organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(R)-3,3-Diethyl-1-(2-hydroxy-1-phenylethyl)piperidin-2-one

Oscar Romero,^a Johana Ramírez,^a Joel L. Terán,^a Marcos Flores-Alamo^b and Jorge R. Juárez^a*

^aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, Pue., Mexico, and ^bFacultad de Ouímica, Universidad Nacional Autónoma de México, 04510, D.F., Mexico Correspondence e-mail: jorge.juarez@correo.buap.mx

Received 28 May 2012; accepted 5 June 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.114; data-to-parameter ratio = 8.4.

In the title compound $C_{17}H_{25}NO_2$, the piperidin-2-one ring adopts an envelope conformation with the C atom in the 5position as the flap. The crystal packing is stabilized by intermolecular $O-H \cdots O$ hydrogen bonds, building a infinite chain along the *b*-axis direction. $C-H\cdots\pi$ interactions further stabilize the crystal packing.

Related literature

For background to the synthesis of piperidines, see: Angle & Breitenbucher (1995); Micouin et al. (1994); Deslongchamps et al. (1975). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

C17H25NO2 $M_r = 275.38$ Monoclinic, P21 a = 7.5380 (3) Å b = 12.6705 (6) Å c = 7.9255 (4) Å $\beta = 91.776 \ (4)^{\circ}$

5226 measured reflections

 $R_{\rm int} = 0.039$

1552 independent reflections 1381 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur Atlas
Gemini diffractometer
Absorption correction: analytical
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.978, T_{\max} = 0.99$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.114$	independent and constrained
S = 1.06	refinement
1552 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
185 parameters	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12-C17 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} \text{O2-H1}O\cdots\text{O1}^{\text{i}}\\ \text{C4-H4}A\cdots\text{Cg1}^{\text{ii}} \end{array}$	0.80 (4)	1.95 (4)	2.745 (3)	170 (4)
	0.96	2.96	3.723 (3)	137

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, -z + 1; (ii) x + 1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

This work was funded by projects VIEP-BUAP and CONACvT CB-2009-01/128747. JR and OR thank CONACyT for doctoral scholarships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5939).

References

- Angle, S. R. & Breitenbucher, J. G. (1995). In Studies in Natural Products Chemistry, Vol. 16, edited by Atta-ur Rahman, pp. 453-502. Amsterdam: Elsevier.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Deslongchamps, P., Cherivan, O. U. & Patterson, D. R. (1975). Can. J. Chem. 53, 1682-1683.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Micouin, L., Varea, R., Riche, C., Chiaroni, A., Quirion, J. C. & Husson, H. P. (1994). Tetrahedron Lett. 35, 2529-2532.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2356 [https://doi.org/10.1107/S1600536812025433]

(*R*)-3,3-Diethyl-1-(2-hydroxy-1-phenylethyl)piperidin-2-one

Oscar Romero, Johana Ramírez, Joel L. Terán, Marcos Flores-Alamo and Jorge R. Juárez

S1. Comment

The development of new methods for the enantioselective synthesis of piperidine derivatives by introduction of substituents at carbon positions of the heterocycle constitutes an area of curret interest (Angle & Breitenbucher, 1995). In the context of the enantioselective synthesis of 3-substituted piperidines, the enolate alkylation of the amide carbonyl of lactams derived from phenylglycinol with alkyl halides takes place with high diastereoselectivity to ultimately give enantiopure 3-alkylpiperidines in good yields. Although numerous methods have been developed for the α -alkylation, the double α -substitution in amides has been rarely studied (Micouin *et al.*, 1994; Deslongchamps *et al.*, 1975).

