

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

rac-cis, cis-Dicarbonyldichlorido {1-[2-(diphenylphosphanyl)benzyl]-3-mesitylimidazol-2-ylidene}ruthenium(II) dichloromethane monosolvate

Gregory J. Domski,^a* Sallie A. Hohenboken^a and Dale C. Swenson^b

^aAugustana College, Department of Chemistry, 639 38th Street, Rock Island, IL 61201, USA, and ^bThe University of Iowa, E331 Chemistry Building, Iowa City, IA 52242-1294, USA

Correspondence e-mail: gregdomski@augustana.edu

Received 13 July 2012; accepted 17 July 2012

Key indicators: single-crystal X-ray study; T = 190 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 19.6.

The Ru^{II} atom in the title compound, $[RuCl_2(C_{31}H_{29}N_2P)-$ (CO)₂]·CH₂Cl₂, exhibits a distorted octahedral coordination environment. The bond angles of the cis substituents at the Ru^{II} atom range from 82.72 (9) to 97.20 (3)°. This molecule is of interest in the field of catalytic transfer hydrogenation.

Related literature

For a review of transition metal catalysts supported by donorfunctionalized N-heterocyclic carbenes (NHCs), see: Cavell & Normand (2008). For the first reported synthesis of the imidazolium chloride pro-ligand, see: Wang et al. (2005). For the structure of a similar compound incorporating an orthometalated N-phenyl group, see: Domski et al. (2012).

Experimental

Crystal data

[RuCl₂(C₃₁H₂₉N₂P)(CO)₂]·CH₂Cl₂ $M_r = 773.45$ Monoclinic, C2/c a = 22.539 (3) Å b = 16.4065 (17) Å c = 19.852 (2) Å $\beta = 111.004 (5)^{\circ}$

 $V = 6853.2 (13) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.85 \text{ mm}^-$ T = 190 K $0.21 \times 0.20 \times 0.19 \text{ mm}$

53042 measured reflections

 $R_{\rm int} = 0.043$

7865 independent reflections

6109 reflections with $I > 2\sigma(I)$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.842, T_{\max} = 0.855$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	402 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.98 \ {\rm e} \ {\rm \AA}^{-3}$
7865 reflections	$\Delta \rho_{\rm min} = -0.99 \text{ e } \text{\AA}^{-3}$

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors wish to thank Augustana College for financial support. Additionally, GJD would like to thank Sam Alvarado for early progress on the synthesis of imidazolium chloride pro-ligands.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5975).

References

Cavell, K. J. & Normand, A. T. (2008). Eur. J. Inorg. Chem. pp. 2781-2800.

- Domski, G. J., Pecak, W. H. & Swenson, D. C. (2012). Acta Cryst. E68. Submitted (HP2045).
- Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, A.-E., Wange, L.-X., Xie, J.-H. & Zhou, Q.-L. (2005). Tetrahedron, pp. 259-266.

supporting information

Acta Cryst. (2012). E68, m1121 [https://doi.org/10.1107/S1600536812032515]

rac-cis,cis-Dicarbonyldichlorido{1-[2-(diphenylphosphanyl)benzyl]-3mesitylimidazol-2-ylidene}ruthenium(II) dichloromethane monosolvate

Gregory J. Domski, Sallie A. Hohenboken and Dale C. Swenson

S1. Comment

The title compound was prepared in order to prevent orthometalation which we had observed with a similar complex bearing an *N*-phenyl moiety (Domski *et al.*, 2012) with the ultimate goal of probing the effect of orthometalation on the catalytic behavior of ruthenium(II) complexes supported by phosphine-functionalized NHCs.

The complex exhibited a distorted octahedral geometry about ruthenium with a P1-Ru-Cl1 bond angle of 97.20 (3)°.

S2. Experimental

Single crystals suitable for X-ray diffraction studies were grown by vapor diffusion of diethyl ether onto a saturated dichloromethane solution of the title compound.

S3. Refinement

All H atoms were included with the riding model using the XL program default values. No further restraints or constraints were imposed on the refinement model.

