## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## catena-Poly[[(acetato- $\kappa^2 O, O'$ )[2-(4-oxo-1,4-dihydroquinolin-1-yl)acetato- $\kappa O^1$ ]copper(II)]- $\mu$ -4,4'-bipyridine- $\kappa^2 N:N'$ ]

#### Jun Wang, Chuntao Dai and Jianhua Nie\*

Zhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China

Correspondence e-mail: wangjun7203@126.com

Received 17 July 2012; accepted 20 July 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; *R* factor = 0.035; w*R* factor = 0.087; data-to-parameter ratio = 12.5.

In the title compound,  $[Cu(C_{11}H_8NO_3)(CH_3COO)-(C_{10}H_8N_2)]_n$ , the Cu<sup>II</sup> ion is six-coordinated by two N atoms from two 4,4'-bipyridine ligands, four O atoms from one acetate ligand, one 2-(4-oxo-1,4-dihydroquinolin-1-yl)acetate ligand and one water molecule in a distorted octahedral geometry. The 4,4'-bipyridine ligands interconnect  $[Cu(C_{11}H_8-NO_3)(CH_3COO)]$  units, giving rise to a chain along [010]. These chains are further linked to each other by  $O-H\cdots O$  hydrogen bonds, leading to a two-dimensional supramolecular network parallel to (100).

#### **Related literature**

For the structures of similar  $Cd^{II}$  and  $Ag^{I}$  complexes, see: Wang *et al.* (2010).



### Experimental

#### Crystal data

[Cu(C<sub>11</sub>H<sub>8</sub>NO<sub>3</sub>)(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)- $\beta = 71.27 \ (3)^{\circ}$  $(C_{10}H_8N_2)$ ]  $\gamma = 88.03 (3)^{\circ}$  $M_r = 498.97$ V = 1071.3 (5) Å<sup>3</sup> Triclinic,  $P\overline{1}$ Z = 2a = 9.543 (2) Å Mo  $K\alpha$  radiation b = 11.121 (2) Å  $\mu = 1.07 \text{ mm}^{-1}$ c = 11.381 (2) Å T = 298 K $\alpha = 70.03 (3)^{\circ}$  $0.35 \times 0.26 \times 0.22 \text{ mm}$ 

#### Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\rm min} = 0.707, T_{\rm max} = 0.799$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.035$ |  |
|---------------------------------|--|
| $wR(F^2) = 0.087$               |  |
| S = 1.03                        |  |
| 3815 reflections                |  |
| 305 parameters                  |  |
| 3 restraints                    |  |

## Table 1Hydrogen-bond geometry (Å, $^{\circ}$ ).

| , , ,                                        |                      |                         |                        |                                      |
|----------------------------------------------|----------------------|-------------------------|------------------------|--------------------------------------|
| $D - H \cdots A$                             | $D-\mathrm{H}$       | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $O1W-H1W\cdots O3^{i}$<br>$O1W-H2W\cdots O2$ | 0.83 (1)<br>0.83 (1) | 1.98 (1)<br>1.99 (2)    | 2.795 (3)<br>2.740 (4) | 166 (3)<br>151 (2)                   |
|                                              |                      |                         |                        |                                      |

5588 measured reflections

 $R_{\rm int} = 0.018$ 

refinement

 $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$ 

3815 independent reflections

3217 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

Symmetry code: (i) x, y, z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The work was supported by Zhongshan Polytechnic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2474).

#### References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, J., Fan, J., Guo, L. Y., Yin, X., Wang, Z. H. & Zhang, W. G. (2010). Inorg. Chem. Commun. 13, 322–325.

*Acta Cryst.* (2012). E68, m1132 [https://doi.org/10.1107/S160053681203303X]

*catena*-Poly[[(acetato- $\kappa^2 O, O'$ )[2-(4-oxo-1,4-dihydroquinolin-1-yl)acetato- $\kappa O^1$ ]copper(II)]- $\mu$ -4,4'-bipyridine- $\kappa^2 N$ :N']

