Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Acetyl-1-(2,5-dimethylphenyl)thiourea

B. Thimme Gowda, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and Sharatha Kumar ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 27 June 2012; accepted 28 June 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.036 ; w R$ factor $=0.101$; data-to-parameter ratio $=16.2$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$, the thioamide $\mathrm{C}=\mathrm{S}$ and amide $\mathrm{C}=\mathrm{O}$ bonds are anti to each other; the $\mathrm{N}-\mathrm{H}$ bonds are also anti to each other. The molecular conformation is stabilized by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In the crystal, the molecules are linked into inversion dimers by pairs of $\mathrm{N}-$ H.. S hydrogen bonds.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2001); Kumar et al. (2012); Shahwar et al. (2012), of N-(aryl)methanesulfonamides, see: Gowda et al. (2007) and of N chloroarylsulfonamides, see: Gowda \& Ramachandra (1989); Shetty \& Gowda (2004).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$
$\gamma=93.037(4)^{\circ}$
$M_{r}=222.30$
Triclinic, $P \overline{1}$
$a=5.0312(2) \AA$
$b=10.9329$ (6) A
$c=11.0568$ (7) \AA
$\alpha=105.711(5)^{\circ}$
$\beta=100.020(5)^{\circ}$

Data collection
Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.101$
$S=1.05$ independent and constrained refinement
2344 reflections
145 parameters
2 restraints

Diffraction, 2009)
$T_{\text {min }}=0.899, T_{\text {max }}=0.950$
3641 measured reflections
2344 independent reflections 2068 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.007$
$\Delta \rho_{\text {max }}=0.23$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.85(2)$	$1.94(2)$	$2.6382(19)$	$139(2)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.85(2)$	$2.55(2)$	$3.3904(15)$	$169(2)$

Symmetry code: (i) $-x+1,-y+2,-z$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGCBSR one-time grant to faculty.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5960).

References

Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2597.
Gowda, B. T., Paulus, H. \& Fuess, H. (2001). Z. Naturforsch. Teil A, 56, 386394.

Gowda, B. T. \& Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067-1071.
Kumar, S., Foro, S. \& Gowda, B. T. (2012). Acta Cryst. E68, o2191.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. \& Raza, M. A. (2012). Acta Cryst. E68, o1160.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shetty, M. \& Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2338 [https://doi.org/10.1107/S1600536812029601]

3-Acetyl-1-(2,5-dimethylphenyl)thiourea

B. Thimme Gowda, Sabine Foro and Sharatha Kumar

S1. Comment

Thiourea and its derivatives are known to exhibit a wide variety of biological activities. As part of studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2001; Kumar et al., 2012: Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylsulfonamides (Gowda \& Ramachandra, 1989; Shetty \& Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(2,5-dimethylphenyl)thiourea has been determined (Fig. 1).
The conformation of the two $\mathrm{N}-\mathrm{H}$ bonds are anti to each other. Furthermore, the conformations of the amide $\mathrm{C}=\mathrm{S}$ and the $\mathrm{C}=\mathrm{O}$ are also anti to each other and both the bonds are anti to the adjacent $\mathrm{N}-\mathrm{H}$ bonds, similar to the anti conformation observed in 3-acetyl-1-(2,3-dimethylphenyl)thiourea (I)(Kumar et al., 2012). The adjacent $\mathrm{N} — \mathrm{H}$ bond is syn to the ortho-methyl group, compared to the anti conformation observed with respect to the ortho- and meta-methyl groups in the benzene ring of (I).
The side chain is oriented itself with respect to the phenyl ring with the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ torsion angles of $83.44(22)^{\circ}$ and $-100.65(1 / 5)^{\circ}$, compared to the corresponding values of $83.59(47)^{\circ}$ and $-99.89(44)^{\circ}$ in (I). The dihedral angle between the phenyl ring and the side chain is $79.0(4)^{\circ}$, compared to the value of $81.33(10)^{\circ}$ in (I). The hydrogen atom of the NH attached to the phenyl ring and the amide oxygen are involved in intramolecular hydrogen bonding. In the crystal, the molecules form inversion type dimers through $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds (Table 1, Fig.2).

S2. Experimental

3-Acetyl-1-(2,5-dimethylphenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone $(30 \mathrm{ml})$ dropwise to a suspension of ammonium thiocyanate $(0.10 \mathrm{~mol})$ in acetone $(30 \mathrm{ml})$. The reaction mixture was refluxed for 30 min . After cooling to room temperature, a solution of 2,5-dimethylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h . The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum.
Prism like colourless single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

S3. Refinement

All H atoms bonded to C were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined using a riding model with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})(1.5$ for methyl H atoms) and with aromatic C- $\mathrm{H}=0.93 \AA$ and methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$. The amino H atoms were refined isotropically with the $\mathrm{N}-\mathrm{H}$ distances restrained to 0.86 (2) \AA.