The molecular structure of the title complex with ellipsoids drawn at the 50% probability level. Hydrogen atoms and a dichloromethane molecule of crystallization were omitted for clarity.

rac-cis,cis-Dicarbonyldichlorido{1-[2- (diphenylphosphanyl)benzyl]-3-mesitylimidazol-2-ylidene}ruthenium(II) dichloromethane monosolvate

Crystal data

•	
$[RuCl_2(C_{31}H_{29}N_2P)(CO)_2] \cdot CH_2Cl_2$	F(000) = 3136
$M_r = 773.45$	$D_{\rm x} = 1.499 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $C2/c$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 15477 reflections
a = 22.539(3) Å	$\theta = 1.0-27.9^{\circ}$
b = 16.4065 (17) Å	$\mu = 0.85 \text{ mm}^{-1}$
c = 19.852 (2) Å	T = 190 K
$\beta = 111.004(5)^{\circ}$	Prism, yellow
$V = 6853.2(13) \text{ Å}^3$	$0.21 \times 0.20 \times 0.19 \text{ mm}$
Z = 8	
Data collection	
Nonius KappaCCD	53042 measured reflections
diffractometer	7865 independent reflections
Radiation source: fine-focus sealed tube	6109 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
CCD phi and ω scans	$h = -29 \rightarrow 29$
Absorption correction: multi-scan	$k = -20 \rightarrow 21$
(SCALEPACK; Otwinowski & Minor, 1997)	$l = -25 \rightarrow 25$
$T_{\min} = 0.842, \ T_{\max} = 0.855$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 1.08	H-atom parameters constrained
7865 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 13.2763P]$
402 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.98 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.99 \ {\rm e} \ {\rm \AA}^{-3}$
	-

Special details

Experimental. In a nitrogen-filled glove box, a Schlenk flask was charged with 1-mesityl-3-(2-

