

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Isopropyl-2,6-bis(4-methoxyphenyl)piperidin-4-one

K. Ravichandran,^a S. Sethuvasan,^b K. Thirunavukarasu,^b S. Ponnuswamy^{b*} and M. N. Ponnuswamy^a

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry. Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 18 May 2012; accepted 6 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.121; data-to-parameter ratio = 11.6.

In the title compound, $C_{22}H_{27}NO_3$, the piperidine ring adopts a slightly distorted chair conformation. The dihedral angle between the two aromatic rings is $60.4 (1)^{\circ}$. In the crystal, the amino group forms a rather long N-H···O contact to a methoxy O atom. There are also C-H···O interactions present.

Related literature

For the biological activity of piperidine derivatives, see: Bochringer & Soehne (1961); El-Subbagh et al. (2000); Ganellin & Spickett (1965); Hagenbach & Gysin (1952); Jerom & Spencer (1988); Katritzky & Fan (1990); Perumal et al. (2001); Ravindran et al. (1991); Severs et al. (1965). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C22H27NO3 $M_r = 353.45$ Orthorhombic, P212121 a = 7.5547 (3) Å b = 11.8792 (6) Å c = 22.1103 (10) Å

V = 1984.26 (16) Å³ Z = 4Mo Ka radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K $0.22\,\times\,0.20\,\times\,0.18~\mathrm{mm}$ 10956 measured reflections

 $R_{\rm int} = 0.038$

2801 independent reflections

1835 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART APEX CCD
  detector diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\min} = 0.983, T_{\max} = 0.986
```

Refinement

1

N

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.121$	independent and constrained
S = 1.03	refinement
2801 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
241 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$1 - H1 \cdots O1^{i}$ 0.90	(2) 2.66	(2) 3.538 ($\begin{array}{ccc} (2) & 167.4 & (17) \\ (4) & 156 \end{array}$
$16 - H16A \cdots O1^{ii}$ 0.96	2.57	3.474 (

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

KR thanks the TBI Consultancy, University of Madras, India, for the data collection and the management of Kandaswami Kandar's College, Velur, Namakkal, Tamilnadu, India, for the encouragement. SP thanks UGC, New Delhi, for financial assistance in the form of a major research project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5928).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr. 55, 24796.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619-625.
- Hagenbach, R. E. & Gysin, H. (1952). Experientia, 8, 184-185.
- Jerom, B. R. & Spencer, K. H. (1988). Eur. Patent Appl. EP 277794.
- Katritzky, A. R. & Fan, W. J. (1990). J. Org. Chem. 55, 3205-3209.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Perumal, R. V., Adiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159
- Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991). J. Org. Chem. 56, 4833-4840.

Severs, W. B., Kinnard, W. J. & Buckley, J. P. (1965). Chem. Abstr. 63, 10538. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o2453 [https://doi.org/10.1107/S1600536812030966]

3-Isopropyl-2,6-bis(4-methoxyphenyl)piperidin-4-one

K. Ravichandran, S. Sethuvasan, K. Thirunavukarasu, S. Ponnuswamy and M. N. Ponnuswamy

S1. Comment

In the family of heterocyclic compounds, piperidin-4-ones possess varied biological properties such as antiviral, antitumour (El-Subbagh *et al.*, 2000), analgesic (Jerom & Spencer, 1988), local anaesthetic (Perumal *et al.*, 2001; Hagenbach & Gysin, 1952), anti-inflammatory and anticancer activities (Katritzky & Fan, 1990). Several 2,6-disubstituted piperidines are found to be useful as tranquillisers (Bochringer & Soehne, 1961) and possess hypotensive activity (Severs *et al.*, 1965), a combination of stimulant and depressant effects on the central nervous system (Ganellin & Spickett, 1965). Also the substitution of methoxy phenyl groups at 2,6-positions is found to be active against *CNS* subpanels. In addition, the bulkiness of the subtituent in different positons of the piperidine ring leads to the decrease in carcinogenecity (Ravindran *et al.*, 1991). In view of the importance, the crystallographic study of the title compound has been carried out to establish the molecular structure and conformation.

