Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Dinitrosoimidazolidine

Augusto Rivera, ${ }^{\text {a* }}$ Diego Quiroga, ${ }^{\text {a }}$ Jaime Ríos-Motta, ${ }^{\text {a }}$ Michal Dušek ${ }^{b}$ and Karla Fejfarováb ${ }^{\text {b }}$
${ }^{a}$ Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and ${ }^{\text {b }}$ Institute of Physics ASCR, v.v.i., Na Slovance 2, 18221 Praha 8, Czech Republic
Correspondence e-mail: ariverau@unal.edu.co

Received 22 June 2012; accepted 5 July 2012
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{N})=0.009 \AA$; disorder in main residue; R factor $=0.039 ; w R$ factor $=0.126$; data-to-parameter ratio $=6.0$.

The title compound, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$, exhibits partial disorder with the refined occupancy ratios of the two components being 0.582 (5):0.418 (5). In the major component, the nitroso groups have a relative syn spatial arrangement $\left[\mathrm{O}=\mathrm{N} \cdots \mathrm{N}=\mathrm{O}\right.$ pseudo-torsion angle $\left.=1.1(4)^{\circ}\right]$, whereas the other component has an anti disposition [177.6 (1) ${ }^{\circ}$]. The $\mathrm{N}-\mathrm{N}=\mathrm{O}$ moieties are almost coplanar with a dihedral angle of $5.3(3)^{\circ}$, while in the minor occupied set of atoms, this angle is $8(1)^{\circ}$. In both components, the imidazolidine ring adopts a twisted conformation on the $\mathrm{C}-\mathrm{C}$ bond and the crystal structure shows the strain of this ring according to the N -$\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}$ torsion angles [25.9 (5) and -23.8 (7) ${ }^{\circ}$]. In the crystal, molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For a related structure, see: Rivera et al. (2011). For the synthesis of the title compound, see: Rivera et al. (1997). For ring conformations, see Cremer \& Pople (1975). For chemical background on the synthesis and uses of N-nitroso amines, see: Di Salvo et al. (2008).

Experimental

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}$	$a=9.5154(2) \AA$
$M_{r}=130.1$	$b=5.4338(1) \AA$
Orthorhombic, Pna2	A
	$c=10.7104(2) \AA$

$a=9.5154$ (2) \AA
$M_{r}=130.1$
Orthorhombic, $\mathrm{Pna2}_{1}$
$c=10.7104(2) \AA$

$V=553.78(2) \AA^{3}$	$\mu=1.14 \mathrm{~mm}^{-1}$
$Z=4$	$T=120 \mathrm{~K}$
$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation	$0.39 \times 0.20 \times 0.14 \mathrm{~mm}$
Data collection	
Agilent Xcalibur diffractometer	5160 measured reflections
\quad with an Atlas (Gemini Ultra Cu$)$	522 independent reflections
\quad detector	514 reflections with $I>3 \sigma(I)$
Absorption correction: multi-scan	$R_{\mathrm{int}}=0.031$
$\quad(C r y s$ Alis $P R O ;$ Agilent, 2010)	
$\quad T_{\min }=0.636, T_{\max }=1$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 87$ parameters
$w R\left(F^{2}\right)=0.126$
$S=2.86$
522 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.12 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 y-\mathrm{H} 3 y a \cdots \mathrm{O} 1 y^{\mathrm{i}}$	0.96	1.85	$2.681(12)$	143
Symmetry code: (i) $x, y+1, z$				

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petríček et al., 2006); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: JANA2006.

The authors acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (grant No. 13066) and the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences of the Czech Republic. DQ acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5956).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact, Bonn, Germany.
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Di Salvo, F., Estrin, D. A., Leitus, G. \& Doctorovich, F. (2008). Organometallics, 27, 1985-1995.
Petříček, V., Dušek, M. \& Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
Rivera, A., Gallo, G. I. \& Joseph-Nathan, P. (1997). Synth. Commun. 27, $163-$ 168.