## Jun Wang, Chuntao Dai and Jianhua Nie

## S1. Comment

The title compound was obtained upon the reaction of 4-Oxo-1(4*H*) quinolineacetic acid, 4,4'-bipyridine and copper acetate. In the asymmetric unit of the title compound (I) (Fig. 1), each Cu<sup>II</sup> ion is six-coordinated by two N atoms from two 4,4'-bipyridine ligands, four O atoms from one acetate ligand, one 4-Oxo-1(4*H*)quinolineacetate ligand and one water molecule in a distorted octahedral geometry. The Cu1-O5 bond distance is 2.720 (2)Å, indicative of a weak bond. Similar arrangements are observed in the structures of related mixed-ligand Cd(II) and Ag(I) complexes (Wang *et al.*, 2010). 4,4'-bipyridine ligands interconnect [Cu(CH<sub>3</sub>COO)(C<sub>11</sub>H<sub>8</sub>NO<sub>3</sub>)] moieties, giving rise to a one-dimensional chain along [010]. These chains further link to each other by O—H···O hydrogen bonds (Table 1), leading to a 2D supramolecular network parallel to (100) (Fig. 2).

### **S2. Experimental**

The title complex was prepared by the addition of a stoichiometric amount of copper acetate (0.181 g; 1 mmol) and 4,4'bipyridine (0.156 h; 1 mmol) to a hot water/ethanol (v/v = 1:1) solution (5 ml) of 4-Oxo-1(4*H*) quinolineacetic acid (0.203 g; 1 mmol). The pH was then adjusted to 7.0 to 8.0 with NaOH (10 m*M*/*L*). The resulting solution was filtered, and colorless crystals were obtained at room temperature on slow evaporation of the solvent over several days.

## S3. Refinement

Hydrogen atoms were located in a difference Fourier map. C—H's were further placed at calculated positions (C—H = 0.95–0.99 Å); O—H were refined with restrained O—H = 0.83 (1) Å). In all cases,  $U_{iso}$ (H) were set to 1.2–1.5 times  $U_{eq}$ (C, O).



## Figure 1

Molecular view of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (i) x, 1 + y, z.".





*catena*-Poly[[(acetato- $\kappa^2 O, O'')$ [2-(4-oxo-1,4- dihydroquinolin-1-yl)acetato- $\kappa O^1$ ]copper(II)]- $\mu$ -4,4'-bipyridine- $\kappa^2 N:N'$ ]

#### Crystal data

| $[Cu(C_{11}H_8NO_3)(C_2H_3O_2)(C_{10}H_8N_2)]$ |
|------------------------------------------------|
| $M_r = 498.97$                                 |
| Triclinic, $P\overline{1}$                     |
| Hall symbol: -P 1                              |
| a = 9.543 (2) Å                                |
| b = 11.121 (2) Å                               |
| c = 11.381 (2) Å                               |
| $\alpha = 70.03 \ (3)^{\circ}$                 |
| $\beta = 71.27 \ (3)^{\circ}$                  |
| $\gamma = 88.03 \ (3)^{\circ}$                 |
| V = 1071.3 (5) Å <sup>3</sup>                  |
|                                                |

Data collection

Bruker APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scan Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{\min} = 0.707, T_{\max} = 0.799$ 

Primary atom site location: structure-invariant

Refinement

Refinement on  $F^2$ 

 $wR(F^2) = 0.087$ 

3815 reflections

305 parameters

direct methods

3 restraints

S = 1.03

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 

Z = 2 F(000) = 514  $D_x = 1.547 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3600 reflections  $\theta = 1.3-28.0^{\circ}$   $\mu = 1.07 \text{ mm}^{-1}$ T = 298 K Block, blue  $0.35 \times 0.26 \times 0.22 \text{ mm}$ 

5588 measured reflections 3815 independent reflections 3217 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.018$   $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.0^{\circ}$   $h = -6 \rightarrow 11$   $k = -13 \rightarrow 12$  $l = -13 \rightarrow 13$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.615P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.27$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.29$  e Å<sup>-3</sup>

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x           | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|-------------|-------------|-----------------------------|
| Cu1 | 0.11865 (4) | 0.27261 (3) | 0.20437 (3) | 0.02973 (11)                |

