

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3-Phenylene bis{3-[2-chloro-4-(trifluoromethyl)phenoxy]benzoate}

Hao Peng and Hongwu He*

Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China Correspondence e-mail: he1208@mail.ccnu.edu.cn

Received 4 June 2012; accepted 6 July 2012

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.079; wR factor = 0.257; data-to-parameter ratio = 10.5.

In the title compound, $C_{34}H_{18}Cl_2F_6O_6$, one terminal trifluoromethyl and one entire 2-chloro-4-(trifluoromethyl)phenyl group are disordered with refined occupancy ratios of 0.715 (11):0.285 (11) and 0.517 (5):0.429 (5), respectively. In the crystal, weak intermolecular C-H···O hydrogen bonds link the molecules into ribbons propagating along the *a*-axis direction.

Related literature

For the herbicidal activity of phenoxyphenyl derivatives, see: Dayan & Allen (2000). For the structures of related compounds, see: Peng & He (2006, 2007). For standard bondlength data, see: Allen *et al.* (1987).

Experimental

Crystal data

$C_{34}H_{18}Cl_2F_6O_6$	
$M_r = 707.38$	
Triclinic, P1	
a = 7.7175 (11)	Å

b = 8.7399 (12) Åc = 23.973 (3) Å $\alpha = 92.986 (2)^{\circ}$ $\beta = 98.485 (3)^{\circ}$ $\gamma = 92.611 (3)^{\circ}$ $V = 1594.8 (4) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD area-detector diffractometer 13550 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.257$ S = 1.005564 reflections 528 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C20-H20\cdotsO1^{i}$ $C10-H10\cdotsO2^{ii}$	0.93	2.50	3.412 (5)	166
	0.93	2.59	3.152 (5)	120

Symmetry codes: (i) -x + 2, -y + 2, -z + 1; (ii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors gratefully acknowledge financial support of this work by the National Basic Research Program of China (grant No. 2010CB126100), the National Natural Science Foundation of China (grant Nos. 21172090 and 21002037). The research was supported in part by the PCSIRT (grant No. IRT0953).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2468).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2001). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dayan, F. E. & Allen, S. N. (2000). Pest Manage. Sci. 56, 717-722.

Peng, H. & He, H.-W. (2006). Acta Cryst. E62, 05371-05372.

Peng, H. & He, H. W. (2007). Chin. J. Org. Chem. 27, 502-506.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

organic compounds

 $\mu = 0.28 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

5564 independent reflections

3199 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 292 K

 $R_{\rm int} = 0.062$

215 restraints

 $\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

supporting information

Acta Cryst. (2012). E68, o2437 [https://doi.org/10.1107/S1600536812030826]

1,3-Phenylene bis{3-[2-chloro-4-(trifluoromethyl)phenoxy]benzoate}

Hao Peng and Hongwu He

S1. Comment

Phenoxyphenyl derivatives exhibit herbicidal activity by interacting with plant metabolism in multiple ways. Many diphenyl ether inhibitors of protoporphyrinogen oxidase contains 2-chloro-4-(trifluoromethyl)phenoxy benzoate moiety, which have been a successful class of herbicides (Dayan & Allen, 2000). The title compound has been prepared as a part our work on the design and synthesis of novel herbicidal compounds.

Fig. 1 shows the crystal structure of the title compound. Bond lengths and angles show normal values (Allen *et al.*, 1987). The terminal trifluoromethyl and one of 2-chloro-4-(trifluoromethyl)phenoxy groups are disordered and required a strongly restrained refinement. The C28···C33 ring, *Cg*5, is rotated almost 180° to the C28′···C33′ ring, *Cg*6, by dihedral angle 2.79°. In the crystal, molecules are linked *via* weak intermolecular C—H···O hydrogen bonds (Table 1).

S2. Experimental

3-(2-Chloro-4-(trifluoromethyl)phenoxy)benzoyl chloride (0.005 mol) in chloroform was added dropwise at 275–278 K to a stirred solution of phen-1,3-diol (0.0025 mol) and triethylamine (0.005 mol) in chloroform (25 mL). The mixture was stirred at 275–278 K for 1 h, washed with 1% hydrochloric acid solution, followed by sodium hydrogen carbonate and ice water, dried and evaporated. The residue was purified by chromatography (silica gel with 15% acetone in petroleum ether). Recrystallization from ethyl acetate and petroleum ether over 1 week gave colorless blocks of the title compound.

S3. Refinement

The trifluoromethyl group appeared disordered over two orientations with refined occupancies of 0.715 (11) and 0.285 (11) for the major and minor components, respectively. The distances between six pairs of atoms (F1—F2, F1—F3, F2—F3, F1'-F2', F1'-F3', and F2'-F3') were restrained to be equal with the standard deviation (0.01). A similar split refinement was applied to a disordered 2-chloro-4-(trifluoromethyl)phenoxy group, leading to occupation factors of 0.571 (5), 0.429 (5). The displacement parameters of the disordered atoms were restrained to approximately isotropic behavior. H atoms were geometrically positioned (Csp^2 —H = 0.93 Å, Cmethine—H = 0.98 Å, Cmethylene—H = 0.97 Å, Cmethyl—H = 0.96 Å) and refined as riding, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and 1.2 for all other H atoms.