In the title compound $C_{17}H_{25}NO_2$, the six membered ring N1/C1/C2/C3/C4/C5 shows an envelope conformation on C(4) with puckering parameters (Cremer & Pople, 1975) Q = 0.496 (3) Å, $\theta_2 = 58.3$ (3)°, $\varphi_2 = 240.7$ (4)°, $q_2 = 0.422$ (3) Å and $q_3 = 0.261$ (3) Å. The N(1) atom in the piperidone moiety shows a planar conformation (r.m.s. deviation of N1, C1, C5 and C10 = 0.002Å). The quiral centre on C(10) shows an *R* absolute configuration with $[\alpha]_D = -92$. Crystal packing is stabilized by hydrogen bond interactions $[O(2) - H(10) \cdots O(1)]$, building a infinite chain along *b* direction and a intermolecular C(4) - H(4 A) $\cdots \pi$ interactions making a one-dimentional chain along *a* axis. Two intramolecular interactions, C8-(H8B) $\cdots O(1)$ and C(10) - H10 $\cdots O(1)$ are too observated.

S2. Experimental

The title compound, $C_{17}H_{25}NO_2$, was obtained disolving (*R*)-(-)-1-(2'-hidroxy-1'-phenylethyl)piperidin-2-one (0.29 g, 1.32 mmol) in THF anhydrous and added 4.0 equiv. HMPA and 4.5 equiv. s-BuLi. The mixture was stirred for 1 h and 3 equiv. of Iodoethane was added at -78 °C, the mixture was stirred for 2.5 h. Finally, the mixture was treated with a satured solution of NH₄Cl (4.0 ml), extracted with ethyl acetate (3x20 ml) and purified by flash chromatography (SiO₂, AcOEt: Petroleum ether; 6:4). Yield 80%. White crystals. [α]_D= -92 (*c* 1.5, CH₂Cl₂). IR (KBr) 1615 cm⁻¹. p.f.=89–91 °C, ¹H NMR (CDCl₃) δ (p.p.m.), *J*(Hz): 0.88 (t, 3H, *J*= 7.5, 7.2 Hz), 0.96 (t, 3H, *J*=7.5, 7.2 Hz), 2.82 (m, 1H), 2.89 (m, 1H), 3.14 (m, 1H), 3.32 (br, 1*H*-OH), 4.02–4.20 (dd, 2H, *J*= 5.1, 11.1 Hz), 5.89 (dd 1H, *J*= 5.1 Hz), 7.32 (m, 5H). ¹³C NMR (CDCl₃), 8.9, 8.9, 20.5, 28.4, 31.9, 32.2, 44.0, 46.2, 58.5, 61.8, 127.5–128.5, 137.1, 177.1.

S3. Refinement

All H atoms were found in a difference map. The H atom bonded to O2 was freely refined. H atoms bonded to C atoms were placed in geometrical idealized positions and refined as riding on their parent atoms, with C—H = 0.93–0.98 Å and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or $U_{eq}(H) = 1.5 U_{eq}(C)$ for methyl groups. The absolute configuration of the chiral centre could not be determined and was set according to the starting material.

The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

(R)-3,3-Diethyl-1-(2-hydroxy-1-phenylethyl)piperidin-2-one

Crystal data

C₁₇H₂₅NO₂ $M_r = 275.38$ Monoclinic, P2₁ a = 7.5380 (3) Å b = 12.6705 (6) Å c = 7.9255 (4) Å $\beta = 91.776$ (4)° V = 756.61 (6) Å³ Z = 2

Data collection

Oxford Diffraction Xcalibur Atlas Gemini
diffractometer5226 measur
1552 indeper
1381 reflectionGraphite monochromator1381 reflectionDetector resolution: 10.4685 pixels mm⁻¹ $R_{int} = 0.039$
 $\theta_{max} = 26.1^{\circ}$,
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009) $k = -14 \rightarrow 15$
 $l = -7 \rightarrow 9$ $T_{min} = 0.978, T_{max} = 0.99$ $l = -7 \rightarrow 9$

F(000) = 300 $D_x = 1.209 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 3593 reflections $\theta = 3.7-26.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 130 KPlate, colorless $0.35 \times 0.28 \times 0.13 \text{ mm}$