| 01        | 0.2694 (2)             | 0.32890 (16)           | 0.02845 (18)           | 0.0357 (4)             |
|-----------|------------------------|------------------------|------------------------|------------------------|
| 02        | 0.4718 (3)             | 0.3200 (3)             | 0.0881 (2)             | 0.0671 (7)             |
| 03        | 0.2324 (3)             | 0.3238 (3)             | -0.4737 (2)            | 0.0694 (7)             |
| O4        | -0.0535 (2)            | 0.22122 (16)           | 0.36609 (17)           | 0.0357 (4)             |
| 05        | -0.1717(3)             | 0.2636 (2)             | 0.2207 (2)             | 0.0624 (6)             |
| N1        | 0.4365 (3)             | 0.3819 (2)             | -0.2305(2)             | 0.0394 (6)             |
| N2        | 0.1132(2)              | 0.09355(19)            | 0.1985(2)              | 0.0319(5)              |
| N3        | 0.1122(2)              | -0.54349(19)           | 0.1965(2)              | 0.0295(5)              |
| C1        | 0.1123(2)<br>0.4073(3) | 0.3444(3)              | 0.1909(2)<br>0.0058(3) | 0.0293(3)<br>0.0391(7) |
| $C^2$     | 0.1073(3)              | 0.3111(3)<br>0.4057(3) | -0.1394(3)             | 0.0351(7)              |
| U2<br>H2A | 0.5156                 | 0.4076                 | -0.1608                | 0.0432(7)              |
| H2R       | 0.5087                 | 0.4970                 | -0.1526                | 0.054*                 |
| C2        | 0.3987<br>0.3660 (4)   | 0.3720<br>0.4747(3)    | -0.2056(3)             | 0.034                  |
| 112       | 0.3000 (4)             | 0.4/4/ (5)             | -0.2930(3)             | 0.0499 (8)             |
| П3        | 0.3033                 | 0.3557                 | -0.2844                | $0.000^{\circ}$        |
|           | 0.2970 (4)             | 0.4590 (3)             | -0.3/56(3)             | 0.0562 (9)             |
| H4        | 0.2525                 | 0.5277                 | -0.4192                | 0.06/*                 |
| C5        | 0.2900 (3)             | 0.3401 (3)             | -0.3956 (3)            | 0.04/4 (/)             |
| C6        | 0.3541 (3)             | 0.2366 (3)             | -0.3155 (3)            | 0.0395 (7)             |
| C7        | 0.3422 (3)             | 0.1112 (3)             | -0.3155 (3)            | 0.0494 (8)             |
| H7        | 0.2886                 | 0.0941                 | -0.3642                | 0.059*                 |
| C8        | 0.4068 (4)             | 0.0137 (3)             | -0.2466 (3)            | 0.0559 (9)             |
| H8        | 0.3966                 | -0.0689                | -0.2472                | 0.067*                 |
| C9        | 0.4884 (4)             | 0.0404 (3)             | -0.1749 (3)            | 0.0559 (9)             |
| H9        | 0.5364                 | -0.0246                | -0.1304                | 0.067*                 |
| C10       | 0.4991 (3)             | 0.1599 (3)             | -0.1692 (3)            | 0.0474 (7)             |
| H10       | 0.5523                 | 0.1751                 | -0.1193                | 0.057*                 |
| C11       | 0.4307 (3)             | 0.2601 (3)             | -0.2377 (3)            | 0.0377 (6)             |
| C12       | -0.1719 (3)            | 0.2234 (3)             | 0.3354 (3)             | 0.0393 (7)             |
| C13       | -0.3133 (4)            | 0.1725 (3)             | 0.4495 (3)             | 0.0604 (9)             |
| H13A      | -0.3963                | 0.1882                 | 0.4175                 | 0.091*                 |
| H13B      | -0.3225                | 0.2150                 | 0.5119                 | 0.091*                 |
| H13C      | -0.3117                | 0.0819                 | 0.4919                 | 0.091*                 |
| C14       | 0.0857 (3)             | -0.0086(2)             | 0.3104 (3)             | 0.0402 (7)             |
| H14       | 0.0704                 | 0.0056                 | 0.3894                 | 0.048*                 |
| C15       | 0.0791 (3)             | -0.1324(2)             | 0.3141 (3)             | 0.0399 (7)             |
| H15       | 0.0585                 | -0 1998                | 0 3946                 | 0.048*                 |
| C16       | 0.1030(3)              | -0.1582(2)             | 0.1983(2)              | 0.0282(5)              |
| C17       | 0.1312(3)              | -0.0516(2)             | 0.1905(2)<br>0.0827(3) | 0.0202(5)<br>0.0324(6) |
| H17       | 0.1312 (3)             | -0.0631                | 0.0027 (5)             | 0.0324 (0)             |
| C18       | 0.1474<br>0.1352 (3)   | 0.0031                 | 0.0025                 | 0.037<br>0.0345(6)     |
|           | 0.1552 (5)             | 0.0702 (2)             | 0.0802 (5)             | 0.0343(0)              |
| П18       | 0.1007 (2)             | 0.1393                 | 0.0074<br>0.1072 (2)   | $0.041^{\circ}$        |
| C19       | 0.1027(3)              | -0.2911(2)             | 0.1972(2)              | 0.0272(3)              |
| C20       | 0.0947 (3)             | -0.3960 (2)            | 0.3098 (3)             | 0.0341 (6)             |
| H20       | 0.08/0                 | -0.3833                | 0.3882                 | 0.041*                 |
| C21       | 0.1165 (3)             | -0.3182 (2)            | 0.0836 (3)             | 0.0370 (6)             |
| H21       | 0.1219                 | -0.2519                | 0.0053                 | 0.044*                 |
| C22       | 0.1220 (3)             | -0.4430 (2)            | 0.0868 (3)             | 0.0363 (6)             |
| H22       | 0.1331                 | -0.4584                | 0.0091                 | 0.044*                 |