To improve values of R1, wR2, and GOOF one bad reflection ($\left.-1 \begin{array}{lll}-1 & 3 & 3\end{array}\right)$ was omitted from the refinement.

Figure 1
Molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Figure 2
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

3-Acetyl-1-(2,5-dimethylphenyl)thiourea

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=222.30$
Triclinic, $P 1$
Hall symbol: -P 1

$$
\begin{aligned}
& a=5.0312(2) \AA \\
& b=10.9329(6) \AA \\
& c=11.0568(7) \AA \\
& \alpha=105.711(5)^{\circ}
\end{aligned}
$$

$\beta=100.020(5)^{\circ}$
$\gamma=93.037(4)^{\circ}$
$V=573.31(6) \AA^{3}$
$Z=2$
$F(000)=236$
$D_{\mathrm{x}}=1.288 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Radiation source: fine-focus sealed tube
Graphite monochromator
Rotation method data acquisition using ω and phi scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\min }=0.899, T_{\text {max }}=0.950$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.101$
$S=1.05$
2344 reflections
145 parameters
2 restraints
Primary atom site location: structure-invariant
direct methods

Cell parameters from 2369 reflections
$\theta=3.1-27.7^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.42 \times 0.38 \times 0.20 \mathrm{~mm}$

3641 measured reflections
2344 independent reflections
2068 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.007$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-5 \rightarrow 6$
$k=-11 \rightarrow 13$
$l=-13 \rightarrow 13$

```
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0459 P)^{2}+0.2328 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.23\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-0.20\) e \(\AA^{-3}\)
```


Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$0.6145(3)$	$0.73651(15)$	$0.28289(15)$	$0.0372(4)$
C2	$0.6492(3)$	$0.61308(15)$	$0.21687(15)$	$0.0377(4)$
C3	$0.5232(4)$	$0.51510(16)$	$0.25210(17)$	$0.0439(4)$
H3	0.5400	0.4308	0.2096	0.053^{*}
C4	$0.3747(4)$	$0.53925(17)$	$0.34786(17)$	$0.0458(4)$
H4	0.2947	0.4711	0.3688	0.055^{*}

C5	$0.3422(3)$	$0.66295(17)$	$0.41356(16)$	$0.0416(4)$
C6	$0.4659(3)$	$0.76177(16)$	$0.37962(16)$	$0.0412(4)$
H6	0.4489	0.8460	0.4223	0.049^{*}
C7	$0.6584(3)$	$0.89287(15)$	$0.16443(16)$	$0.0366(3)$
C8	$1.0446(4)$	$1.06364(16)$	$0.24317(18)$	$0.0442(4)$
C9	$1.1609(4)$	$1.17630(19)$	$0.2102(2)$	$0.0571(5)$
H9A	1.0190	1.2277	0.1915	0.069^{*}
H9B	1.2423	1.1473	0.1365	0.069^{*}
H9C	1.2962	1.2263	0.2813	0.069^{*}
C10	$0.8130(4)$	$0.58529(19)$	$0.11363(18)$	$0.0491(4)$
H10A	0.9914	0.6302	0.1463	0.059^{*}
H10B	0.7259	0.6127	0.0425	0.059^{*}
H10C	0.8268	0.4951	0.0859	0.059^{*}
C11	$0.1781(4)$	$0.6891(2)$	$0.5173(2)$	$0.0587(5)$
H11A	0.2316	0.6389	0.5748	0.070^{*}
H11B	-0.0111	0.6668	0.4797	0.070^{*}
H11C	0.2089	0.7781	0.5638	0.0430^{*}
N1	$0.7489(3)$	$0.84398(14)$	$0.25857(15)$	0.053^{*}
H1N	$0.895(3)$	$0.8817(18)$	$0.3093(18)$	$0.0401(3)$
N2	$0.8099(3)$	$1.00118(13)$	$0.16102(15)$	0.048^{*}
H2N	$0.751(4)$	$1.0323(18)$	$0.1002(17)$	$0.0603(4)$
O1	$1.1487(3)$	$1.03056(13)$	$0.33502(14)$	$0.04690(16)$
S1	$0.37879(9)$	$0.83331(4)$	$0.05301(4)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0373(8)$	$0.0377(8)$	$0.0365(8)$	$0.0001(6)$	$-0.0019(6)$	$0.0171(7)$
C2	$0.0372(8)$	$0.0410(9)$	$0.0350(8)$	$0.0040(7)$	$0.0017(6)$	$0.0144(7)$
C3	$0.0538(10)$	$0.0346(8)$	$0.0432(9)$	$0.0047(7)$	$0.0056(8)$	$0.0130(7)$
C4	$0.0507(10)$	$0.0440(9)$	$0.0473(10)$	$-0.0005(8)$	$0.0075(8)$	$0.0229(8)$
C5	$0.0399(9)$	$0.0522(10)$	$0.0353(8)$	$0.0072(7)$	$0.0031(7)$	$0.0189(7)$
C6	$0.0457(9)$	$0.0378(8)$	$0.0376(9)$	$0.0091(7)$	$0.0003(7)$	$0.0105(7)$
C7	$0.0362(8)$	$0.0345(8)$	$0.0414(9)$	$0.0029(6)$	$0.0082(7)$	$0.0143(7)$
C8	$0.0419(9)$	$0.0344(8)$	$0.0515(10)$	$-0.0002(7)$	$0.0051(8)$	$0.0077(7)$
C9	$0.0523(11)$	$0.0441(10)$	$0.0693(13)$	$-0.0127(8)$	$0.0051(9)$	$0.0144(9)$
C10	$0.0482(10)$	$0.0552(11)$	$0.0459(10)$	$0.0076(8)$	$0.0112(8)$	$0.0161(8)$
C11	$0.0547(11)$	$0.0795(14)$	$0.0489(11)$	$0.0162(10)$	$0.0157(9)$	$0.0248(10)$
N1	$0.0429(8)$	$0.0393(8)$	$0.0466(8)$	$-0.0065(6)$	$-0.0055(6)$	$0.0191(6)$
N2	$0.0376(7)$	$0.0360(7)$	$0.0477(8)$	$-0.0014(6)$	$0.0024(6)$	$0.0183(6)$
O1	$0.0610(8)$	$0.0489(8)$	$0.0598(9)$	$-0.0096(6)$	$-0.0144(7)$	$0.0165(6)$
S1	$0.0406(2)$	$0.0483(3)$	$0.0527(3)$	$-0.00880(18)$	$-0.00441(19)$	$0.0269(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.385(2)$	$\mathrm{C} 8-\mathrm{O} 1$	$1.213(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.386(2)$	$\mathrm{C} 8-\mathrm{N} 2$	$1.375(2)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.436(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.495(2)$