Rivera, A., Quiroga, D., Ríos-Motta, J., Fejfarová, K. \& Dušek, M. (2011). Acta Cryst. C67, o505-o508.

supporting information

Acta Cryst. (2012). E68, o2440 [https://doi.org/10.1107/S1600536812030796]

1,3-Dinitrosoimidazolidine

Augusto Rivera, Diego Quiroga, Jaime Ríos-Motta, Michal Dušek and Karla Fejfarová

S1. Comment

N-nitrosamines are interesting molecules due their strong carcinogenic and mutagenic properties and their utility as synthetic intermediates for the preparation of various N, N-bonded functionalities (Di Salvo et al., 2008). Our group has previously explored the reaction of nitrous acid with cyclic aminals which actually are tertiary amines (Rivera et al., 1997, 2011). Earlier we reported the synthesis and complete characterization by NMR of the title compound 1,3-dinitrosoimidazolidine, obtained by the nitrosation reaction of the cyclic aminal 1,3,6,8-tetraazatricyclo[4.4.1.1., ${ }^{3,8}$]dodecane (Rivera et al., 1997). NMR experiments of this compound evidenced the existence of a mixture of three isomers: syn-cis, anti, and cis-trans with a ratio of 31:50:19 respectively (Rivera, et al. 1997). However, a recently investigation of (3aRS,7aRS)-1,3-dinitrosooctahydro-1 H -benzimidazole, we found that the nitroso groups of this analogous X-ray crystal structure are on a syn-cis disposition (Rivera, et al. 2011). This result suggests that the orientation of the nitroso groups on the imidazolidine ring is largely influenced by their molecular skeletons. To identify the orientation of nitroso groups, we synthesized the title compound and investigated its crystal structure.
X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths $\mathrm{N}-\mathrm{C} 1$ and $\mathrm{N}-\mathrm{NO}$ are normal and comparable to the corresponding values observed in the related structure (Rivera, et al. 2011). The title compound are disordered over two sets of sites [site occupancies $=0.588(6)$ and 0.412 (6)]. In both components, the $\mathrm{N}-\mathrm{N}=\mathrm{O}$ moieties are almost coplanar showing dihedral angles of $5.277(340)^{\circ}$ for the major component and $7.81(97)^{\circ}$ for the minor. The nitroso substituents in the major component are on a syn spatial arrangement as can be seen from $\mathrm{O} 1 \mathrm{x}=\mathrm{N} 3 \mathrm{x} \cdots \mathrm{N} 4=\mathrm{O} 2$ pseudo torsion angle of $=1.119(410)^{\circ}$, whereas the other component have an anti disposition [pseudo torsion angle $\mathrm{O} 1 \mathrm{y}=\mathrm{N} 3 \mathrm{y} \cdots \mathrm{N} 4=\mathrm{O} 2=177.662$ (129) ${ }^{\circ}$] (Figure 2). Both imidazole ring system are twisted on $\mathrm{CH}_{2} \mathrm{CH}_{2}$ fragment as seen in the puckering parameters $\mathrm{Q}(2)=0.255(5) \AA$ and $\varphi 2=$ $122.7(12)^{\circ}$ for major component and $\mathrm{Q}(2)=0.236$ (8) \AA and $\varphi 2=90.9(16)^{\circ}$ for minor component (Cremer \& Pople, 1975). The crystal structure shows the strain of this ring according to the $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ torsion angles [$\mathrm{N} 1 \mathrm{xC} 2 \mathrm{xC} 3 \mathrm{xN} 2 \mathrm{x}=$ $25.874(534)^{\circ}$ and $\left.\mathrm{N} 1 \mathrm{yC} 2 \mathrm{yC} 3 \mathrm{yN} 2 \mathrm{y}=-23.808(735)^{\circ}\right]$.

The crystal packing displays a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}[\mathrm{C} \cdots \mathrm{O}=2.681$ (12) \AA] non-conventional hydrogen bonding interactions between oxygen atoms in the nitroso moiety and hydrogen atoms in methylene carbons of the heterocyclic ring (Figure 3).

S2. Experimental

For the originally reported synthesis, see: Rivera et al. (1997). Single crystals of the title compound were obtained by recrystallization from EtOH solution (m.p 318 K).

S3. Refinement

All hydrogen atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were set to $1.2 \times U_{\text {eq }}$ of the parent atom.
The molecule is disordered over two positions with occupancies 0.588 (6):0.412 (6). Selected atoms of both components were refined isotropically as anisotropic refinement lead to unreasonable ADPs.
As the structure contains only light atoms, the Friedel-pairs were merged and the Flack parameter has not been determined.