diphenylphosphinobenzyl)-1*H*-imidazol-3-ium chloride (0.7625 g), Ag₂O (0.3659 g), and 4 Å molecular seives (*ca* 0.5 g). The solids were suspended in dry, degassed dichloromethane and allowed to stir overnight in the dark. After 24 h, the reaction mixture was filtered through CeliteTM into a Schlenk flask that had been charged with [Ru(CO)₃Cl₂]₂ (0.4070 g) under a nitrogen atmosphere. The reaction mixture was allowed to stir at room temperature in the dark overnight. After 24 h, the reaction mixture was filtered through CeliteTM and the volatiles were removed *in vacuo* to furnish a yellow solid. The crude product was purified by column chromatography (SiO₂, 40:1 CH₂Cl₂/MeOH). Single crystals of the title compound were obtained by slow diffusion of diethyl ether onto a concentrated solution of the yellow powder isolated *via* column chromatography in dichloromethane.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Several low angle reflections were omitted from the final cycles of refinement due to beam-stop beam shadowing effects.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ru1	0.703359 (10)	0.039133 (12)	0.587686 (11)	0.02261 (7)
Cl1	0.66435 (3)	0.17943 (4)	0.58161 (4)	0.03120 (16)
C12	0.68354 (4)	0.02104 (5)	0.70046 (4)	0.03544 (17)
C1	0.72360 (14)	-0.06922 (18)	0.58206 (15)	0.0308 (6)
01	0.73228 (12)	-0.13645 (13)	0.57587 (12)	0.0466 (6)
C2	0.61471 (14)	0.00921 (19)	0.54483 (16)	0.0337 (6)
O2	0.56467 (11)	-0.01302 (18)	0.53158 (14)	0.0582 (7)
C3	0.71699 (12)	0.06780 (15)	0.49266 (14)	0.0233 (5)
N4	0.68600 (11)	0.03936 (13)	0.42422 (12)	0.0266 (5)
C5	0.70667 (14)	0.07903 (18)	0.37477 (16)	0.0327 (6)
Н5	0.6921	0.0699	0.3242	0.039*
C6	0.75093 (14)	0.13249 (17)	0.41214 (15)	0.0298 (6)
H6	0.7740	0.1685	0.3932	0.036*
N7	0.75680 (10)	0.12545 (13)	0.48352 (12)	0.0242 (5)
C8	0.80416 (13)	0.17248 (16)	0.54067 (15)	0.0275 (6)
H8A	0.7871	0.1858	0.5789	0.033*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8B	0.8129	0.2243	0.5204	0.033*
C11	0.63333 (14)	-0.01646 (19)	0.40064 (15)	0.0330 (6)
C12	0.57187 (16)	0.0169 (2)	0.38096 (17)	0.0465 (8)
C13	0.52078 (18)	-0.0363 (3)	0.35720 (19)	0.0618 (12)
H13	0.4788	-0.0153	0.3438	0.074*
C14	0.5295 (2)	-0.1188 (3)	0.3527 (2)	0.0658 (13)
C15	0.5905 (2)	-0.1488 (2)	0.36929 (19)	0.0598 (11)
H15	0.5962	-0.2056	0.3645	0.072*
C16	0.64434 (17)	-0.0981(2)	0.39303 (17)	0.0418 (8)
C17	0.56132 (18)	0.1068 (3)	0.3862 (2)	0.0619 (11)
H17A	0.5163	0.1169	0.3776	0.093*
H17B	0.5735	0.1358	0.3500	0.093*
H17C	0.5873	0.1262	0.4345	0.093*
C18	0.4727 (2)	-0.1763 (4)	0.3289 (2)	0.103 (2)
H18A	0.4437	-0.1607	0.2806	0.154*
H18B	0.4503	-0.1729	0.3630	0.154*
H18C	0.4874	-0.2323	0.3276	0.154*
C19	0.7094 (2)	-0.1301(2)	0.4042 (2)	0.0580 (10)
H19A	0.7409	-0.1004	0.4438	0.087*
H19B	0.7186	-0.1226	0.3599	0.087*
H19C	0.7114	-0.1882	0.4161	0.087*
P1	0.81175 (3)	0.06515 (4)	0.66858 (4)	0.02367 (15)
C21	0.87363 (12)	0.06917 (17)	0.62890 (15)	0.0266 (6)
C22	0.86519(13)	0.12488 (17)	0.57297 (15)	0.0280 (6)
C23	0.91411 (14)	0.1368 (2)	0.54681 (17)	0.0372 (7)
H23	0.9092	0.1761	0.5101	0.045*
C25	0.97763 (15)	0.0365 (2)	0.62788 (19)	0.0442 (8)
H25	1.0156	0.0054	0.6460	0.053*
C24	0.96986 (15)	0.0922 (2)	0.57349 (19)	0.0469 (8)
H24	1.0025	0.1000	0.5544	0.056*
C26	0.93032 (14)	0.02579 (19)	0.65620(17)	0.0358(7)
H26	0.9366	-0.0116	0.6947	0.043*
C31	0.82793 (14)	0.16048 (16)	0.72018 (14)	0.0280 (6)
C32	0.88838 (17)	0.1950 (2)	0.74234 (18)	0.0454 (8)
H32	0.9211	0.1686	0.7309	0.055*
C33	0.9013 (2)	0.2668 (2)	0.7806 (2)	0.0579 (10)
H33	0.9428	0.2896	0.7958	0.069*
C34	0.8540(2)	0.3057(2)	0.79685 (19)	0.0555(10)
H34	0.8626	0.3559	0.8224	0.067*
C35	0.79473 (19)	0.2724(2)	0.77632 (18)	0.0523 (9)
H35	0.7624	0.2993	0.7881	0.063*
C36	0.78110 (16)	0.19921 (19)	0.73826 (16)	0.0388 (7)
H36	0.7399	0.1760	0.7248	0.047*
C41	0.83938 (13)	-0.01377(17)	0.73767 (16)	0.0294 (6)
C42	0.85110 (14)	-0.09220(18)	0.71899 (18)	0.0381 (7)
H42	0.8445	-0.1047	0.6701	0.046*
C43	0.87236 (15)	-0.1522(2)	0.7712(2)	0.0453 (8)
H43	0.8802	-0.2057	0.7581	0.054*