The *ORTEP* plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted chair conformation. The puckering (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: $q_2=0.121$ (3) Å, $q_3=0.569$ (3) Å, $\varphi_2=7.6$ (1)° and $\Delta_s(N1 \& C4) = 1.3$ (2)°. The sum of the bond angles around the atom N1 [333.5°] is in accordance with sp^3 hybridization.

The best plane of the piperidine ring is oriented with respect to the phenyl rings (C9—C14) & (C18—C23) at angles of 82.8 (1)° & 86.2 (1)°, respectively. The two phenyl rings are set apart with an angle of 60.4 (1)°. The methoxy groups substituted at the phenyl rings are coplanar, which can be seen from the torsion angles of [C13—C12—O1—C7=] 4.4 (4)° for (C9—C14) ring and [C20—C21—O3—C8 =] 1.6 (5)° for (C18—C23) ring.

The packing of the molecules is stabilized by a rather long N-H…O contact and by C—H…O interactions in addition to van der Waals forces.

S2. Experimental

Ammonium acetate (100 mmol), anisaldehyde (200 mmol) and isobutylmethylketone (100 mmol) in ethanol (30 ml) were heated on a hot plate at $50-55^{\circ}$ C and after the completion of reaction, water was added and extracted with ether, dried and recrystallized from ethanol.

S3. Refinement

Due to the absence of anomalous scatterers, the absolute configuration could not be determined and Friedel pairs were merged. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for all other H atoms. The H atom bonded to N was freely refined.

Figure 1

The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.

Figure 2

The crystal packing of the molecules viewed down *b* axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

3-Isopropyl-2,6-bis(4-methoxyphenyl)piperidin-4-one

c = 22.1103 (10) Å
$V = 1984.26 (16) Å^3$
Z = 4
F(000) = 760
$D_{\rm x} = 1.183 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2938 reflections
$\theta = 1.8 - 28.3^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX CCD detector	10956 measured reflections
diffractometer	2801 independent reflections
Radiation source: fine-focus sealed tube	1835 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.038$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 9$
(SADABS; Bruker, 2008)	$k = -15 \rightarrow 8$