Figure 1
A view of the title compound with the numbering scheme. Only the major disordered component is shown. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Overlapped structures of disordered components, showing structural differences.

Figure 3
The packing of the title compound, viewed along the a axis. The dashed lines indicate the hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.

1,3-Dinitrosoimidazolidine

Crystal data
$\begin{array}{ll}\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2} & \text { Orthorhombic, Pna2 }{ }_{1} \\ M_{r}=130.1 & \text { Hall symbol: P 2c }-2 \mathrm{n}\end{array}$
$a=9.5154$ (2) \AA
$b=5.4338$ (1) \AA
$c=10.7104$ (2) \AA
$V=553.78$ (2) \AA^{3}
$Z=4$
$F(000)=272$
$D_{\mathrm{x}}=1.56 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Agilent Xcalibur
diffractometer with an Atlas (Gemini Ultra Cu) detector
Radiation source: Enhance Ultra (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.3784 pixels mm^{-1}
Rotation method data acquisition using ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)

Refinement

Refinement on F^{2}

$R[F>3 \sigma(F)]=0.039$
$w R(F)=0.126$
$S=2.86$
522 reflections
87 parameters
0 restraints
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.5418 \AA$
Cell parameters from 4445 reflections
$\theta=4.1-66.8^{\circ}$
$\mu=1.14 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Prism, colourless
$0.39 \times 0.20 \times 0.14 \mathrm{~mm}$
$T_{\text {min }}=0.636, T_{\text {max }}=1$
5160 measured reflections
522 independent reflections
514 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=67.0^{\circ}, \theta_{\text {min }}=9.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-6 \rightarrow 6$
$l=-12 \rightarrow 12$

86 constraints

H -atom parameters constrained
Weighting scheme based on measured s.u.'s $w=$ $1 /\left(\sigma^{2}(I)+0.0016 I^{2}\right)$
$(\Delta / \sigma)_{\max }=0.013$
$\Delta \rho_{\text {max }}=0.12 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F^{2} for refinement carried out on F and F^{2}, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.
The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones $\overline{\text { from the }} \overline{S H E L X}$ program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1x	$0.3214(4)$	$-0.3809(8)$	0.266995	$0.0436(13)$	$0.582(5)$
O2	$0.0084(2)$	$0.3676(5)$	$0.3407(6)$	$0.0527(8)$	
N1x	$0.2304(5)$	$-0.1122(9)$	$0.1438(8)$	$0.0333(9)^{*}$	$0.582(5)$
N1y	$0.2125(8)$	$-0.1576(12)$	$0.1559(9)$	$0.0333(9)^{*}$	$0.418(5)$
N2x	$0.0781(4)$	$0.1899(8)$	$0.1754(7)$	$0.0292(8)^{*}$	$0.582(5)$
N2y	$0.1109(6)$	$0.2145(12)$	$0.1820(9)$	$0.0292(8)^{*}$	$0.418(5)$
N3x	$0.3056(5)$	$-0.3111(9)$	$0.1569(10)$	$0.0342(15)$	$0.582(5)$
N3y	$0.2972(18)$	$-0.338(3)$	$0.2034(16)$	$0.063(5)^{*}$	$0.418(5)$
O1y	$0.3425(9)$	$-0.4441(19)$	$0.1083(12)$	$0.081(2)^{*}$	$0.418(5)$
N4	$0.0159(3)$	$0.3748(4)$	$0.2258(6)$	$0.0469(9)$	