5226 measured reflections 1552 independent reflections 1381 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 26.1^{\circ}, \theta_{min} = 3.7^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 15$ $l = -7 \rightarrow 9$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
1552 reflections	and constrained refinement
185 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0844P)^2]$
1 restraint	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.37 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.8432 (2)	0.61989 (14)	0.4209 (2)	0.0257 (4)	
C10	0.9135 (3)	0.4297 (2)	0.2824 (3)	0.0194 (5)	
H10	0.9956	0.4778	0.3421	0.023*	
O2	1.1120 (2)	0.29608 (16)	0.3809 (3)	0.0308 (5)	
C12	0.9617 (3)	0.4306 (2)	0.0986 (3)	0.0209 (5)	
C1	0.7126 (3)	0.56610 (19)	0.3767 (3)	0.0201 (5)	
N1	0.7335 (3)	0.47186 (16)	0.3024 (3)	0.0193 (5)	
C11	0.9290 (3)	0.3223 (2)	0.3708 (3)	0.0231 (5)	
H11A	0.8814	0.3263	0.483	0.028*	
H11B	0.8632	0.2691	0.3068	0.028*	
C13	0.9956 (4)	0.3401 (2)	0.0065 (4)	0.0293 (6)	
H13	0.9863	0.2743	0.0576	0.035*	
C8	0.5095 (4)	0.7194 (2)	0.3363 (4)	0.0325 (7)	
H8A	0.3996	0.7502	0.3735	0.039*	
H8B	0.606	0.7618	0.3835	0.039*	
C14	1.0431 (4)	0.3466 (3)	-0.1603 (3)	0.0335 (7)	
H14	1.0637	0.2852	-0.2209	0.04*	
C5	0.5857 (3)	0.4055 (2)	0.2393 (3)	0.0264 (6)	
H5A	0.5552	0.355	0.3257	0.032*	
H5B	0.6227	0.3664	0.1413	0.032*	
C2	0.5257 (3)	0.6069 (2)	0.4118 (3)	0.0253 (6)	
C15	1.0601 (4)	0.4429 (3)	-0.2370 (3)	0.0336 (7)	
H15	1.0942	0.4472	-0.3486	0.04*	
C17	0.9776 (4)	0.5275 (2)	0.0182 (4)	0.0305 (6)	

