

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diiodido{2-[(4-methoxyphenyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }zinc

Sadegh Salehzadeh,^a* Mehdi Khalaj^a and Saeed Dehghanpour^b

^aFaculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran, and ^bDepartment of Chemistry, Alzahra University, Tehran, Iran Correspondence e-mail: saleh@basu.ac.ir

Received 25 June 2012; accepted 4 July 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.061; data-to-parameter ratio = 20.7.

In the title complex, $[ZnI_2(C_{13}H_{12}N_2O)]$, the Zn^{II} atom has a distorted tetrahedral coordination. The organic ligand is bidentate, coordinating the Zn^{II} atom *via* the two N atoms. The benzene and pyridine rings are oriented at a dihedral angle of 11.67 (9)°. In the crystal, weak $C-H\cdots I$ and $C-H\cdots O$ hydrogen bonds are observed, in addition to $\pi-\pi$ stacking interactions, with a centroid–centroid distance of 3.72 (5) Å.

Related literature

For the synthesis of the ligand, see: Dehghanpour *et al.* (2009). For related structures, see: Talei Bavil Olyai *et al.* (2008); Khalaj *et al.* (2008); Wriedt *et al.* (2008).

Experimental

Crystal data $[ZnI_2(C_{13}H_{12}N_2O)]$ $M_r = 531.42$

Triclinic, $P\overline{1}$ a = 8.0290 (15) Å Mo $K\alpha$ radiation

 $0.25 \times 0.12 \times 0.08 \text{ mm}$

 $\mu = 5.46 \text{ mm}^{-1}$

T = 150 K

Z = 2

b = 10.002 (2) Å	
c = 10.538 (2) Å	
$\alpha = 83.498 \ (4)^{\circ}$	
$\beta = 80.208 \ (4)^{\circ}$	
$\gamma = 71.441 \ (4)^{\circ}$	
V = 789.0 (3) Å ³	

Data collection

Bruker APEX DUO diffractometer	6595 measured reflections
Absorption correction: multi-scan	3584 independent reflections
(SADABS; Sheldrick, 1996)	3165 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.591, \ T_{\max} = 0.746$	$R_{\rm int} = 0.019$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.024$ 173 parameters $wR(F^2) = 0.061$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.97$ e Å $^{-3}$ 3584 reflections $\Delta \rho_{min} = -0.96$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6A\cdots I2^{i}$ $C1-H1A\cdots O1^{ii}$	0.95 0.95	3.13 2.47	3.761 (3) 3.338 (4)	125 152
Summatry and as (i)	x 1	- 1. (ii) x + 1 y	- 1	

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z - 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors would like to acknowledge the Bu-Ali Sina University for partial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2207).

References

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205– 1210.

Khalaj, M., Dehghanpour, S. & Mahmoudi, A. (2008). *Acta Cryst.* E64, m1018. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Talei Bavil Olyai, M. R., Dehghanpour, S., Hoormehr, B., Gholami, F. & Khavasi, H. R. (2008). Acta Cryst. E64, m1191.

Wriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m11.

supporting information

Acta Cryst. (2012). E68, m1041 [https://doi.org/10.1107/S1600536812030486] Diiodido{2-[(4-methoxyphenyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }zinc

Sadegh Salehzadeh, Mehdi Khalaj and Saeed Dehghanpour

S1. Comment

In ongoing our research interest on synthesis and characterization of metal complexes containing bidentate Schiff base ligands (Dehghanpour *et al.* (2009)), here we report structure of the zinc complex of the Schiff base of (4-methoxy-phenyl)pyridin-2-ylmethyleneamine. The title complex, (I), was prepared by the reaction of ZnI_2 with the bidentate ligand (4-methoxyphenyl)pyridin-2-ylmethyleneamine.

The molecular structure of the title complex, and the atom numbering scheme are shown in Fig. 1. The metal centre has a tetrahedral coordination which shows significant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle is much narrower than the ideal tetrahedral angle of 109.5, whereas the opposite I1—Zn1—I2 angle is much wider than the ideal tetrahedral angle. The Zn—I and Zn—N bond dimensions compare well with the values found in other tetrahedral Schiff base adducts of Zinc iodode (Talei Bavil Olyai *et al.* (2008); Khalaj *et al.*, (2008); Wriedt *et al.*, (2008)). In the crystal, weak C—H…I and C—H…O hydrogen bonds are observed in addition to π - π stacking interactions with a centroid to centroid distance of 3.72 (5) Å for Cg1… $Cg2^i$ (where Cg1 and Cg2 are centroids of the N1—C1—C5 and C7—C12 rings; symmetry code: 1 - x, -y, 1 - z)fig. 2.