$T_{\min} = 0.983, \ T_{\max} = 0.986$	$l = -27 \rightarrow 29$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
2801 reflections	and constrained refinement
241 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0621P)^2 + 0.0599P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.015$
direct methods	$\Delta ho_{ m max} = 0.17 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$

T = 293 K

Black, white crystalline $0.22 \times 0.20 \times 0.18$ mm

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
H1	0.161 (4)	0.568 (2)	0.1225 (11)	0.049 (7)*	
01	0.3703 (3)	0.80940 (17)	-0.10981 (8)	0.0655 (6)	
O2	0.6143 (3)	0.2871 (2)	0.15552 (10)	0.0773 (7)	
03	-0.2117 (3)	0.5919 (2)	0.37078 (10)	0.0865 (8)	
N1	0.2620 (3)	0.53392 (18)	0.13369 (9)	0.0446 (5)	
C2	0.3533 (3)	0.4891 (2)	0.08036 (10)	0.0433 (6)	
H2	0.2910	0.4212	0.0669	0.052*	
C3	0.5444 (3)	0.4554 (2)	0.09959 (11)	0.0451 (6)	
Н3	0.5993	0.5241	0.1155	0.054*	
C4	0.5323 (4)	0.3749 (3)	0.15235 (13)	0.0556 (7)	
C5	0.4118 (4)	0.4096 (3)	0.20247 (12)	0.0676 (9)	
H5A	0.4656	0.4711	0.2247	0.081*	

U5D	0 3066	0.3470	0 2302	0.001*
П5Б С6	0.3900	0.3470 0.4469 (2)	0.2302 0.17908 (12)	0.0507 (6)
Н6	0.1737	0.3825	0.17908 (12)	0.061*
C7	0.3092 (5)	0.3823 0.7822 (3)	-0.16890(12)	0.0731(0)
H7A	0.3785	0.7822 (3)	-0.1850	0.0731 (9)
H7R	0.3705	0.7213	-0.1046	0.110*
H7C	0.1872	0.7599	-0.1670	0.110*
C8	-0.3714(6)	0.7399 0.5342 (4)	0.38404 (18)	0.110 0.1054 (14)
H8A	-0.4477	0.5363	0 3493	0.158*
H8B	-0.4292	0.5699	0.4176	0.158*
HSC	-0.3453	0.4574	0.3941	0.158*
	0.3520 (3)	0.4374 0.5733 (2)	0.3941 0.02940 (10)	0.133
C10	0.3520(3)	0.5755(2) 0.6843(2)	0.02940(10) 0.03831(12)	0.0413(5)
H10	0.4390	0.7076	0.0768	0.061*
C11	0.4370 0.4112 (4)	0.7599 (2)	-0.00879(13)	0.051
H11	0.4486	0.8333	-0.0019	0.067*
C12	0.3614 (3)	0.0333 0.7275(2)	-0.06612(11)	0.0470 (6)
C12	0.3080(4)	0.7273(2) 0.6181(2)	-0.07623(11)	0.0470(0) 0.0518(7)
H13	0.3080 (4)	0.5950	-0.1148	0.0518(7)
C14	0.2749 0.3041 (3)	0.5930	-0.02846(11)	0.0493 (6)
H14	0.2676	0.4697	-0.0357	0.059*
C15	0.6625 (3)	0.4165(2)	0.0357 0.04695 (12)	0.0470 (6)
H15	0.6556	0.4757	0.0162	0.056*
C16	0.8571 (3)	0.4099(3)	0.06599 (13)	0.050 0.0578(7)
H16A	0.8910	0.4792	0.0851	0.087*
H16R	0.9296	0.3976	0.0309	0.087*
H16C	0.9290	0.3488	0.0939	0.087*
C17	0.6047 (4)	0.3087 (3)	0.01612 (14)	0.0691 (8)
H17A	0.4828	0.3150	0.0043	0.104*