H17	0.9552	0.5892	0.0774	0.037*
C3	0.3739 (3)	0.5360 (3)	0.3417 (4)	0.0313 (6)
H3A	0.3361	0.4894	0.4307	0.038*
H3B	0.2736	0.5803	0.3088	0.038*
C6	0.5155 (4)	0.6160 (2)	0.6049 (3)	0.0297 (6)
H6A	0.5983	0.67	0.6438	0.036*
H6B	0.3972	0.6394	0.632	0.036*
C4	0.4252 (3)	0.4704 (3)	0.1921 (4)	0.0315 (6)
H4A	0.3276	0.4244	0.1581	0.038*
H4B	0.4511	0.5161	0.0979	0.038*
C16	1.0257 (4)	0.5336 (3)	-0.1465 (4)	0.0386 (7)
H16	1.0354	0.5992	-0.198	0.046*
C9	0.5120 (5)	0.7282 (3)	0.1467 (4)	0.0435 (8)
H9A	0.5013	0.8009	0.1143	0.065*
H9B	0.4147	0.6888	0.0975	0.065*
H9C	0.6218	0.7003	0.1075	0.065*
C7	0.5558 (5)	0.5153 (3)	0.7018 (4)	0.0397 (7)
H7A	0.5463	0.5282	0.8205	0.06*
H7B	0.6741	0.4923	0.6791	0.06*
H7C	0.4726	0.4615	0.6671	0.06*
H1O	1.120 (5)	0.249 (3)	0.448 (5)	0.041 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0195 (9)	0.0215 (9)	0.0361 (9)	-0.0021 (8)	0.0025 (7)	-0.0075 (8)
C10	0.0156 (11)	0.0178 (12)	0.0249 (12)	-0.0015 (11)	0.0012 (9)	-0.0026 (10)
O2	0.0233 (10)	0.0281 (11)	0.0410 (11)	0.0065 (8)	0.0035 (8)	0.0138 (9)
C12	0.0132 (10)	0.0231 (13)	0.0264 (12)	0.0017 (11)	-0.0011 (9)	-0.0001 (11)
C1	0.0220 (12)	0.0193 (12)	0.0191 (10)	-0.0027 (11)	0.0022 (9)	0.0019 (10)
N1	0.0150 (10)	0.0189 (10)	0.0241 (10)	-0.0002 (9)	0.0010 (8)	-0.0023 (8)
C11	0.0199 (12)	0.0237 (13)	0.0261 (12)	0.0015 (11)	0.0057 (9)	0.0023 (10)
C13	0.0348 (14)	0.0236 (14)	0.0296 (13)	0.0064 (13)	0.0032 (10)	0.0003 (12)
C8	0.0245 (14)	0.0235 (14)	0.0494 (18)	0.0044 (12)	0.0018 (12)	0.0016 (13)
C14	0.0383 (16)	0.0343 (16)	0.0280 (14)	0.0090 (14)	0.0039 (12)	-0.0061 (13)
C5	0.0186 (12)	0.0239 (13)	0.0366 (14)	-0.0026 (11)	-0.0005 (10)	-0.0079 (11)
C2	0.0196 (12)	0.0232 (13)	0.0334 (13)	0.0009 (11)	0.0061 (10)	-0.0010 (11)
C15	0.0328 (14)	0.0463 (18)	0.0221 (12)	-0.0049 (14)	0.0062 (10)	0.0002 (12)
C17	0.0358 (15)	0.0225 (14)	0.0335 (14)	-0.0033 (13)	0.0060 (11)	0.0001 (12)
C3	0.0152 (11)	0.0356 (16)	0.0431 (15)	-0.0001 (12)	0.0035 (10)	-0.0032 (13)
C6	0.0262 (13)	0.0282 (14)	0.0353 (14)	-0.0004 (13)	0.0106 (10)	-0.0054 (12)
C4	0.0174 (12)	0.0350 (15)	0.0420 (15)	-0.0029 (12)	-0.0017 (11)	-0.0084 (13)
C16	0.0516 (19)	0.0298 (16)	0.0347 (15)	-0.0089 (15)	0.0054 (13)	0.0070 (13)
C9	0.0451 (19)	0.0331 (17)	0.0517 (19)	0.0011 (15)	-0.0065 (14)	0.0105 (14)
C7	0.0446 (17)	0.0420 (18)	0.0330 (15)	0.0031 (16)	0.0104 (13)	0.0049 (14)

Geometric parameters (Å, °)