Z = 2

F(000) = 716

 $\theta = 2.3 - 23.0^{\circ}$

 $\mu = 0.28 \text{ mm}^{-1}$

Block, yellow

 $0.30 \times 0.20 \times 0.20$ mm

T = 292 K

 $D_{\rm x} = 1.473 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2828 reflections

Figure 1

Molecular structure of the title compound, with 50% probability displacement ellipsoids. Disordered parts are represented by their major components, and drawn in broken lines.

1,3-Phenylene bis{3-[2-chloro-4-(trifluoromethyl)phenoxy]benzoate}

Crystal data

 $C_{34}H_{18}Cl_{2}F_{6}O_{6}$ $M_{r} = 707.38$ Triclinic, $P\overline{1}$ a = 7.7175 (11) Å b = 8.7399 (12) Å c = 23.973 (3) Å $a = 92.986 (2)^{\circ}$ $\beta = 98.485 (3)^{\circ}$ $\gamma = 92.611 (3)^{\circ}$ $V = 1594.8 (4) Å^{3}$

Data collection

Bruker SMART APEX CCD area-detector	3199 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.062$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.7^{\circ}$
Graphite monochromator	$h = -9 \rightarrow 9$
φ and ω scans	$k = -10 \rightarrow 10$
13550 measured reflections	$l = -25 \rightarrow 28$
5564 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.079$ $wR(F^2) = 0.257$ S = 1.005564 reflections 528 parameters 215 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.154P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.51$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	1.0008 (10)	0.4068 (9)	0.1855 (3)	0.164 (4)	
F1	1.1346 (11)	0.3142 (8)	0.1888 (3)	0.173 (3)	0.715 (11)
F2	0.9704 (16)	0.4550 (9)	0.1344 (2)	0.181 (4)	0.715 (11)
F3	0.8624 (10)	0.3082 (8)	0.1916 (3)	0.178 (3)	0.715 (11)
F1′	1.1403 (17)	0.434 (2)	0.1557 (7)	0.172 (8)	0.285 (11)
F2′	0.8633 (17)	0.4334 (18)	0.1450 (6)	0.129 (6)	0.285 (11)
F3′	0.997 (3)	0.2580 (12)	0.1905 (9)	0.189 (9)	0.285 (11)
C2	1.0228 (9)	0.5297 (6)	0.2317 (2)	0.1074 (18)	
C3	1.0153 (8)	0.6824 (6)	0.2186 (2)	0.1061 (17)	
Н3	0.9965	0.7081	0.1811	0.127*	
C4	1.0356 (6)	0.7936 (5)	0.26078 (19)	0.0780 (12)	
C5	1.0635 (5)	0.7577 (4)	0.31719 (16)	0.0606 (9)	
C6	1.0725 (6)	0.6045 (5)	0.32885 (18)	0.0718 (11)	
H6	1.0915	0.5779	0.3662	0.086*	
C7	1.0540 (7)	0.4930 (6)	0.2868 (2)	0.0921 (14)	
H7	1.0627	0.3908	0.2955	0.111*	
C11	1.0268 (2)	0.98315 (14)	0.24459 (6)	0.1118 (6)	
C8	1.0931 (5)	0.8438 (4)	0.41370 (16)	0.0633 (10)	
C9	1.2532 (5)	0.8562 (5)	0.44654 (19)	0.0730 (11)	
H9	1.3538	0.8795	0.4309	0.088*	
C10	1.2640 (5)	0.8340 (6)	0.50298 (19)	0.0803 (13)	
H10	1.3727	0.8449	0.5258	0.096*	
C11	1.1163 (5)	0.7958 (5)	0.52665 (17)	0.0727 (12)	
H11	1.1251	0.7795	0.5650	0.087*	
C12	0.9547 (4)	0.7821 (4)	0.49233 (15)	0.0568 (9)	
C13	0.9418 (5)	0.8086 (4)	0.43542 (16)	0.0583 (9)	
H13	0.8333	0.8028	0.4124	0.070*	
C14	0.7901 (5)	0.7436 (4)	0.51447 (16)	0.0605 (10)	
C15	0.6718 (5)	0.6869 (4)	0.59670 (15)	0.0593 (9)	