C1	$0.1576(2)$	$0.0075(6)$	$0.2498(6)$	$0.0348(8)$	
C2x	$0.2145(5)$	$0.0048(10)$	$0.0225(8)$	$0.0369(11)^{*}$	$0.582(5)$
C2y	$0.1820(8)$	$-0.0681(14)$	$0.0312(9)$	$0.0369(1)^{*}$	$0.418(5)$
C3x	$0.0820(5)$	$0.1482(9)$	$0.0410(8)$	$\left.0.0338(1)^{*}\right)$	$0.582(5)$
C3y	$0.1527(8)$	$0.2091(13)$	$0.0512(10)$	$0.0338(13)$	$0.418(5)$
H2xa	0.199648	-0.11884	-0.0401	0.0443^{*}	$0.582(5)$
H2xb	0.291244	0.116195	0.008783	0.0443^{*}	$0.582(5)$
H2ya	0.098714	-0.146931	0.000258	0.0443^{*}	$0.418(5)$
H2yb	0.263608	-0.087618	-0.020601	0.0443^{*}	$0.418(5)$
H3xa	0.089387	0.303307	-0.0015	0.0406^{*}	$0.582(5)$
H3xb	0.00295	0.049365	0.016793	0.0406^{*}	$0.582(5)$
H3ya	0.23834	0.300237	0.040787	0.0406^{*}	$0.418(5)$
H3yb	0.074938	0.258704	-0.000047	0.0406^{*}	$0.418(5)$
H1ax	0.225236	0.091148	0.301089	0.0417^{*}	$0.582(5)$
H1bx	0.093385	-0.107021	0.28725	0.0417^{*}	$0.582(5)$
H1ay	0.232011	0.055714	0.30525	0.0417^{*}	$0.418(5)$
H1by	0.079178	-0.068441	0.29095	0.0417^{*}	$0.418(5)$

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1x	$0.0389(19)$	$0.053(2)$	$0.039(3)$	$0.0103(15)$	$-0.0008(19)$	$0.0147(19)$
O2	$0.0448(12)$	$0.0675(15)$	$0.0458(16)$	$0.0025(10)$	$0.0059(10)$	$-0.0244(11)$
N3x	$0.031(2)$	$0.036(2)$	$0.036(3)$	$0.0200(15)$	$0.008(2)$	$0.002(2)$
N4	$0.0526(17)$	$0.0417(14)$	$0.0463(17)$	$0.0098(11)$	$0.0081(13)$	$-0.0109(11)$
C1	$0.0288(13)$	$0.0449(14)$	$0.0306(14)$	$0.0034(9)$	$-0.0021(11)$	$-0.0035(11)$
C3x	$0.038(2)$	$0.031(2)$	$0.033(2)$	$0.0003(18)$	$0.007(2)$	$0.0029(16)$
C3y	$0.038(2)$	$0.031(2)$	$0.033(2)$	$0.0003(18)$	$0.007(2)$	$0.0029(16)$

Geometric parameters (A, ${ }^{\circ}$)

O1x-N3x	$1.248(10)$	N2y-C1	$1.411(9)$
O2-N4	$1.233(9)$	N2y-C3y	$1.457(14)$
N1x-N3x	$1.303(7)$	N3y-O1y	$1.25(2)$
N1x-C1	$1.481(9)$	C1-H1bx	0.96
N1x-C2x	$1.454(11)$	C1-H1ay	0.96
N1y-N3y	$1.366(17)$	C1-H1by	0.96
N1y-C1	$1.445(10)$	C2x-C3x	$1.495(7)$
N1y-C2y	$1.451(13)$	C2x-H2xa	0.96
N2x-N4	$1.285(6)$	C2x-H2xb	0.96
N2x-C1	$1.480(7)$	C2y-C3y	$1.547(11)$
N2x-C3x	$1.458(12)$	C3x-H3xb	0.96
N2y-N4	$1.340(8)$	C3y-H3yb	0.96
N3x-N1x-C1	$122.6(7)$	N1y-C1-H1ay	109.4716
N3x-N1x-C2x	$121.0(7)$	N1y-C1-H1by	109.4714
C1-N1x-C2x	$116.4(4)$	N2x-C1-H1bx	109.4709
N3y-N1y-C1	$113.5(10)$	N2y-C1-H1ay	109.4711

