | 119.5 (5)            | C34—C33—H33                                      | 119.9                    |
| С7—С6—Н6                             | 120.2                | C33—C34—C29                                      | 120.5 (4)                |
| С5—С6—Н6                             | 120.2                | C33—C34—H34                                      | 119.7                    |
| C6—C7—C8                             | 120.8 (6)            | C29—C34—H34                                      | 119.7                    |
| С6—С7—Н7                             | 119.6                | F2′—C35—F3                                       | 78.7 (12)                |
| С8—С7—Н7                             | 119.6                | F2'—C35—F3'                                      | 107.9 (18)               |
| C9—C8—C7                             | 121.5 (5)            | F3-C35-F3'                                       | 115.2 (17)               |
| C9-C8-H8                             | 1193                 | F2'-C35-F2                                       | 128.4(16)                |
| C7—C8—H8                             | 119.3                | $F_{3}$ $C_{35}$ $F_{2}$                         | 108 (2)                  |
| C8 - C9 - C4                         | 119.3 (5)            | $F_{3'}$ $C_{35}$ $F_{2}$                        | 22(2)                    |
| C8 - C9 - H9                         | 120.3                | F2' = C35 = F1                                   | 22(2)<br>310(17)         |
| $C_{4}$ $C_{0}$ $H_{0}$              | 120.3                | $F_{2}^{2} = C_{3}^{2} S_{3}^{-1} F_{1}^{1}$     | 1081(17)                 |
| $P_1 = C_1 = C_1 = C_2$              | 120.3                | $F_{3}$ $C_{3}$ $F_{1}$ $F_{2}'$ $C_{3}$ $F_{1}$ | 100.1(12)                |
| 11 - 010 - 12                        | 110.79 (17)          | $F_{2} = C_{2}^{2} = F_{1}^{2}$                  | $\frac{80(2)}{1084(12)}$ |
| $P_{1} = C_{10} = H_{10A}$           | 109.5                | $F_2 = C_{35} = F_1$                             | 106.4(12)                |
| P2—C10—H10A                          | 109.5                | $F_2 = C_3 S = F_1^{\prime}$                     | 100.4(17)                |
| PI-CI0-HI0B                          | 109.5                | $F_3 = C_3 S = F_1^{T_1}$                        | 27.7 (13)                |
| P2 - C10 - H10B                      | 109.5                | F3' - C35 - F1'                                  | 106(2)                   |
| HIUA—CIU—HIUB                        | 108.1                | F2-C35-F1'                                       | 90.4 (14)                |
| C16—C11—C12                          | 119.2 (3)            | F1 - C35 - F1'                                   | 135.2 (10)               |
| C16—C11—Pl                           | 123.3 (3)            | F2'—C35—S1                                       | 114.4 (11)               |
| C12—C11—P1                           | 117.3 (3)            | F3—C35—S1                                        | 116.3 (13)               |
| C13—C12—C11                          | 120.8 (4)            | F3'—C35—S1                                       | 117.7 (18)               |

| C13—C12—H12                 | 119.6       | F2—C35—S1                               | 107.8 (17) |
|-----------------------------|-------------|-----------------------------------------|------------|
| C11—C12—H12                 | 119.6       | F1-C35-S1                               | 108.0 (13) |
| C14—C13—C12                 | 119.8 (5)   | F1′—C35—S1                              | 104 (2)    |
| C14—C13—H13                 | 120.1       | C37—C36—C40 <sup>ii</sup>               | 122 (10)   |
| C12—C13—H13                 | 120.1       | С37—С36—Н36                             | 119.2      |
| C13—C14—C15                 | 120.1 (4)   | C40 <sup>ii</sup> —C36—H36              | 119.2      |
| C13—C14—H14                 | 120.0       | C36—C37—N2                              | 0(10)      |