C44	0.88213 (15)	-0.1345 (2)	0.8424 (2)	0.0479 (9)	
H44	0.8973	-0.1756	0.8782	0.057*	
C45	0.87005 (15)	-0.0579 (2)	0.86169 (18)	0.0440 (8)	
H45	0.8765	-0.0460	0.9107	0.053*	
C46	0.84819 (14)	0.0031 (2)	0.80915 (17)	0.0352 (7)	
H46	0.8394	0.0560	0.8225	0.042*	
C51	0.8875 (3)	-0.2190 (4)	0.4700 (3)	0.1036 (19)	
H51B	0.8585	-0.2558	0.4830	0.124*	
H51A	0.8671	-0.2054	0.4182	0.124*	
Cl12	0.89756 (8)	-0.12965 (10)	0.52043 (9)	0.1097 (5)	
Cl11	0.95810 (9)	-0.27001 (8)	0.48306 (7)	0.0993 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
Ru1	0.02264 (11)	0.02248 (11)	0.02245 (12)	-0.00064 (8)	0.00778 (9)	0.00257 (8)
C11	0.0356 (4)	0.0259 (3)	0.0350 (4)	0.0041 (3)	0.0161 (3)	0.0041 (3)
Cl2	0.0377 (4)	0.0426 (4)	0.0292 (4)	-0.0005 (3)	0.0158 (3)	0.0074 (3)
C1	0.0334 (15)	0.0323 (16)	0.0241 (15)	-0.0065 (12)	0.0069 (12)	0.0018 (12)
01	0.0576 (15)	0.0300 (12)	0.0451 (14)	0.0001 (10)	0.0099 (12)	-0.0012 (10)
C2	0.0309 (16)	0.0417 (17)	0.0277 (16)	-0.0002 (13)	0.0094 (13)	0.0029 (13)
O2	0.0288 (13)	0.096 (2)	0.0461 (15)	-0.0127 (13)	0.0087 (11)	0.0031 (14)
C3	0.0234 (13)	0.0207 (12)	0.0259 (14)	0.0016 (10)	0.0089 (11)	0.0030 (10)
N4	0.0280 (12)	0.0290 (12)	0.0216 (12)	-0.0029 (10)	0.0074 (10)	-0.0017 (9)
C5	0.0377 (16)	0.0375 (16)	0.0241 (15)	-0.0016 (13)	0.0125 (13)	0.0006 (12)
C6	0.0351 (15)	0.0328 (15)	0.0253 (14)	-0.0002 (12)	0.0156 (12)	0.0035 (12)
N7	0.0271 (11)	0.0227 (11)	0.0233 (12)	-0.0012 (9)	0.0094 (9)	0.0001 (9)
C8	0.0311 (14)	0.0266 (13)	0.0260 (14)	-0.0046 (11)	0.0119 (12)	-0.0007 (11)
C11	0.0314 (15)	0.0433 (17)	0.0218 (14)	-0.0114 (13)	0.0066 (12)	-0.0024 (12)
C12	0.0356 (17)	0.074 (2)	0.0263 (16)	-0.0062 (17)	0.0067 (14)	0.0025 (16)
C13	0.0363 (19)	0.111 (4)	0.0307 (19)	-0.022 (2)	0.0034 (15)	-0.002 (2)
C14	0.059 (3)	0.106 (4)	0.0304 (19)	-0.047 (3)	0.0138 (18)	-0.014 (2)
C15	0.092 (3)	0.052 (2)	0.040 (2)	-0.037 (2)	0.028 (2)	-0.0159 (17)
C16	0.057 (2)	0.0421 (18)	0.0282 (16)	-0.0172 (16)	0.0176 (15)	-0.0090 (13)
C17	0.049 (2)	0.078 (3)	0.053 (2)	0.025 (2)	0.0124 (19)	0.018 (2)
C18	0.090 (4)	0.160 (5)	0.053 (3)	-0.092 (4)	0.019 (3)	-0.020 (3)
C19	0.084 (3)	0.0394 (19)	0.061 (2)	0.0014 (19)	0.038 (2)	-0.0089 (17)
P1	0.0234 (3)	0.0244 (3)	0.0224 (3)	0.0005 (3)	0.0072 (3)	0.0008 (3)
C21	0.0225 (13)	0.0288 (13)	0.0284 (14)	-0.0017 (11)	0.0091 (11)	-0.0027 (11)
C22	0.0267 (14)	0.0310 (14)	0.0264 (14)	-0.0073 (11)	0.0095 (12)	-0.0070 (11)
C23	0.0326 (16)	0.0475 (18)	0.0337 (17)	-0.0091 (13)	0.0144 (14)	-0.0021 (14)
C25	0.0243 (15)	0.059 (2)	0.048 (2)	0.0048 (14)	0.0111 (14)	-0.0013 (16)
C24	0.0290 (16)	0.069 (2)	0.048 (2)	-0.0061 (16)	0.0198 (15)	-0.0029 (18)
C26	0.0287 (15)	0.0429 (17)	0.0345 (17)	0.0016 (13)	0.0098 (13)	0.0002 (13)
C31	0.0356 (15)	0.0262 (14)	0.0198 (13)	-0.0006 (11)	0.0071 (12)	0.0006 (11)
C32	0.049 (2)	0.0439 (19)	0.044 (2)	-0.0121 (16)	0.0175 (16)	-0.0131 (15)
C33	0.070 (3)	0.052 (2)	0.052 (2)	-0.030 (2)	0.022 (2)	-0.0216 (18)
C34	0.089 (3)	0.0314 (17)	0.0350 (19)	-0.0025 (18)	0.008 (2)	-0.0074 (14)