| C23 | 0.0982 (3) | -0 5181 (2) | 0 3063 (3) | 0 0346 (6) |
|-----|------------|-------------|------------|------------|
| H23 | 0.0903     | -0.5864     | 0.3838     | 0.041*     |
| O1W | 0.2742 (3) | 0.2058 (2)  | 0.3379 (2) | 0.0547 (6) |
| H1W | 0.271 (4)  | 0.232 (3)   | 0.399 (2)  | 0.082*     |
| H2W | 0.355 (2)  | 0.232 (4)   | 0.278 (2)  | 0.082*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|-------------|--------------|--------------|--------------|---------------|---------------|
| Cu1 | 0.0389 (2)  | 0.02133 (17) | 0.03041 (19) | 0.00295 (13) | -0.00988 (14) | -0.01232 (13) |
| 01  | 0.0385 (11) | 0.0323 (10)  | 0.0359 (10)  | -0.0001 (8)  | -0.0065 (9)   | -0.0165 (8)   |
| O2  | 0.0590 (15) | 0.103 (2)    | 0.0461 (14)  | 0.0028 (14)  | -0.0246 (12)  | -0.0273 (13)  |
| O3  | 0.0803 (18) | 0.0945 (19)  | 0.0690 (16)  | 0.0325 (15)  | -0.0506 (15)  | -0.0497 (15)  |
| O4  | 0.0438 (11) | 0.0315 (10)  | 0.0302 (10)  | 0.0017 (8)   | -0.0093 (9)   | -0.0115 (8)   |
| 05  | 0.0623 (15) | 0.0840 (17)  | 0.0379 (13)  | 0.0036 (13)  | -0.0206 (12)  | -0.0136 (12)  |
| N1  | 0.0356 (13) | 0.0506 (14)  | 0.0342 (13)  | -0.0017 (11) | -0.0076 (11)  | -0.0207 (11)  |
| N2  | 0.0425 (13) | 0.0232 (11)  | 0.0305 (12)  | 0.0020 (10)  | -0.0107 (10)  | -0.0111 (9)   |
| N3  | 0.0350 (12) | 0.0236 (10)  | 0.0303 (12)  | 0.0026 (9)   | -0.0091 (10)  | -0.0114 (9)   |
| C1  | 0.0439 (17) | 0.0395 (15)  | 0.0404 (16)  | 0.0009 (13)  | -0.0137 (14)  | -0.0219 (13)  |
| C2  | 0.0376 (16) | 0.0578 (19)  | 0.0428 (17)  | -0.0086 (14) | -0.0091 (14)  | -0.0233 (15)  |
| C3  | 0.056 (2)   | 0.0464 (18)  | 0.052 (2)    | 0.0063 (16)  | -0.0170 (17)  | -0.0237 (15)  |
| C4  | 0.064 (2)   | 0.057 (2)    | 0.059 (2)    | 0.0206 (17)  | -0.0325 (19)  | -0.0248 (17)  |
| C5  | 0.0435 (17) | 0.066 (2)    | 0.0431 (17)  | 0.0159 (15)  | -0.0192 (15)  | -0.0278 (16)  |