H17B	0.6181	0.2467	0.0436	0.104*
H17C	0.6765	0.2961	-0.0191	0.104*
C18	0.1107(3)	0.2901 0.4866 (2)	0 22900 (11)	0.0489 (6)
C19	-0.0469(3)	0.4320(2)	0.22900(11) 0.24044(12)	0.0521(6)
H19	-0.0796	0.3720	0.2159	0.063*
C20	-0.1579(4)	0.4634(3)	0.28710 (12)	0.0577(7)
H20	-0.2627	0 4243	0 2939	0.069*
C21	-0.1124(4)	0.5531(3)	0.32367(12)	0.0579(7)
C22	0.0451(4)	0.6089(3)	0 31305 (13)	0.0625 (8)
H22	0.0774	0.6689	0.3377	0.075*
C23	0.1547 (4)	0.5767 (2)	0.26643 (13)	0.0577 (7)
H23	0.2597	0.6156	0.2598	0.069*
		0.0100	0.2070	0.009

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0953 (15)	0.0511 (11)	0.0502 (11)	-0.0043 (11)	0.0027 (10)	0.0050 (9)
02	0.0696 (13)	0.0697 (14)	0.0927 (15)	0.0253 (12)	0.0052 (11)	0.0272 (12)
03	0.0879 (16)	0.1049 (19)	0.0665 (14)	-0.0023 (15)	0.0205 (12)	-0.0176 (13)

Acta Cryst. (2012). E68, o2453

supporting information

N1	0.0394 (10)	0.0469 (13)	0.0475 (12)	0.0030 (10)	-0.0020 (9)	0.0051 (10)
C2	0.0364 (10)	0.0433 (14)	0.0503 (13)	-0.0006 (10)	-0.0025 (10)	0.0002 (11)
C3	0.0401 (11)	0.0420 (14)	0.0532 (14)	0.0022 (10)	-0.0056 (11)	0.0021 (13)
C4	0.0427 (13)	0.0603 (18)	0.0638 (17)	0.0085 (13)	-0.0080 (12)	0.0113 (15)
C5	0.0638 (17)	0.085 (2)	0.0543 (16)	0.0188 (17)	-0.0014 (14)	0.0201 (16)
C6	0.0504 (13)	0.0529 (16)	0.0487 (14)	0.0018 (12)	0.0016 (11)	0.0082 (13)
C7	0.108 (2)	0.068 (2)	0.0435 (16)	0.0003 (19)	0.0086 (17)	0.0070 (15)
C8	0.096 (3)	0.137 (4)	0.083 (2)	-0.012 (3)	0.038 (2)	-0.014 (2)
C9	0.0333 (10)	0.0407 (14)	0.0499 (14)	0.0004 (10)	-0.0019 (10)	-0.0008 (11)
C10	0.0588 (15)	0.0479 (16)	0.0457 (14)	-0.0043 (13)	-0.0080 (12)	-0.0018 (13)
C11	0.0693 (17)	0.0400 (15)	0.0572 (16)	-0.0103 (13)	-0.0047 (14)	-0.0029 (13)
C12	0.0519 (13)	0.0414 (16)	0.0478 (14)	0.0024 (12)	0.0057 (11)	0.0012 (12)
C13	0.0661 (16)	0.0472 (16)	0.0420 (14)	0.0008 (12)	-0.0071 (12)	-0.0036 (12)
C14	0.0567 (14)	0.0383 (14)	0.0529 (15)	-0.0021 (11)	-0.0056 (12)	-0.0028 (12)
C15	0.0413 (11)	0.0454 (14)	0.0543 (14)	0.0048 (11)	-0.0024 (11)	-0.0031 (12)
C16	0.0431 (13)	0.0596 (18)	0.0706 (18)	0.0027 (12)	-0.0004 (13)	-0.0089 (15)
C17	0.0547 (16)	0.0677 (19)	0.085 (2)	0.0008 (15)	-0.0062 (15)	-0.0205 (17)
C18	0.0478 (13)	0.0529 (16)	0.0461 (13)	0.0025 (12)	-0.0039 (11)	0.0104 (13)
C19	0.0509 (13)	0.0556 (16)	0.0498 (14)	-0.0027 (13)	-0.0045 (12)	0.0008 (13)