supporting information

C35	0.066 (2)	0.048 (2)	0.0330 (18)	0.0184 (18)	0.0063 (17)	-0.0109 (15)
C36	0.0393 (17)	0.0433 (18)	0.0292 (16)	0.0057 (14)	0.0067 (14)	-0.0062 (13)
C41	0.0200 (13)	0.0308 (14)	0.0340 (16)	0.0006 (11)	0.0056 (12)	0.0060 (12)
C42	0.0335 (16)	0.0335 (16)	0.0408 (18)	0.0033 (13)	0.0056 (14)	0.0076 (13)
C43	0.0368 (18)	0.0343 (17)	0.057 (2)	0.0075 (14)	0.0080 (16)	0.0144 (15)
C44	0.0339 (17)	0.050 (2)	0.057 (2)	0.0072 (15)	0.0137 (16)	0.0301 (17)
C45	0.0353 (17)	0.060 (2)	0.0353 (18)	-0.0006 (15)	0.0111 (14)	0.0189 (16)
C46	0.0306 (15)	0.0409 (17)	0.0345 (17)	-0.0001 (13)	0.0121 (13)	0.0073 (13)
C51	0.110 (5)	0.108 (4)	0.095 (4)	-0.045 (4)	0.038 (4)	-0.044 (3)
Cl12	0.1207 (12)	0.1043 (11)	0.1156 (12)	-0.0406 (9)	0.0562 (10)	-0.0495 (9)
Cl11	0.1521 (14)	0.0775 (8)	0.0702 (8)	-0.0089 (9)	0.0423 (9)	0.0073 (6)

Geometric parameters (Å, °)

Ru1—C1	1.849 (3)	P1—C41	1.826 (3)
Ru1—C2	1.934 (3)	P1—C21	1.832 (3)
Ru1—C3	2.071 (3)	P1—C31	1.833 (3)
Ru1—P1	2.4325 (8)	C21—C26	1.392 (4)
Ru1—Cl1	2.4515 (7)	C21—C22	1.398 (4)
Ru1—Cl2	2.4529 (8)	C22—C23	1.391 (4)
C101	1.135 (4)	C23—C24	1.384 (5)
C2—O2	1.123 (4)	C23—H23	0.9500
C3—N7	1.360 (3)	C25—C24	1.377 (5)
C3—N4	1.368 (3)	C25—C26	1.383 (4)
N4—C5	1.390 (4)	C25—H25	0.9500
N4—C11	1.438 (4)	C24—H24	0.9500
C5—C6	1.336 (4)	C26—H26	0.9500
С5—Н5	0.9500	C31—C36	1.385 (4)
C6—N7	1.380 (3)	C31—C32	1.393 (4)
С6—Н6	0.9500	C32—C33	1.376 (5)
N7—C8	1.467 (3)	C32—H32	0.9500
C8—C22	1.510 (4)	C33—C34	1.376 (6)
C8—H8A	0.9900	С33—Н33	0.9500
C8—H8B	0.9900	C34—C35	1.363 (6)
C11—C16	1.380 (5)	C34—H34	0.9500
C11—C12	1.408 (5)	C35—C36	1.393 (4)
C12—C13	1.386 (5)	С35—Н35	0.9500
C12—C17	1.503 (5)	С36—Н36	0.9500
C13—C14	1.376 (6)	C41—C46	1.388 (4)
С13—Н13	0.9500	C41—C42	1.390 (4)
C14—C15	1.385 (6)	C42—C43	1.385 (4)
C14—C18	1.522 (5)	C42—H42	0.9500
C15—C16	1.407 (5)	C43—C44	1.381 (5)
С15—Н15	0.9500	C43—H43	0.9500
C16—C19	1.498 (5)	C44—C45	1.369 (5)
С17—Н17А	0.9800	C44—H44	0.9500
С17—Н17В	0.9800	C45—C46	1.401 (4)
С17—Н17С	0.9800	C45—H45	0.9500