| C6  | 0.0339 (15) | 0.0539 (18)  | 0.0357 (15)  | 0.0067 (13)  | -0.0089 (13)  | -0.0243 (14)  |
| C7  | 0.0439 (18) | 0.065 (2)    | 0.0473 (19)  | 0.0033 (16)  | -0.0119 (15)  | -0.0328 (17)  |
| C8  | 0.065 (2)   | 0.0495 (19)  | 0.052 (2)    | 0.0059 (17)  | -0.0100 (18)  | -0.0242 (16)  |
| C9  | 0.063 (2)   | 0.053 (2)    | 0.0460 (19)  | 0.0169 (17)  | -0.0156 (17)  | -0.0135 (16)  |
| C10 | 0.0442 (18) | 0.063 (2)    | 0.0396 (17)  | 0.0089 (15)  | -0.0177 (15)  | -0.0200 (15)  |
| C11 | 0.0330 (15) | 0.0481 (16)  | 0.0300 (14)  | 0.0026 (13)  | -0.0043 (12)  | -0.0167 (13)  |
| C12 | 0.0459 (17) | 0.0339 (15)  | 0.0349 (16)  | 0.0025 (13)  | -0.0085 (13)  | -0.0125 (12)  |
| C13 | 0.051 (2)   | 0.070 (2)    | 0.051 (2)    | -0.0039 (18) | -0.0039 (17)  | -0.0207 (18)  |
| C14 | 0.064 (2)   | 0.0297 (14)  | 0.0273 (14)  | 0.0032 (13)  | -0.0118 (14)  | -0.0138 (12)  |
| C15 | 0.067 (2)   | 0.0244 (13)  | 0.0267 (14)  | 0.0032 (13)  | -0.0134 (14)  | -0.0086 (11)  |
| C16 | 0.0316 (14) | 0.0248 (13)  | 0.0306 (14)  | 0.0030 (11)  | -0.0109 (11)  | -0.0121 (11)  |
| C17 | 0.0465 (16) | 0.0278 (13)  | 0.0275 (14)  | 0.0048 (12)  | -0.0149 (12)  | -0.0127 (11)  |
| C18 | 0.0491 (17) | 0.0243 (13)  | 0.0302 (14)  | 0.0019 (12)  | -0.0152 (13)  | -0.0074 (11)  |
| C19 | 0.0307 (14) | 0.0231 (12)  | 0.0290 (14)  | 0.0035 (10)  | -0.0099 (11)  | -0.0104 (10)  |
| C20 | 0.0492 (17) | 0.0281 (13)  | 0.0265 (14)  | 0.0058 (12)  | -0.0106 (12)  | -0.0132 (11)  |
| C21 | 0.0605 (19) | 0.0248 (13)  | 0.0293 (14)  | 0.0065 (13)  | -0.0207 (14)  | -0.0084 (11)  |
| C22 | 0.0569 (18) | 0.0272 (13)  | 0.0325 (15)  | 0.0066 (13)  | -0.0206 (14)  | -0.0146 (11)  |
| C23 | 0.0470 (16) | 0.0246 (13)  | 0.0270 (14)  | 0.0046 (12)  | -0.0074 (12)  | -0.0075 (11)  |
| O1W | 0.0623 (15) | 0.0609 (14)  | 0.0543 (14)  | 0.0106 (12)  | -0.0273 (12)  | -0.0295 (12)  |