| C15—C14—H14                 | 120.0       | C36—C37—C38                             | 122 (6)    |
| C14—C15—C16                 | 121.0 (5)   | N2—C37—C38                              | 122 (5)    |
| C14—C15—H15                 | 119.5       | С36—С37—Н37                             | 119.0      |
| C16—C15—H15                 | 119.5       | N2—C37—H37                              | 119.1      |
| C11—C16—C15                 | 119.0 (4)   | С38—С37—Н37                             | 119.1      |
| C11—C16—H16                 | 120.5       | C37—C38—C38 <sup>ii</sup>               | 119.1 (9)  |
| C15—C16—H16                 | 120.5       | C37—C38—C39                             | 123.0 (7)  |
| C22—C17—C18                 | 118.8 (3)   | C38 <sup>ii</sup> —C38—C39              | 117.9 (8)  |
| C22—C17—P1                  | 120.8 (3)   | C40—C39—C38                             | 117.7 (7)  |
| C18—C17—P1                  | 120.3 (3)   | С40—С39—Н39                             | 121.2      |
| C19—C18—C17                 | 120.6 (4)   | С38—С39—Н39                             | 121.2      |
| C19—C18—H18                 | 119.7       | N2 <sup>ii</sup> —C40—C36 <sup>ii</sup> | 0 (10)     |
| C17—C18—H18                 | 119.7       | N2 <sup>ii</sup> —C40—C39               | 122 (5)    |
| C20—C19—C18                 | 120.0 (4)   | C36 <sup>ii</sup> —C40—C39              | 122 (6)    |
| С20—С19—Н19                 | 120.0       | N2 <sup>ii</sup> —C40—H40               | 119.0      |
| С18—С19—Н19                 | 120.0       | C36 <sup>ii</sup> —C40—H40              | 119.1      |
| C21—C20—C19                 | 120.3 (4)   | С39—С40—Н40                             | 119.0      |
|                             |             |                                         |            |
| P2 <sup>i</sup> —Ag1—N1—C1  | 130.6 (3)   | C18—C17—C22—C21                         | 1.5 (6)    |
| P1—Ag1—N1—C1                | -69.9 (3)   | P1-C17-C22-C21                          | -176.4 (3) |
| $P2^{i}$ —Ag1—N1—C2         | -76.1 (3)   | C20—C21—C22—C17                         | -1.4 (6)   |
| P1—Ag1—N1—C2                | 83.4 (3)    | C29—P2—C23—C24                          | -53.5 (3)  |
| $P2^{i}$ Ag1 $P1$ $C17$     | 20.80 (16)  | C10—P2—C23—C24                          | 55.0 (3)   |
| N1—Ag1—P1—C17               | -98.62 (15) | Ag1 <sup>i</sup> —P2—C23—C24            | -170.2(3)  |
| P2 <sup>i</sup> —Ag1—P1—C11 | 139.21 (15) | C29—P2—C23—C28                          | 125.5 (3)  |
| N1—Ag1—P1—C11               | 19.79 (16)  | C10—P2—C23—C28                          | -126.1 (3) |
| $P2^{i}$ Ag1 $P1$ $C10$     | -99.70 (14) | Ag1 <sup>i</sup> —P2—C23—C28            | 8.7 (3)    |
| N1—Ag1—P1—C10               | 140.87 (15) | C28—C23—C24—C25                         | -1.2 (6)   |
| C2—N1—C1—C5                 | -0.1 (6)    | P2-C23-C24-C25                          | 177.7 (3)  |
| Ag1—N1—C1—C5                | 154.2 (3)   | C23—C24—C25—C26                         | 1.6 (6)    |
| C1—N1—C2—C3                 | 0.0 (6)     | C24—C25—C26—C27                         | -0.6 (7)   |
| Ag1—N1—C2—C3                | -153.2 (4)  | C25—C26—C27—C28                         | -0.8(7)    |
| N1—C2—C3—C4                 | 0.4 (7)     | C26—C27—C28—C23                         | 1.1 (6)    |
| C2—C3—C4—C5                 | -0.7 (7)    | C24—C23—C28—C27                         | -0.1 (6)   |
| C2—C3—C4—C9                 | 177.5 (4)   | P2-C23-C28-C27                          | -179.1 (3) |
| C3—C4—C5—C6                 | 177.8 (4)   | C23—P2—C29—C34                          | 171.9 (3)  |
| C9—C4—C5—C6                 | -0.5 (6)    | C10—P2—C29—C34                          | 61.4 (3)   |
| C3—C4—C5—C1                 | 0.6 (6)     | Ag1 <sup>i</sup> —P2—C29—C34            | -64.5 (3)  |
| C9—C4—C5—C1                 | -177.7 (4)  | C23—P2—C29—C30                          | -14.8 (3)  |