C20	0.0513 (13)	0.073 (2)	0.0485 (14)	-0.0068 (14)	0.0014 (12)	0.0042 (14)
C21	0.0625 (15)	0.0669 (19)	0.0443 (14)	0.0046 (14)	0.0016 (13)	0.0002 (14)
C22	0.0728 (18)	0.0581 (19)	0.0566 (17)	-0.0064 (15)	-0.0047 (15)	-0.0039 (15)
C23	0.0561 (15)	0.0556 (17)	0.0615 (17)	-0.0095 (14)	-0.0029 (13)	0.0068 (14)

Geometric parameters (Å, °)

O1—C12	1.373 (3)	C10—C11	1.376 (4)
O1—C7	1.423 (3)	C10—H10	0.9300
O2—C4	1.215 (3)	C11—C12	1.377 (4)
O3—C21	1.364 (3)	C11—H11	0.9300
O3—C8	1.419 (5)	C12—C13	1.379 (4)
N1-C6	1.461 (3)	C13—C14	1.381 (4)
N1-C2	1.466 (3)	C13—H13	0.9300
N1—H1	0.90 (3)	C14—H14	0.9300
С2—С9	1.507 (3)	C15—C17	1.515 (4)
C2—C3	1.557 (3)	C15—C16	1.531 (3)
С2—Н2	0.9800	C15—H15	0.9800
C3—C4	1.512 (4)	C16—H16A	0.9600
C3—C15	1.538 (3)	C16—H16B	0.9600
С3—Н3	0.9800	C16—H16C	0.9600
C4—C5	1.493 (4)	C17—H17A	0.9600
C5—C6	1.533 (4)	C17—H17B	0.9600
С5—Н5А	0.9700	C17—H17C	0.9600
С5—Н5В	0.9700	C18—C19	1.380 (4)
C6—C18	1.501 (4)	C18—C23	1.392 (4)
С6—Н6	0.9800	C19—C20	1.381 (4)
С7—Н7А	0.9600	C19—H19	0.9300
С7—Н7В	0.9600	C20—C21	1.382 (4)

supporting information

С7—Н7С	0.9600	С20—Н20	0.9300
C8—H8A	0.9600	C21—C22	1.382 (4)
C8—H8B	0.9600	C22—C23	1.377 (4)
C8—H8C	0.9600	C22—H22	0.9300
C9—C14	1.377 (3)	С23—Н23	0.9300
C9—C10	1.393 (4)		
C12—O1—C7	118.0 (2)	С9—С10—Н10	119.4
C21—O3—C8	117.5 (3)	C10-C11-C12	120.4 (3)
C6—N1—C2	111.9 (2)	C10-C11-H11	119.8
C6—N1—H1	111.7 (16)	C12—C11—H11	119.8
C2—N1—H1	109.9 (16)	O1—C12—C11	115.9 (2)
N1—C2—C9	110.95 (19)	O1—C12—C13	124.6 (2)
N1—C2—C3	108.06 (19)	C11—C12—C13	119.5 (2)
C9—C2—C3	112.40 (18)	C12—C13—C14	119.3 (2)
N1—C2—H2	108.4	C12—C13—H13	120.4
С9—С2—Н2	108.4	C14—C13—H13	120.4
C3—C2—H2	108.4	C9—C14—C13	122.6 (2)
C4—C3—C15	115.4 (2)	C9—C14—H14	118.7
C4—C3—C2	108.5 (2)	C13—C14—H14	118.7
C15—C3—C2	114.1 (2)	C17—C15—C16	111.0 (2)
С4—С3—Н3	106.0	C17—C15—C3	115.3 (2)
С15—С3—Н3	106.0	C16—C15—C3	111.4 (2)
С2—С3—Н3	106.0	C17—C15—H15	106.2
O2—C4—C5	120.4 (3)	C16—C15—H15	106.2
O2—C4—C3	123.9 (3)	C3—C15—H15	106.2
C5—C4—C3	115.8 (2)	C15—C16—H16A	109.5
C4—C5—C6	112.1 (2)	C15—C16—H16B	109.5
C4—C5—H5A	109.2	H16A—C16—H16B	109.5
С6—С5—Н5А	109.2	C15—C16—H16C	109.5
C4—C5—H5B	109.2	H16A—C16—H16C	109.5
C6—C5—H5B	109.2	H16B—C16—H16C	109.5
H5A—C5—H5B	107.9	C15—C17—H17A	109.5
N1—C6—C18	112.5 (2)	C15—C17—H17B	109.5