01—C1	1.239 (3)	C5—H5A	0.97
C10—N1	1.471 (3)	C5—H5B	0.97
C10—C12	1.513 (3)	C2—C6	1.540 (3)
C10—C11	1.534 (3)	C2—C3	1.544 (4)
C10—H10	0.98	C15—C16	1.384 (5)
O2—C11	1.419 (3)	С15—Н15	0.93
O2—H1O	0.80 (4)	C17—C16	1.368 (4)
C12—C13	1.387 (4)	С17—Н17	0.93
C12—C17	1.390 (4)	C3—C4	1.508 (4)
C1—N1	1.343 (3)	С3—НЗА	0.97
C1—C2	1.534 (3)	С3—Н3В	0.97
N1—C5	1.471 (3)	C6—C7	1.515 (4)
C11—H11A	0.97	C6—H6A	0.97
C11—H11B	0.97	С6—Н6В	0.97
C13—C14	1.383 (4)	C4—H4A	0.97
С13—Н13	0.93	C4—H4B	0.97
C8—C9	1.508 (5)	C16—H16	0.93
C8—C2	1.550 (4)	С9—Н9А	0.96
C8—H8A	0.97	С9—Н9В	0.96
C8—H8B	0.97	С9—Н9С	0.96
C14—C15	1.371 (5)	С7—Н7А	0.96
C14—H14	0.93	С7—Н7В	0.96
C5—C4	1.500 (4)	С7—Н7С	0.96
N1-C10-C12	110 53 (18)	C1 - C2 - C8	107 6 (2)
N1 - C10 - C11	109.28 (19)	$C_{1}^{-}C_{2}^{-}C_{3}^{-}$	107.0(2) 108.0(2)
C_{12} C_{10} C_{11}	105.20(17) 115.4(2)	$C_{3} - C_{2} - C_{8}$	100.0(2) 110.3(2)
N1_C10_H10	107.1	C_{14} C_{15} C_{16}	110.3(2) 119.2(2)
C_{12} C_{10} H_{10}	107.1	$C_{14} = C_{15} = C_{10}$	120.4
C_{11} C_{10} H_{10}	107.1	C_{16} C_{15} H_{15}	120.4
$C_{11} = 0^2 = H_{10}$	105 (3)	C_{16} C_{17} C_{12}	120.4
C_{13} C_{12} C_{17}	103(3) 1180(2)	C_{16} C_{17} H_{17}	110 4
C_{13} C_{12} C_{17} C_{10}	110.0(2) 123.7(2)	C_{12} C_{17} H_{17}	119.4
C_{17} C_{12} C_{10}	123.7(2) 1183(2)	C4 - C3 - C2	113.4(2)
O1 C1 N1	110.5(2) 120.7(2)	$C_4 = C_3 = C_2$	108.0
01 - 01 - 02	120.7(2) 110.3(2)	C_{1} C_{2} C_{3} H_{3}	108.9
$N_1 = C_1 = C_2$	119.5(2) 120.0(2)	$C_2 = C_3 = H_3R$	108.9
C1 = N1 = C10	120.0(2) 110.4(2)	$C_{1}^{2} = C_{2}^{3} = H_{3}^{3}B$	108.9
C1 = N1 = C5	119.4(2) 124.0(2)	$U_2 \wedge C_2 = U_2 P$	107.7
C10 N1 $C5$	124.0(2)	$\begin{array}{c} 113A - C5 - 113B \\ C7 - C6 - C2 \end{array}$	107.7 115.2(2)
$C_{10} = N_1 = C_3$	10.01(19) 107.05(10)	$C_{1} = C_{0} = C_{2}$	113.2 (2)
02 - 011 - 010	107.03 (19)	$C_{1} = C_{0} = H_{0}A$	100.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110.3	$C_2 = C_0 = \Pi O A$	108.5
C_{10} $-C_{11}$ $-\Pi_{11}$ Π_{11}	110.5	$C_{1} = C_{0} = \Pi O D$	100.5
02 - 011 - HIIB	110.3		108.5
	110.5	$\Pi \cup A = \bigcup \cup \Box = \Pi \cup D$	10/.3
HIIA—CII—HIIB	108.6	05-04-03	109.3 (2)