S2. Experimental

The title complex was prepared by the reaction of ZnI_2 (31.9 mg, 0.1 mmol) and (4-methoxyphenyl)pyridin-2-ylmethyleneamine (21.2 mg, 0.1 mmol) in 15 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and yellow crystals of the title compound suitable for X-ray analysis precipitated within few days.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.95–0.98 Å and included in the refinement with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$.

Figure 1

A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [H atoms are represented as spheres of arbitrary radius].

Figure 2

A view of the packing of title molecules along the b axis, in which the Zn, I, N, C and H atoms are shown in green, purple, blue, grey and white balls, respectively.

Diiodido{2-[(4-methoxyphenyl)iminomethyl]pyridine- $\kappa^2 N, N'$ }zinc

Crystal data	
$\begin{bmatrix} ZnI_2(C_{13}H_{12}N_2O) \end{bmatrix}$ $M_r = 531.42$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.0290 (15) Å b = 10.002 (2) Å c = 10.538 (2) Å $a = 83.498 (4)^{\circ}$ $\beta = 80.208 (4)^{\circ}$ $\gamma = 71.441 (4)^{\circ}$ $V = 789.0 (3) \text{ Å}^{3}$	Z = 2 F(000) = 496 $D_x = 2.237 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4756 reflections $\theta = 2.7-27.5^{\circ}$ $\mu = 5.46 \text{ mm}^{-1}$ T = 150 K Needle, yellow $0.25 \times 0.12 \times 0.08 \text{ mm}$
Data collection Bruker APEX DUO diffractometer Radiation source: fine-focus sealed tube	Bruker Triumph monochromator φ and ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.019$
(SADABS; Sheldrick, 1996)	$\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 2.0^\circ$
$T_{\min} = 0.591, \ T_{\max} = 0.746$	$h = -10 \rightarrow 10$
6595 measured reflections	$k = -12 \rightarrow 12$
3584 independent reflections	$l = -13 \rightarrow 13$
3165 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.061$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3584 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0321P)^2 + 0.2822P]$
173 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.97 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.96 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}^{*}/U_{ m eq}$	
Zn1	0.29826 (5)	0.21887 (4)	0.31555 (3)	0.02060 (9)	
I1	0.03469 (3)	0.34732 (2)	0.19749 (2)	0.02706 (7)	
I2	0.48121 (3)	0.36778 (2)	0.36178 (2)	0.02624 (7)	
01	-0.2104 (3)	0.2079 (3)	0.9260 (2)	0.0298 (5)	
N1	0.4611 (3)	0.0328 (3)	0.2380 (2)	0.0209 (5)	
N2	0.2355 (3)	0.0735 (3)	0.4600 (2)	0.0181 (5)	
C1	0.5851 (4)	0.0129 (4)	0.1337 (3)	0.0272 (7)	
H1A	0.6042	0.0931	0.0833	0.033*	
C2	0.6867 (4)	-0.1210 (4)	0.0967 (3)	0.0298 (8)	
H2A	0.7753	-0.1314	0.0231	0.036*	
C3	0.6591 (4)	-0.2385 (4)	0.1666 (3)	0.0296 (7)	
H3A	0.7263	-0.3308	0.1414	0.035*	
C4	0.5294 (4)	-0.2188 (4)	0.2758 (3)	0.0271 (7)	
H4A	0.5066	-0.2975	0.3265	0.033*	
C5	0.4351 (4)	-0.0822 (3)	0.3085 (3)	0.0194 (6)	
C6	0.3046 (4)	-0.0532 (3)	0.4257 (3)	0.0214 (6)	
H6A	0.2717	-0.1283	0.4759	0.026*	
C7	0.1168 (4)	0.1062 (3)	0.5786 (3)	0.0182 (6)	
C8	0.0968 (4)	0.0023 (3)	0.6749 (3)	0.0222 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