$\mathrm{N} 3 \mathrm{y}-\mathrm{N} 1 \mathrm{y}-\mathrm{C} 2 \mathrm{y}$	$134.5(10)$
$\mathrm{C} 1-\mathrm{N} 1 \mathrm{y}-\mathrm{C} 2 \mathrm{y}$	$111.1(6)$
$\mathrm{N} 4-\mathrm{N} 2 \mathrm{x}-\mathrm{C} 1$	$122.2(7)$
$\mathrm{N} 4-\mathrm{N} 2 \mathrm{x}-\mathrm{C} 3 \mathrm{x}$	$123.2(5)$
$\mathrm{C} 1-\mathrm{N} 2 \mathrm{x}-\mathrm{C} 3 \mathrm{x}$	$114.5(4)$
$\mathrm{N} 4-\mathrm{N} 2 \mathrm{y}-\mathrm{C} 1$	$123.4(8)$
$\mathrm{N} 4-\mathrm{N} 2 \mathrm{y}-\mathrm{C} 3 \mathrm{y}$	$122.3(7)$
$\mathrm{C} 1-\mathrm{N} 2 \mathrm{y}-\mathrm{C} 3 \mathrm{y}$	$113.1(6)$
$\mathrm{O} 1 \mathrm{x}-\mathrm{N} 3 \mathrm{x}-\mathrm{N} 1 \mathrm{x}$	$114.8(8)$
$\mathrm{N} 1 \mathrm{y}-\mathrm{N} 3 \mathrm{y}-\mathrm{O} 1 \mathrm{y}$	$103.4(13)$
$\mathrm{O} 2-\mathrm{N} 4-\mathrm{N} 2 \mathrm{x}$	$114.9(5)$
$\mathrm{O} 2-\mathrm{N} 4-\mathrm{N} 2 \mathrm{y}$	$111.6(5)$
$\mathrm{N} 1 \mathrm{x}-\mathrm{C} 1-\mathrm{N} 2 \mathrm{x}$	$96.9(5)$
$\mathrm{N} 1 \mathrm{x}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{bx}$	109.4713
$\mathrm{~N} 1 \mathrm{y}-\mathrm{C} 1-\mathrm{N} 2 \mathrm{y}$	$104.5(7)$

$\mathrm{N} 2 \mathrm{y}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{by}$	109.4712
$\mathrm{~N} 1 \mathrm{x}-\mathrm{C} 2 \mathrm{x}-\mathrm{C} 3 \mathrm{x}$	$101.4(6)$
$\mathrm{N} 1 \mathrm{x}-\mathrm{C} 2 \mathrm{x}-\mathrm{H} 2 \mathrm{xa}$	109.4711
$\mathrm{~N} 1 \mathrm{x}-\mathrm{C} 2 \mathrm{x}-\mathrm{H} 2 \mathrm{xb}$	109.4713
$\mathrm{C} 3 \mathrm{x}-\mathrm{C} 2 \mathrm{x}-\mathrm{H} 2 \mathrm{xa}$	109.4718
$\mathrm{C} 3 \mathrm{x}-\mathrm{C} 2 \mathrm{x}-\mathrm{H} 2 \mathrm{xb}$	109.4715
$\mathrm{H} 2 \mathrm{xa}-\mathrm{C} 2 \mathrm{x}-\mathrm{H} 2 \mathrm{xb}$	116.4713
$\mathrm{~N} 1 \mathrm{y}-\mathrm{C} 2 \mathrm{y}-\mathrm{C} 3 \mathrm{y}$	$103.6(7)$
$\mathrm{N} 2 \mathrm{x}-\mathrm{C} 3 \mathrm{x}-\mathrm{C} 2 \mathrm{x}$	$103.4(6)$
$\mathrm{N} 2 \mathrm{x}-\mathrm{C} 3 \mathrm{x}-\mathrm{H} 3 \mathrm{xb}$	109.4711
$\mathrm{C} 2 \mathrm{x}-\mathrm{C} 3 \mathrm{x}-\mathrm{H} 3 \mathrm{xb}$	109.4711
$\mathrm{~N} 2 \mathrm{y}-\mathrm{C} 3 \mathrm{y}-\mathrm{C} 2 \mathrm{y}$	$101.7(7)$
$\mathrm{N} 2 \mathrm{y}-\mathrm{C} 3 \mathrm{y}-\mathrm{H} 3 \mathrm{yb}$	109.4711
$\mathrm{C} 2 \mathrm{y}-\mathrm{C} 3 \mathrm{y}-\mathrm{H} 3 \mathrm{yb}$	109.4709

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 y-\mathrm{H} 2 y a \cdots{ }^{2} 2^{\mathrm{i}}$	0.96	2.32	$3.177(10)$	148
$\mathrm{C} 3 y-\mathrm{H} 3 y a \cdots{ }^{\text {ii }}$	0.96	1.85	$2.681(12)$	143

Symmetry codes: (i) $-x,-y, z-1 / 2$; (ii) $x, y+1, z$.