C14—C13—C12	120.7 (3)	C5—C4—H4A	109.8
C14—C13—H13	119.6	C3—C4—H4A	109.8
C12—C13—H13	119.6	C5—C4—H4B	109.8
C9—C8—C2	116.7 (2)	C3—C4—H4B	109.8
С9—С8—Н8А	108.1	H4A—C4—H4B	108.3
C2—C8—H8A	108.1	C17—C16—C15	120.4 (3)
С9—С8—Н8В	108.1	C17—C16—H16	119.8
C2—C8—H8B	108.1	C15—C16—H16	119.8
H8A—C8—H8B	107.3	С8—С9—Н9А	109.5
C15—C14—C13	120.5 (3)	C8—C9—H9B	109.5
C15—C14—H14	119.7	H9A—C9—H9B	109.5
C13—C14—H14	119.7	С8—С9—Н9С	109.5
N1—C5—C4	111.6 (2)	Н9А—С9—Н9С	109.5
N1—C5—H5A	109.3	H9B—C9—H9C	109.5
C4—C5—H5A	109.3	С6—С7—Н7А	109.5
N1—C5—H5B	109.3	С6—С7—Н7В	109.5
C4—C5—H5B	109.3	H7A—C7—H7B	109.5
H5A—C5—H5B	108	С6—С7—Н7С	109.5
C1—C2—C6	106.26 (19)	H7A—C7—H7C	109.5
C1—C2—C3	114.4 (2)	H7B—C7—H7C	109.5
C6—C2—C3	110.0 (2)		
N1-C10-C12-C13	-116.5 (3)	O1—C1—C2—C3	176.7 (2)
C11—C10—C12—C13	8.1 (3)	N1—C1—C2—C3	-4.9 (3)
N1-C10-C12-C17	65.3 (3)	O1—C1—C2—C8	53.7 (3)
C11—C10—C12—C17	-170.1 (2)	N1—C1—C2—C8	-127.9 (2)
O1-C1-N1-C10	3.5 (3)	C9—C8—C2—C1	67.1 (3)
C2-C1-N1-C10	-174.9 (2)	C9—C8—C2—C6	-178.6 (2)
O1-C1-N1-C5	-177.1 (2)	C9—C8—C2—C3	-58.4 (3)
C2-C1-N1-C5	4.5 (3)	C13—C14—C15—C16	-1.3 (4)
C12—C10—N1—C1	-110.0 (2)	C13—C12—C17—C16	-0.2 (4)
C11—C10—N1—C1	121.9 (2)	C10-C12-C17-C16	178.2 (3)
C12—C10—N1—C5	70.6 (3)	C1—C2—C3—C4	-25.8 (4)
C11—C10—N1—C5	-57.5 (3)	C6—C2—C3—C4	-145.3 (3)
N1-C10-C11-O2	-167.33 (19)	C8—C2—C3—C4	95.7 (3)
C12—C10—C11—O2	67.4 (3)	C1—C2—C6—C7	-56.3 (3)
C17—C12—C13—C14	-0.3 (4)	C3—C2—C6—C7	68.0 (3)
C10—C12—C13—C14	-178.5 (2)	C8—C2—C6—C7	-171.5 (2)
C12—C13—C14—C15	1.0 (5)	N1—C5—C4—C3	-55.8 (3)
C1—N1—C5—C4	26.7 (3)	C2—C3—C4—C5	55.9 (3)
C10—N1—C5—C4	-153.9 (2)	C12—C17—C16—C15	-0.1 (5)
O1—C1—C2—C6	-61.8 (3)	C14—C15—C16—C17	0.8 (4)
N1—C1—C2—C6	116.6 (2)	C1C5N1C10	179.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centr	roid of the C1	2–C17 ring.
------------------	----------------	-------------

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.80 (4)	1.95 (4)	2.745 (3)	170 (4)
0.97	2.55	2.874 (3)	100
0.98	2.23	2.707 (3)	108
0.96	2.96	3.723 (3)	137
	<i>D</i> —H 0.80 (4) 0.97 0.98 0.96	D—H H···A 0.80 (4) 1.95 (4) 0.97 2.55 0.98 2.23 0.96 2.96	DHH…AD…A0.80 (4)1.95 (4)2.745 (3)0.972.552.874 (3)0.982.232.707 (3)0.962.963.723 (3)

Symmetry codes: (i) -x+2, y-1/2, -z+1; (ii) x+1, y, z.