supporting information

C18—H18A	0.9800	C46—H46	0.9500
C18—H18B	0.9800	C51—Cl11	1.733 (6)
C18—H18C	0.9800	C51—C112	1.744 (5)
C19—H19A	0.9800	C51—H51B	0.9900
C19—H19B	0.9800	C51—H51A	0.9900
С19—Н19С	0.9800		
C1—Ru1—C2	88.15 (13)	H19A—C19—H19B	109.5
C1—Ru1—C3	92.46 (11)	C16—C19—H19C	109.5
C2—Ru1—C3	97.13 (11)	H19A—C19—H19C	109.5
C1—Ru1—P1	89.86 (9)	H19B—C19—H19C	109.5
C2—Ru1—P1	165.93 (9)	C41—P1—C21	103.96 (13)
C3—Ru1—P1	96.87 (7)	C41—P1—C31	103.84 (13)
C1—Ru1—Cl1	172.69 (9)	C21—P1—C31	100.37 (13)
C2—Ru1—Cl1	85.46 (9)	C41—P1—Ru1	111.28 (9)
C3—Ru1—Cl1	84.81 (7)	C21—P1—Ru1	117.49 (9)
P1—Ru1—Cl1	97.20 (3)	C31—P1—Ru1	118.04 (9)
C1—Ru1—Cl2	93.92 (9)	C26—C21—C22	119.2 (3)
C2—Ru1—Cl2	82.72 (9)	C26—C21—P1	123.3 (2)
C3—Ru1—Cl2	173.60 (7)	C22—C21—P1	117.2 (2)
P1—Ru1—Cl2	83.52 (3)	C23—C22—C21	119.2 (3)
Cl1—Ru1—Cl2	88.80 (3)	C23—C22—C8	119.5 (3)
O1—C1—Ru1	175.8 (3)	C21—C22—C8	121.3 (2)
O2—C2—Ru1	168.0 (3)	C24—C23—C22	121.0 (3)
N7—C3—N4	103.4 (2)	C24—C23—H23	119.5
N7—C3—Ru1	126.86 (19)	С22—С23—Н23	119.5
N4—C3—Ru1	129.61 (19)	C24—C25—C26	120.2 (3)
C3—N4—C5	111.1 (2)	C24—C25—H25	119.9
C3—N4—C11	127.5 (2)	С26—С25—Н25	119.9
C5—N4—C11	121.0 (2)	C25—C24—C23	119.6 (3)
C6—C5—N4	106.7 (2)	C25—C24—H24	120.2
С6—С5—Н5	126.6	C23—C24—H24	120.2
N4—C5—H5	126.6	C25—C26—C21	120.7 (3)
C5—C6—N7	107.0 (2)	С25—С26—Н26	119.7
С5—С6—Н6	126.5	С21—С26—Н26	119.7
N7—C6—H6	126.5	C36—C31—C32	118.8 (3)
C3—N7—C6	111.7 (2)	C36—C31—P1	121.3 (2)
C3—N7—C8	126.5 (2)	C32—C31—P1	120.0 (2)
C6—N7—C8	121.7 (2)	C33—C32—C31	120.8 (3)
N7—C8—C22	110.8 (2)	С33—С32—Н32	119.6
N7—C8—H8A	109.5	C31—C32—H32	119.6
С22—С8—Н8А	109.5	C32—C33—C34	119.9 (4)
N7—C8—H8B	109.5	С32—С33—Н33	120.1
С22—С8—Н8В	109.5	С34—С33—Н33	120.1
H8A—C8—H8B	108.1	C35—C34—C33	120.1 (3)
C16—C11—C12	123.0 (3)	С35—С34—Н34	119.9
C16—C11—N4	119.6 (3)	С33—С34—Н34	119.9
C12—C11—N4	117.2 (3)	C34—C35—C36	120.7 (3)