## Geometric parameters (Å, °)

| Cu1—O4              | 1.954 (2) | С7—Н7 | 0.9300    |
|---------------------|-----------|-------|-----------|
| Cu1—O1              | 1.956 (2) | С8—С9 | 1.396 (5) |
| Cu1—N3 <sup>i</sup> | 2.016 (2) | C8—H8 | 0.9300    |

| Cu1—N2                   | 2.018 (2)            | C9—C10                                            | 1.362 (4)            |
|--------------------------|----------------------|---------------------------------------------------|----------------------|
| Cu1—O1W                  | 2.381 (2)            | С9—Н9                                             | 0.9300               |
| Cu1—O5                   | 2.720 (2)            | C10—C11                                           | 1.399 (4)            |
| 01—C1                    | 1.263 (3)            | C10—H10                                           | 0.9300               |
| O2—C1                    | 1.231 (3)            | C12—C13                                           | 1.501 (4)            |
| O3—C5                    | 1.247 (3)            | C13—H13A                                          | 0.9600               |
| O4—C12                   | 1.282 (3)            | C13—H13B                                          | 0.9600               |
| O5—C12                   | 1.226 (3)            | С13—Н13С                                          | 0.9600               |
| N1—C3                    | 1.347 (4)            | C14—C15                                           | 1.366 (3)            |
| N1-C11                   | 1.389 (3)            | C14—H14                                           | 0.9300               |
| N1—C2                    | 1 464 (3)            | C15—C16                                           | 1 391 (3)            |
| N2-C18                   | 1.340(3)             | C15—H15                                           | 0.9300               |
| N2                       | 1.341(3)             | C16-C17                                           | 1 392 (3)            |
| N3_C23                   | 1.341(3)<br>1 338(3) | C16-C19                                           | 1.392(3)<br>1.482(3) |
| N3 C22                   | 1.330(3)             | $C_{10}$ $C_{17}$ $C_{18}$                        | 1.402(3)             |
| $N_{2} = C_{2} I_{1}$    | 1.340(3)             | C17 - C18                                         | 1.371(3)             |
| $N_{3}$                  | 2.010(2)             | $C_{1}^{1}$                                       | 0.9300               |
| C1 - C2                  | 1.324 (4)            |                                                   | 0.9300               |
| C2—H2A                   | 0.9700               | C19—C20                                           | 1.390 (3)            |
| C2—H2B                   | 0.9700               |                                                   | 1.391 (3)            |
| C3—C4                    | 1.340 (4)            | C20—C23                                           | 1.371 (3)            |
| С3—Н3                    | 0.9300               | C20—H20                                           | 0.9300               |
| C4—C5                    | 1.424 (4)            | C21—C22                                           | 1.376 (3)            |
| C4—H4                    | 0.9300               | C21—H21                                           | 0.9300               |
| C5—C6                    | 1.457 (4)            | C22—H22                                           | 0.9300               |
| C6—C7                    | 1.404 (4)            | С23—Н23                                           | 0.9300               |
| C6—C11                   | 1.405 (4)            | O1W—H1W                                           | 0.830 (10)           |
| С7—С8                    | 1.361 (4)            | O1W—H2W                                           | 0.827 (10)           |
|                          |                      |                                                   |                      |
| O4—Cu1—O1                | 171.44 (8)           | С8—С9—Н9                                          | 119.4                |
| O4—Cu1—N3 <sup>i</sup>   | 90.50 (9)            | C9—C10—C11                                        | 120.6 (3)            |
| O1—Cu1—N3 <sup>i</sup>   | 89.24 (9)            | С9—С10—Н10                                        | 119.7                |
| O4—Cu1—N2                | 90.29 (9)            | C11—C10—H10                                       | 119.7                |
| O1—Cu1—N2                | 89.09 (9)            | N1—C11—C10                                        | 121.7 (3)            |
| N3 <sup>i</sup> —Cu1—N2  | 173.97 (8)           | N1—C11—C6                                         | 119.2 (3)            |
| O4—Cu1—O1W               | 88.68 (8)            | C10—C11—C6                                        | 119.1 (3)            |
| O1—Cu1—O1W               | 99.84 (8)            | O5—C12—O4                                         | 123.0 (3)            |
| N3 <sup>i</sup> —Cu1—O1W | 97.50 (8)            | O5—C12—C13                                        | 121.2 (3)            |
| N2—Cu1—O1W               | 88.49 (9)            | 04-C12-C13                                        | 115.8(3)             |
| C1 - O1 - Cu1            | 125.00 (18)          | C12—C13—H13A                                      | 109.5                |
| C12 - 04 - Cu1           | 109.13 (16)          | $C_{12}$ $C_{13}$ $H_{13B}$                       | 109.5                |
| $C_{3}$ N1 $C_{11}$      | 119.7(2)             | $H_{13} - C_{13} - H_{13} B$                      | 109.5                |
| $C_3 - N_1 - C_2$        | 119.5 (2)            | C12_C13_H13C                                      | 109.5                |
| $C_{11} = C_{2}$         | 117.3(2)<br>120.4(2) | $H_{12} = C_{13} = H_{12} C$                      | 109.5                |
| C18 N2 C14               | 120.4(2)             | 1113A - C13 - 1113C<br>1113A - C13 - 1113C        | 109.5                |
| $C_{10} = N_2 = C_{14}$  | 117.0(2)             | $\frac{11130}{1130} - \frac{1130}{1130}$          | 109.0                |
| $C_{10} = N_2 = C_{11}$  | 122.92(17)           | N2 - C14 - U13                                    | 123.3 (2)<br>119.4   |
| C14 $N2$ $C12$ $C12$     | 120.03(17)           | $\mathbb{N}_{} \mathbb{U}_{14} - \mathbb{H}_{14}$ | 110.4                |
| $C_{23}$ N3- $C_{22}$    | 11/.0(2)             | C15—C14—H14                                       | 118.4                |
| $C23$ — $N3$ — $Cu1^n$   | 119.02 (17)          | C14—C15—C16                                       | 120.4 (2)            |