H8A	0.1596	-0.0943	0.6620	0.027*	
C9	-0.0142 (4)	0.0400 (3)	0.7885 (3)	0.0244 (7)	
H9A	-0.0283	-0.0309	0.8537	0.029*	
C10	-0.1054 (4)	0.1810 (3)	0.8083 (3)	0.0220 (6)	
C11	-0.0880(4)	0.2861 (3)	0.7136 (3)	0.0243 (7)	
H11A	-0.1521	0.3825	0.7262	0.029*	
C12	0.0264 (4)	0.2462 (3)	0.5993 (3)	0.0241 (7)	
H12A	0.0422	0.3170	0.5344	0.029*	
C13	-0.2999 (5)	0.3525 (4)	0.9528 (3)	0.0327 (8)	
H13A	-0.3631	0.3573	1.0411	0.049*	
H13B	-0.3849	0.3951	0.8920	0.049*	
H13C	-0.2128	0.4041	0.9436	0.049*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Znl	0.02370 (17)	0.01803 (19)	0.01862 (18)	-0.00642 (14)	-0.00014 (13)	0.00062 (14)
I1	0.02842 (11)	0.02108 (12)	0.03186 (13)	-0.00595 (8)	-0.00941 (9)	0.00063 (9)
I2	0.03011 (12)	0.02100 (12)	0.02954 (12)	-0.00861 (8)	-0.00965 (8)	0.00107 (9)
O1	0.0389 (13)	0.0246 (13)	0.0197 (12)	-0.0077 (10)	0.0096 (10)	-0.0021 (10)
N1	0.0222 (12)	0.0215 (14)	0.0189 (12)	-0.0063 (10)	-0.0031 (10)	-0.0017 (11)
N2	0.0190 (11)	0.0183 (13)	0.0164 (12)	-0.0058 (10)	-0.0023 (9)	0.0018 (10)
C1	0.0308 (16)	0.0309 (19)	0.0207 (16)	-0.0142 (14)	0.0033 (13)	-0.0015 (14)
C2	0.0252 (15)	0.039 (2)	0.0240 (17)	-0.0089 (14)	0.0051 (13)	-0.0106 (15)
C3	0.0290 (16)	0.0281 (19)	0.0274 (18)	-0.0010 (14)	-0.0028 (13)	-0.0086 (15)
C4	0.0333 (16)	0.0208 (17)	0.0245 (17)	-0.0040 (13)	-0.0052 (13)	-0.0008 (13)
C5	0.0195 (13)	0.0199 (16)	0.0184 (14)	-0.0052 (11)	-0.0046 (11)	0.0013 (12)
C6	0.0237 (14)	0.0206 (16)	0.0183 (15)	-0.0060 (12)	-0.0010 (11)	-0.0004 (12)
C7	0.0177 (13)	0.0200 (15)	0.0165 (14)	-0.0069 (11)	-0.0013 (11)	0.0014 (12)
C8	0.0256 (15)	0.0164 (15)	0.0226 (15)	-0.0049 (12)	-0.0022 (12)	0.0010 (12)
C9	0.0283 (15)	0.0204 (16)	0.0225 (16)	-0.0084 (13)	0.0013 (12)	0.0027 (13)
C10	0.0234 (14)	0.0254 (17)	0.0171 (14)	-0.0092 (12)	0.0003 (11)	-0.0006 (13)
C11	0.0283 (15)	0.0163 (15)	0.0234 (16)	-0.0029 (12)	0.0013 (13)	-0.0006 (13)
C12	0.0293 (15)	0.0200 (16)	0.0209 (15)	-0.0085 (13)	0.0021 (12)	0.0023 (13)
C13	0.0432 (19)	0.0264 (19)	0.0227 (17)	-0.0080(15)	0.0092 (14)	-0.0058 (14)

Geometric parameters (Å, °)