C13—C12—C11	117.7 (4)	С34—С35—Н35	119.7
C13—C12—C17	120.6 (4)	С36—С35—Н35	119.7
C11—C12—C17	121.8 (3)	C31—C36—C35	119.7 (3)
C14—C13—C12	121.4 (4)	С31—С36—Н36	120.1
C14—C13—H13	119.3	С35—С36—Н36	120.1
C12—C13—H13	119.3	C46—C41—C42	119.0 (3)
C13—C14—C15	119.1 (3)	C46—C41—P1	120.8 (2)
C13-C14-C18	120.4(5)	C42-C41-P1	120.2 (2)
C15-C14-C18	120.4(5)	C43-C42-C41	120.2(2)
C14-C15-C16	122.2(4)	C43-C42-H42	119.8
C_{14} $-C_{15}$ $-H_{15}$	118.9	C41 - C42 - H42	119.8
C16—C15—H15	118.9	C44-C43-C42	120.1(3)
C_{11} $-C_{16}$ $-C_{15}$	116.4 (3)	C44 - C43 - H43	119.9
$C_{11} - C_{16} - C_{19}$	121.9(3)	C42 - C43 - H43	119.9
C_{15} C_{16} C_{19}	121.5(3) 121.5(3)	$C_{42} = C_{43} = 1143$	119.9
$C_{12} = C_{12} = C_{13} = C_{13}$	121.5 (5)	C45 C44 H44	120.5 (5)
C_{12} C_{17} H_{17} H_{17}	109.5	$C_{43} = C_{44} = 1144$	119.9
	109.5	C43 - C44 - H44	119.9
HI/A - CI/-HI/B	109.5	C44 - C45 - C46	120.0 (3)
	109.5	C44—C45—H45	120.0
HI/A—CI/—HI/C	109.5	C46-C45-H45	120.0
HI/B—CI/—HI/C	109.5	C41 - C46 - C45	120.2 (3)
CI4—CI8—HI8A	109.5	C41—C46—H46	119.9
C14—C18—H18B	109.5	C45—C46—H46	119.9
H18A—C18—H18B	109.5	Cl11—C51—Cl12	113.4 (3)
C14—C18—H18C	109.5	Cl11—C51—H51B	108.9
H18A—C18—H18C	109.5	Cl12—C51—H51B	108.9
H18B—C18—H18C	109.5	Cl11—C51—H51A	108.9
C16—C19—H19A	109.5	C112—C51—H51A	108.9
C16—C19—H19B	109.5	H51B—C51—H51A	107.7
C1—Ru1—C2—O2	77.2 (14)	C3—Ru1—P1—C21	-17.66 (12)
C3—Ru1—C2—O2	169.5 (14)	Cl1—Ru1—P1—C21	-103.27 (10)
P1—Ru1—C2—O2	-4.8 (18)	Cl2—Ru1—P1—C21	168.76 (10)
Cl1—Ru1—C2—O2	-106.3 (14)	C1—Ru1—P1—C31	-164.73 (13)
Cl2—Ru1—C2—O2	-17.0 (14)	C2—Ru1—P1—C31	-82.9 (4)
C1—Ru1—C3—N7	-123.9 (2)	C3—Ru1—P1—C31	102.81 (12)
C2—Ru1—C3—N7	147.6 (2)	Cl1—Ru1—P1—C31	17.20 (10)
P1—Ru1—C3—N7	-33.8 (2)	Cl2—Ru1—P1—C31	-70.76 (10)
Cl1—Ru1—C3—N7	62.9 (2)	C41—P1—C21—C26	-6.8 (3)
C1—Ru1—C3—N4	61.6 (2)	C31—P1—C21—C26	100.4 (3)
C2—Ru1—C3—N4	-26.9(3)	Ru1—P1—C21—C26	-130.2 (2)
P1—Ru1—C3—N4	151.7 (2)	C41—P1—C21—C22	179.6 (2)
C11—Ru1—C3—N4	-111.6 (2)	C31—P1—C21—C22	-73.2 (2)
N7—C3—N4—C5	0.0 (3)	Ru1—P1—C21—C22	56.2 (2)
Ru1—C3—N4—C5	175.5 (2)	C26—C21—C22—C23	-1.2 (4)
N7—C3—N4—C11	-172.7 (3)	P1—C21—C22—C23	172.7 (2)
Ru1—C3—N4—C11	2.7 (4)	C26—C21—C22—C8	179.0 (3)
C3—N4—C5—C6	0.1 (3)	P1—C21—C22—C8	-7.1 (3)
	·· 、 、 · · /		