| C22—N3—Cu1 <sup>ii</sup>    | 124.00 (17)  | C14—C15—H15     | 119.8      |
|-----------------------------|--------------|-----------------|------------|
| O2—C1—O1                    | 127.0 (3)    | C16—C15—H15     | 119.8      |
| O2—C1—C2                    | 117.2 (3)    | C15—C16—C17     | 115.9 (2)  |
| 01—C1—C2                    | 115.7 (2)    | C15—C16—C19     | 122.1 (2)  |
| N1—C2—C1                    | 113.5 (2)    | C17—C16—C19     | 121.9 (2)  |
| N1—C2—H2A                   | 108.9        | C18—C17—C16     | 120.7 (2)  |
| C1—C2—H2A                   | 108.9        | C18—C17—H17     | 119.7      |
| N1—C2—H2B                   | 108.9        | C16—C17—H17     | 119.7      |
| C1—C2—H2B                   | 108.9        | N2—C18—C17      | 122.7 (2)  |
| H2A—C2—H2B                  | 107.7        | N2—C18—H18      | 118.6      |
| C4—C3—N1                    | 123.5 (3)    | C17—C18—H18     | 118.6      |
| С4—С3—Н3                    | 118.3        | C20—C19—C21     | 116.1 (2)  |
| N1—C3—H3                    | 118.3        | C20—C19—C16     | 121.3 (2)  |
| C3—C4—C5                    | 121.8 (3)    | C21—C19—C16     | 122.6 (2)  |
| C3—C4—H4                    | 119.1        | C23—C20—C19     | 120.5 (2)  |
| C5—C4—H4                    | 119.1        | С23—С20—Н20     | 119.7      |
| O3—C5—C4                    | 123.5 (3)    | С19—С20—Н20     | 119.7      |
| O3—C5—C6                    | 122.0 (3)    | C22—C21—C19     | 120.1 (2)  |
| C4—C5—C6                    | 114.5 (3)    | C22—C21—H21     | 119.9      |
| C7—C6—C11                   | 118.4 (3)    | C19—C21—H21     | 119.9      |
| C7—C6—C5                    | 120.7 (3)    | N3—C22—C21      | 123.2 (2)  |
| C11—C6—C5                   | 120.9 (3)    | N3—C22—H22      | 118.4      |
| C8—C7—C6                    | 122.1 (3)    | C21—C22—H22     | 118.4      |
| С8—С7—Н7                    | 119.0        | N3—C23—C20      | 123.1 (2)  |
| С6—С7—Н7                    | 119.0        | N3—C23—H23      | 118.5      |
| C7—C8—C9                    | 118.6 (3)    | С20—С23—Н23     | 118.5      |
| C7—C8—H8                    | 120.7        | Cu1—O1W—H1W     | 124 (3)    |
| С9—С8—Н8                    | 120.7        | Cu1—O1W—H2W     | 97 (3)     |
| С10—С9—С8                   | 121.2 (3)    | H1W—O1W—H2W     | 109.3 (17) |
| С10—С9—Н9                   | 119.4        |                 |            |
|                             |              |                 |            |
| N3 <sup>i</sup> —Cu1—O1—C1  | 85.9 (2)     | C3—N1—C11—C6    | 1.5 (4)    |
| N2—Cu1—O1—C1                | -99.9 (2)    | C2—N1—C11—C6    | 173.5 (3)  |
| O1W—Cu1—O1—C1               | -11.6 (2)    | C9-C10-C11-N1   | 178.2 (3)  |
| N3 <sup>i</sup> —Cu1—O4—C12 | 92.99 (17)   | C9—C10—C11—C6   | -1.7 (4)   |
| N2—Cu1—O4—C12               | -81.03 (17)  | C7—C6—C11—N1    | -176.4 (2) |
| O1W—Cu1—O4—C12              | -169.51 (17) | C5—C6—C11—N1    | 4.3 (4)    |
| O4—Cu1—N2—C18               | 138.5 (2)    | C7—C6—C11—C10   | 3.5 (4)    |
| O1—Cu1—N2—C18               | -33.0 (2)    | C5-C6-C11-C10   | -175.8 (3) |
| O1W—Cu1—N2—C18              | -132.8 (2)   | Cu1—O4—C12—O5   | -6.1 (3)   |
| O4—Cu1—N2—C14               | -41.1 (2)    | Cu1—O4—C12—C13  | 173.6 (2)  |
| O1—Cu1—N2—C14               | 147.5 (2)    | C18—N2—C14—C15  | -0.1 (4)   |
| O1W—Cu1—N2—C14              | 47.6 (2)     | Cu1—N2—C14—C15  | 179.4 (2)  |
| Cu1—O1—C1—O2                | 4.8 (4)      | N2-C14-C15-C16  | 0.7 (5)    |
| Cu1—O1—C1—C2                | -172.18 (17) | C14—C15—C16—C17 | -0.8 (4)   |
| C3—N1—C2—C1                 | 101.4 (3)    | C14—C15—C16—C19 | 177.5 (3)  |
| C11—N1—C2—C1                | -70.6 (3)    | C15—C16—C17—C18 | 0.3 (4)    |
| O2—C1—C2—N1                 | 155.2 (3)    | C19—C16—C17—C18 | -178.0 (2) |