C2-C3	1.393 (2)
C2-C10	1.497 (2)
C3-C4	1.376 (3)
C3-H3	0.9300
C4-C5	1.384 (3)
C4-H4	0.9300
C5-C6	1.388 (2)
C5-C11	1.502 (3)
C6-H6	0.9300
C7-N1	1.319 (2)
C7-N2	1.387 (2)
C7-S1	1.6692 (17)
C6- $\mathrm{C} 1-\mathrm{C} 2$	122.16 (15)
C6- $\mathrm{C} 1-\mathrm{N} 1$	117.34 (15)
C2- $\mathrm{C} 1-\mathrm{N} 1$	120.37 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	116.24 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	122.39 (15)
C3-C2-C10	121.37 (16)
C4-C3-C2	122.01 (16)
C4-C3-H3	119.0
C2-C3-H3	119.0
C3-C4-C5	121.29 (16)
C3-C4-H4	119.4
C5-C4-H4	119.4
C4-C5-C6	117.50 (16)
C4-C5-C11	121.20 (17)
C6-C5-C11	121.31 (17)
C1-C6-C5	120.80 (15)
C1-C6-H6	119.6
C5-C6-H6	119.6
N1-C7-N2	116.17 (15)
N1-C7-S1	124.34 (12)
N2-C7-S1	119.49 (12)
O1-C8-N2	122.97 (16)
O1-C8-C9	122.62 (17)
N2-C8-C9	114.41 (16)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.7 (2)
N1-C1-C2-C3	176.46 (14)
C6-C1-C2-C10	-179.04 (16)
N1-C1-C2-C10	-3.3 (2)
C1-C2-C3-C4	-0.6 (3)
C10-C2-C3-C4	179.20 (17)
C2-C3-C4-C5	0.4 (3)
C3-C4-C5-C6	-0.3 (3)
C3-C4-C5-C11	179.49 (17)
C2- $21-\mathrm{C} 6-\mathrm{C} 5$	-0.7 (2)

C9—H9A	0.9600
C9—H9B	0.9600
C9—H9C	0.9600
C10-H10A	0.9600
C10-H10B	0.9600
C10-H10C	0.9600
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
N1—H1N	$0.852(15)$
N2—H2N	$0.849(15)$

109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
124.80 (14)
116.3 (14)
118.9 (14)
128.05 (15)
116.1 (14)
115.9 (14)
0.4 (2)
-179.34 (16)
176.57 (15)
-3.1 (3)
-100.6 (2)
83.4 (2)
-1.7 (3)
178.47 (17)
0.6 (3)
-179.70 (14)

supporting information

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$ -176.52 (14)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 1$	$0.85(2)$	$1.94(2)$	$2.6382(19)$	$139(2)$
$\mathrm{N} 2 — \mathrm{H} 2 N \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.85(2)$	$2.55(2)$	$3.3904(15)$	$169(2)$

Symmetry code: (i) $-x+1,-y+2,-z$.