C11—N4—C5—C6	173.4 (3)	N7—C8—C22—C23	94.5 (3)
N4—C5—C6—N7	-0.2 (3)	N7—C8—C22—C21	-85.7 (3)
N4—C3—N7—C6	-0.1 (3)	C21—C22—C23—C24	2.4 (4)
Ru1—C3—N7—C6	-175.79 (19)	C8—C22—C23—C24	-177.8 (3)
N4—C3—N7—C8	-176.3 (2)	C26—C25—C24—C23	-0.7 (5)
Ru1—C3—N7—C8	8.1 (4)	C22—C23—C24—C25	-1.4 (5)
C5-C6-N7-C3	0.2 (3)	C24—C25—C26—C21	1.9 (5)
C5-C6-N7-C8	176.6 (2)	C22—C21—C26—C25	-0.9 (4)
C3—N7—C8—C22	83.6 (3)	P1-C21-C26-C25	-174.4 (2)
C6—N7—C8—C22	-92.2 (3)	C41—P1—C31—C36	-96.4 (3)
C3—N4—C11—C16	-97.6 (3)	C21—P1—C31—C36	156.2 (2)
C5—N4—C11—C16	90.3 (3)	Ru1—P1—C31—C36	27.3 (3)
C3—N4—C11—C12	87.2 (4)	C41—P1—C31—C32	83.2 (3)
C5—N4—C11—C12	-84.9 (3)	C21—P1—C31—C32	-24.1 (3)
C16—C11—C12—C13	4.1 (5)	Ru1—P1—C31—C32	-153.1 (2)
N4—C11—C12—C13	179.1 (3)	C36—C31—C32—C33	-0.9 (5)
C16—C11—C12—C17	-176.7 (3)	P1-C31-C32-C33	179.5 (3)
N4—C11—C12—C17	-1.7 (4)	C31—C32—C33—C34	-0.6 (6)
C11—C12—C13—C14	-0.2 (5)	C32—C33—C34—C35	1.3 (6)
C17—C12—C13—C14	-179.4 (4)	C33—C34—C35—C36	-0.6 (6)
C12—C13—C14—C15	-2.8 (6)	C32—C31—C36—C35	1.6 (5)
C12—C13—C14—C18	177.9 (3)	P1-C31-C36-C35	-178.8 (2)
C13—C14—C15—C16	2.1 (6)	C34—C35—C36—C31	-0.9 (5)
C18—C14—C15—C16	-178.6 (3)	C21—P1—C41—C46	123.2 (2)
C12—C11—C16—C15	-4.7 (5)	C31—P1—C41—C46	18.6 (3)
N4—C11—C16—C15	-179.6 (3)	Ru1—P1—C41—C46	-109.4 (2)
C12—C11—C16—C19	171.0 (3)	C21—P1—C41—C42	-57.6 (3)
N4—C11—C16—C19	-3.9 (4)	C31—P1—C41—C42	-162.3 (2)
C14—C15—C16—C11	1.5 (5)	Ru1—P1—C41—C42	69.8 (2)
C14—C15—C16—C19	-174.2 (3)	C46—C41—C42—C43	-1.2 (4)
C1—Ru1—P1—C41	-44.83 (14)	P1-C41-C42-C43	179.7 (2)
C2—Ru1—P1—C41	37.0 (4)	C41—C42—C43—C44	-0.1 (5)
C3—Ru1—P1—C41	-137.30 (13)	C42—C43—C44—C45	0.9 (5)
Cl1—Ru1—P1—C41	137.09 (11)	C43—C44—C45—C46	-0.5 (5)
Cl2—Ru1—P1—C41	49.13 (11)	C42—C41—C46—C45	1.5 (4)
C1—Ru1—P1—C21	74.80 (14)	P1-C41-C46-C45	-179.3 (2)
C2—Ru1—P1—C21	156.6 (4)	C44—C45—C46—C41	-0.7 (5)