| O1—C1—C2—N1   | -27.5 (4)  | C14—N2—C18—C17                | -0.4 (4)   |
|---------------|------------|-------------------------------|------------|
| C11—N1—C3—C4  | -4.6 (5)   | Cu1—N2—C18—C17                | -179.9 (2) |
| C2—N1—C3—C4   | -176.6 (3) | C16—C17—C18—N2                | 0.2 (4)    |
| N1—C3—C4—C5   | 1.5 (6)    | C15-C16-C19-C20               | -7.2 (4)   |
| C3—C4—C5—O3   | -176.7 (3) | C17—C16—C19—C20               | 171.1 (3)  |
| C3—C4—C5—C6   | 4.1 (5)    | C15-C16-C19-C21               | 175.5 (3)  |
| O3—C5—C6—C7   | -5.3 (5)   | C17—C16—C19—C21               | -6.2 (4)   |
| C4—C5—C6—C7   | 173.8 (3)  | C21—C19—C20—C23               | -1.0 (4)   |
| O3—C5—C6—C11  | 174.0 (3)  | C16—C19—C20—C23               | -178.4 (2) |
| C4—C5—C6—C11  | -6.9 (4)   | C20-C19-C21-C22               | -0.3 (4)   |
| C11—C6—C7—C8  | -2.4 (4)   | C16—C19—C21—C22               | 177.2 (3)  |
| C5—C6—C7—C8   | 176.9 (3)  | C23—N3—C22—C21                | -0.7 (4)   |
| C6—C7—C8—C9   | -0.7 (5)   | Cu1 <sup>ii</sup> —N3—C22—C21 | 179.5 (2)  |
| C7—C8—C9—C10  | 2.6 (5)    | C19—C21—C22—N3                | 1.1 (4)    |
| C8—C9—C10—C11 | -1.4 (5)   | C22—N3—C23—C20                | -0.6 (4)   |
| C3—N1—C11—C10 | -178.4 (3) | Cu1 <sup>ii</sup> —N3—C23—C20 | 179.2 (2)  |
| C2—N1—C11—C10 | -6.5 (4)   | C19—C20—C23—N3                | 1.5 (4)    |
|               |            |                               |            |

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

| D—H···A                                       | D—H      | H···A    | D···A     | D—H···A |
|-----------------------------------------------|----------|----------|-----------|---------|
| O1 <i>W</i> —H1 <i>W</i> ···O3 <sup>iii</sup> | 0.83 (1) | 1.98 (1) | 2.795 (3) | 166 (3) |
| O1 <i>W</i> —H2 <i>W</i> ···O2                | 0.83 (1) | 1.99 (2) | 2.740 (4) | 151 (2) |

Symmetry code: (iii) x, y, z+1.