| N1—C1—C5—C4                 | -0.2 (6)    | C10—P2—C29—C30                          | -125.2 (3) |
| N1—C1—C5—C6                 | -177.4 (4)  | Ag1 <sup>i</sup> —P2—C29—C30            | 108.8 (3)  |
|                             | ~ /         | -                                       |            |

| C4—C5—C6—C7                 | 0.0 (7)      | C34—C29—C30—C31                | -0.1 (5)   |
|-----------------------------|--------------|--------------------------------|------------|
| C1—C5—C6—C7                 | 177.1 (4)    | P2-C29-C30-C31                 | -173.4 (3) |
| C5—C6—C7—C8                 | 0.1 (8)      | C29—C30—C31—C32                | 0.1 (6)    |
| C6—C7—C8—C9                 | 0.4 (9)      | C30—C31—C32—C33                | -0.4 (7)   |
| C7—C8—C9—C4                 | -0.9 (9)     | C31—C32—C33—C34                | 0.8 (7)    |
| C5—C4—C9—C8                 | 0.9 (7)      | C32—C33—C34—C29                | -0.9 (6)   |
| C3—C4—C9—C8                 | -177.3 (5)   | C30—C29—C34—C33                | 0.6 (5)    |
| C17—P1—C10—P2               | -63.0(2)     | P2-C29-C34-C33                 | 174.2 (3)  |
| C11—P1—C10—P2               | -169.23 (18) | O3—S1—C35—F2'                  | -161 (5)   |
| Ag1—P1—C10—P2               | 64.76 (19)   | O1—S1—C35—F2'                  | 80 (5)     |
| C23—P2—C10—P1               | 93.0 (2)     | O2—S1—C35—F2'                  | -40 (5)    |
| C29—P2—C10—P1               | -156.24 (18) | O3—S1—C35—F3                   | -72 (4)    |
| Ag1 <sup>i</sup> —P2—C10—P1 | -39.8 (2)    | O1—S1—C35—F3                   | 169 (4)    |
| C17—P1—C11—C16              | -131.7 (3)   | O2—S1—C35—F3                   | 49 (4)     |
| C10—P1—C11—C16              | -24.8 (3)    | O3—S1—C35—F3′                  | 71 (4)     |
| Ag1—P1—C11—C16              | 101.9 (3)    | O1—S1—C35—F3′                  | -48 (4)    |
| C17—P1—C11—C12              | 51.4 (3)     | O2—S1—C35—F3′                  | -168 (4)   |
| C10—P1—C11—C12              | 158.3 (3)    | O3—S1—C35—F2                   | 50 (2)     |
| Ag1—P1—C11—C12              | -75.0 (3)    | O1—S1—C35—F2                   | -70 (2)    |
| C16—C11—C12—C13             | 0.7 (5)      | O2—S1—C35—F2                   | 171 (2)    |
| P1-C11-C12-C13              | 177.7 (3)    | O3—S1—C35—F1                   | 167 (3)    |
| C11—C12—C13—C14             | 0.1 (6)      | O1—S1—C35—F1                   | 47 (3)     |
| C12—C13—C14—C15             | -0.9 (7)     | O2—S1—C35—F1                   | -72 (3)    |
| C13—C14—C15—C16             | 0.8 (7)      | O3—S1—C35—F1′                  | -45 (2)    |
| C12-C11-C16-C15             | -0.8 (6)     | O1—S1—C35—F1′                  | -165 (2)   |
| P1-C11-C16-C15              | -177.6 (3)   | O2—S1—C35—F1′                  | 76 (2)     |
| C14-C15-C16-C11             | 0.0 (7)      | C40 <sup>ii</sup> —C36—C37—N2  | -38 (100)  |
| C11—P1—C17—C22              | -132.8 (3)   | C40 <sup>ii</sup> —C36—C37—C38 | -2 (16)    |
| C10—P1—C17—C22              | 118.8 (3)    | C40 <sup>ii</sup> —N2—C37—C36  | 142 (100)  |
| Ag1—P1—C17—C22              | -8.0 (3)     | C40 <sup>ii</sup> —N2—C37—C38  | -2 (13)    |
| C11—P1—C17—C18              | 49.4 (3)     | C36—C37—C38—C38 <sup>ii</sup>  | 3 (8)      |
| C10—P1—C17—C18              | -59.0 (3)    | N2-C37-C38-C38 <sup>ii</sup>   | 3 (7)      |
| Ag1—P1—C17—C18              | 174.2 (2)    | C36—C37—C38—C39                | -180 (8)   |
| C22-C17-C18-C19             | -0.6 (5)     | N2-C37-C38-C39                 | -179 (6)   |
| P1-C17-C18-C19              | 177.3 (3)    | C37—C38—C39—C40                | -178.5 (7) |
| C17—C18—C19—C20             | -0.4 (6)     | C38 <sup>ii</sup> —C38—C39—C40 | -0.9 (10)  |
| C18—C19—C20—C21             | 0.5 (7)      | C38—C39—C40—N2 <sup>ii</sup>   | 0 (6)      |
| C19—C20—C21—C22             | 0.4 (7)      | C38—C39—C40—C36 <sup>ii</sup>  | 0 (8)      |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z.