Zn1—N1	2.067 (3)	C4—H4A	0.9500
Zn1—N2	2.095 (3)	C5—C6	1.468 (4)
Zn1—I2	2.5326 (5)	C6—H6A	0.9500
Zn1—I1	2.5455 (5)	C7—C12	1.380 (4)
O1—C10	1.377 (3)	C7—C8	1.395 (4)
O1—C13	1.432 (4)	C8—C9	1.376 (4)
N1-C1	1.338 (4)	C8—H8A	0.9500
N1C5	1.351 (4)	C9—C10	1.388 (4)
N2—C6	1.278 (4)	С9—Н9А	0.9500
N2—C7	1.438 (4)	C10—C11	1.389 (4)

supporting information

1.388 (5)	C11—C12	1.397 (4)
0.9500	C11—H11A	0.9500
1.373 (5)	C12—H12A	0.9500
0.9500	C13—H13A	0.9800
1.400 (5)	С13—Н13В	0.9800
0.9500	C13—H13C	0.9800
1.385 (4)		
80.45 (10)	N2—C6—C5	119.7 (3)
110.55 (7)	N2—C6—H6A	120.1
118.95 (7)	С5—С6—Н6А	120.1
114.61 (7)	C12—C7—C8	119.4 (3)
111.29 (7)	C12—C7—N2	118.2 (3)
116.02 (2)	C8—C7—N2	122.3 (3)
117.6 (3)	C9—C8—C7	119.9 (3)
118.3 (3)	С9—С8—Н8А	120.1
129.6 (2)	С7—С8—Н8А	120.1
112.07 (19)	C8—C9—C10	120.4 (3)
121.8 (3)	С8—С9—Н9А	119.8
111.4 (2)	С10—С9—Н9А	119.8
126.6 (2)	O1—C10—C9	115.9 (3)
122.1 (3)	O1—C10—C11	123.4 (3)
118.9	C9—C10—C11	120.7 (3)
118.9	C10-C11-C12	118.2 (3)
120.0 (3)	C10-C11-H11A	120.9
120.0	C12—C11—H11A	120.9
120.0	C7—C12—C11	121.4 (3)
118.2 (3)	C7—C12—H12A	119.3
120.9	C11—C12—H12A	119.3
120.9	O1—C13—H13A	109.5
118.7 (3)	O1—C13—H13B	109.5
120.6	H13A—C13—H13B	109.5
120.6	O1—C13—H13C	109.5
122.6 (3)	H13A—C13—H13C	109.5
115.5 (3)	H13B—C13—H13C	109.5
121.9 (3)		
	$\begin{array}{c} 1.388 (5) \\ 0.9500 \\ 1.373 (5) \\ 0.9500 \\ 1.400 (5) \\ 0.9500 \\ 1.385 (4) \\ \\ \hline \\ 80.45 (10) \\ 110.55 (7) \\ 118.95 (7) \\ 114.61 (7) \\ 111.29 (7) \\ 116.02 (2) \\ 117.6 (3) \\ 118.3 (3) \\ 129.6 (2) \\ 112.07 (19) \\ 121.8 (3) \\ 111.4 (2) \\ 126.6 (2) \\ 122.1 (3) \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 118.9 \\ 120.0 (3) \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.0 \\ 120.6 \\ 120.6 \\ 120.6 \\ 120.6 \\ 120.6 \\ 120.6 \\ 120.6 \\ 120.6 \\ 120.6 \\ 121.9 (3) \\ \end{array}$	1.388 (5) $C11-C12$ 0.9500 $C11-H11A$ 1.373 (5) $C12-H12A$ 0.9500 $C13-H13A$ 1.400 (5) $C13-H13B$ 0.9500 $C13-H13B$ 0.9500 $C13-H13B$ 0.9500 $C13-H13C$ 1.385 (4) 0.5500 80.45 (10) $N2-C6-C5$ 110.55 (7) $N2-C6-H6A$ 118.95 (7) $C5-C6-H6A$ 114.61 (7) $C12-C7-C8$ 111.29 (7) $C12-C7-N2$ 116.02 (2) $C8-C7-N2$ 116.02 (2) $C8-C9-C10$ 121.8 (3) $C9-C8-H8A$ 12.07 (19) $C8-C9-C10$ 121.8 (3) $C8-C9-H9A$ 111.4 (2) $C10-C9-H9A$ 126.6 (2) $01-C10-C11$ 118.9 $C10-C11-C12$ 120.0 (3) $C10-C11-H11A$ 120.0 $C7-C12-H12A$ 120.0 $C7-C12-H12A$ 120.9 $C11-C12-H12A$ 120.9 $C1-C13-H13B$ 120.6 $H13A-C13-H13B$

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C6—H6A···I2 ⁱ	0.95	3.13	3.761 (3)	125
C1—H1A···O1 ⁱⁱ	0.95	2.47	3.338 (4)	152

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z-1.