N1—C6—C5	106.8 (2)	H17A—C17—H17B	109.5
C18—C6—C5	112.4 (2)	C15—C17—H17C	109.5
N1—C6—H6	108.4	H17A—C17—H17C	109.5
С18—С6—Н6	108.4	H17B—C17—H17C	109.5
С5—С6—Н6	108.4	C19—C18—C23	117.3 (2)
O1—C7—H7A	109.5	C19—C18—C6	120.4 (2)
O1—C7—H7B	109.5	C23—C18—C6	122.4 (2)
H7A—C7—H7B	109.5	C18—C19—C20	122.3 (3)
O1—C7—H7C	109.5	C18—C19—H19	118.9
H7A—C7—H7C	109.5	C20—C19—H19	118.9
H7B—C7—H7C	109.5	C19—C20—C21	119.6 (3)
O3—C8—H8A	109.5	C19—C20—H20	120.2
O3—C8—H8B	109.5	C21—C20—H20	120.2
H8A—C8—H8B	109.5	O3—C21—C22	116.2 (3)

O3—C8—H8C	109.5	O3—C21—C20	124.8 (3)
H8A—C8—H8C	109.5	C22—C21—C20	119.0 (3)
H8B—C8—H8C	109.5	C23—C22—C21	120.8 (3)
C14—C9—C10	117.0 (2)	C23—C22—H22	119.6
C14—C9—C2	121.6 (2)	C21—C22—H22	119.6
C10—C9—C2	121.3 (2)	C22—C23—C18	121.0 (3)
C11—C10—C9	121.3 (2)	С22—С23—Н23	119.5
C11—C10—H10	119.4	C18—C23—H23	119.5
C6—N1—C2—C9	168.49 (19)	C10—C11—C12—C13	-0.7 (4)
C6—N1—C2—C3	-67.9 (2)	O1—C12—C13—C14	-179.8 (2)
N1—C2—C3—C4	54.9 (3)	C11—C12—C13—C14	0.5 (4)
C9—C2—C3—C4	177.7 (2)	C10-C9-C14-C13	-0.1 (4)
N1—C2—C3—C15	-174.9 (2)	C2—C9—C14—C13	-177.6 (2)
C9—C2—C3—C15	-52.1 (3)	C12—C13—C14—C9	-0.1 (4)
C15—C3—C4—O2	3.0 (4)	C4—C3—C15—C17	61.6 (3)
C2—C3—C4—O2	132.5 (3)	C2—C3—C15—C17	-65.1 (3)
C15—C3—C4—C5	-177.4 (2)	C4—C3—C15—C16	-66.0 (3)
C2—C3—C4—C5	-47.9 (3)	C2-C3-C15-C16	167.3 (2)
O2—C4—C5—C6	-131.9 (3)	N1-C6-C18-C19	120.8 (3)
C3—C4—C5—C6	48.5 (4)	C5—C6—C18—C19	-118.7 (3)
C2-N1-C6-C18	-170.4 (2)	N1-C6-C18-C23	-61.0 (3)
C2—N1—C6—C5	65.9 (3)	C5—C6—C18—C23	59.5 (3)
C4—C5—C6—N1	-53.8 (3)	C23-C18-C19-C20	-0.5 (4)
C4—C5—C6—C18	-177.6 (3)	C6-C18-C19-C20	177.9 (2)
N1-C2-C9-C14	-131.8 (2)	C18—C19—C20—C21	0.7 (4)
C3—C2—C9—C14	107.1 (3)	C8—O3—C21—C22	-178.0 (3)
N1-C2-C9-C10	50.7 (3)	C8—O3—C21—C20	1.6 (5)
C3—C2—C9—C10	-70.4 (3)	C19—C20—C21—O3	179.7 (3)
C14—C9—C10—C11	-0.2 (4)	C19—C20—C21—C22	-0.8 (4)
C2-C9-C10-C11	177.4 (2)	O3—C21—C22—C23	-179.7 (3)
C9—C10—C11—C12	0.6 (4)	C20—C21—C22—C23	0.7 (4)
C7—O1—C12—C11	-175.9 (3)	C21—C22—C23—C18	-0.5 (4)
C7—O1—C12—C13	4.4 (4)	C19—C18—C23—C22	0.4 (4)
C10-C11-C12-O1	179.6 (2)	C6—C18—C23—C22	-177.9 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H…A
N1—H1····O1 ⁱ	0.90 (2)	2.66 (2)	3.538 (2)	167.4 (17)
C16—H16 A ···O1 ⁿ	0.96	2.57	3.474 (4)	156

Symmetry codes: (i) x-1/2, -y+3/2, -z; (ii) x+1/2, -y+3/2, -z.