C16	0.5571 (6)	0.5592 (5)	0.58476 (17)	0.0718 (11)	
H16	0.5728	0.4834	0.5575	0.086*	
C17	0.4200 (7)	0.5491 (5)	0.6147 (2)	0.0841 (13)	
H17	0.3414	0.4641	0.6074	0.101*	
C18	0.3932 (6)	0.6588 (5)	0.65491 (18)	0.0762 (12)	
H18	0.2976	0.6493	0.6742	0.091*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C19	0.5100 (5)	0.7820 (5)	0.66599 (16)	0.0659 (10)	
C20	0.6535 (5)	0.7982 (5)	0.63710 (15)	0.0629 (10)	
H20	0.7338	0.8819	0.6451	0.075*	
C21	0.4647 (5)	1.0363 (5)	0.69507 (19)	0.0743 (12)	
C22	0.4654 (6)	1.1432 (5)	0.74417 (19)	0.0790 (12)	
C23	0.4556 (8)	1.2993 (6)	0.7364 (2)	0.1024 (16)	
H23	0.4483	1.3340	0.7002	0.123*	
C24	0.4564 (11)	1.4006(7)	0.7804 (3)	0.135 (2)	
H24	0.4531	1.5047	0.7744	0.162*	
C25	0.4619 (11)	1.3539 (8)	0.8330 (3)	0.146 (3)	
H25	0.4607	1.4248	0.8632	0.175*	
C26	0.4692 (10)	1.1990 (7)	0.8417(2)	0.121 (2)	
C27	0.4746 (7)	1.0952 (6)	0.7987(2)	0.0950(15)	
H27	0.4843	0.9919	0.8055	0.114*	
01	1 0799 (4)	0.8770(3)	0.35637 (11)	0.0716 (8)	
02	0.6463 (3)	0.7448(4)	0.48806 (11)	0.0797(9)	
03	0.8193 (3)	0 7046 (3)	0 56895 (10)	0.0678 (8)	
04	0.0199(3) 0.4900(4)	0.8907 (3)	0 70907 (11)	0.0729 (8)	
05	0.436(5)	1.0719(4)	0.64716 (14)	0.0729(0) 0.1047(11)	
C28	0.4973(19)	1.073(12)	0.9132 (8)	0.114 (8)	0.429(5)
C29	0.6790 (19)	1.0061 (12)	0.9252(7)	0.092(4)	0.429(5)
C30	0 7572 (13)	0.8795 (14)	0.9487(8)	0.116 (6)	0.429(5)
H30	0.8788	0.8787	0.9567	0.139*	0.429(5)
C31	0.6537 (14)	0 7541 (14)	0.9603(10)	0.121(3)	0.429(5)
C32	0.0000 (11) 0.4720 (14)	0.7553 (15)	0.9483(10)	0.121(3) 0.146(8)	0.129(5) 0.429(5)
H32	0.4028	0.6714	0.9560	0.175*	0.429(5)
C33	0.3938(14)	0.8819(16)	0.9247(8)	0.160(11)	0.429(5)
H33	0.2722	0.8827	0.9167	0.192*	0.429(5)
Cl2	0.8236 (8)	1 1645 (6)	0.9180(2)	0.171(2)	0.429(5)
C34	0.7402(18)	0.6295 (15)	0.9921(6)	0.176(4)	0.429(5)
F4	0.6176 (18)	0.5555 (19)	1.0149 (8)	0.252 (5)	0.429 (5)
F5	0.802(2)	0 5392 (18)	0.9542 (6)	0,200 (6)	0.429(5)
F6	0.802(2)	0.6868(17)	1.0316(7)	0.200(0)	0.429(5)
06	0.6722(13) 0.4227(13)	1 1471 (13)	0.8941(3)	0.083(3)	0.129(5) 0.429(5)
C28′	0.5648 (16)	1.0452(12)	0.9143 (6)	0.099(5)	0.571(5)
C29'	0.4545 (11)	0.9259(14)	0.9270(5)	0.104 (4)	0.571(5)
C30′	0.5250 (10)	0.7945(13)	0.9492(6)	0.122 (4)	0.571(5)
H30'	0.4511	0 7148	0.9577	0.122 (1)	0.571(5)
C31′	0.7057(10)	0.7824(13)	0.9587(7)	0.121 (3)	0.571(5)
C32'	0.8161 (10)	0.9016(14)	0.9460 (8)	0.121(8)	0.571(5)
H32'	0.9370	0.8935	0.9523	0.207*	0.571(5)
C33'	0.7456 (15)	1.0330 (12)	0.9238(7)	0.153(7)	0.571(5)
H33'	0.8194	1.1128	0.9153	0.184*	0.571 (5)
Cl2′	0.2398 (7)	0.9546 (9)	0.9143 (3)	0.273 (4)	0.571 (5)
C34′	0.7793 (14)	0.6370 (13)	0.9821 (4)	0.176 (4)	0.571 (5)
F4'	0.6955 (18)	0.5089 (17)	0.9552 (5)	0.252 (5)	0.571 (5)
F5′	0.9484 (12)	0.6468 (13)	0.9771 (4)	0.207 (4)	0.571 (5)
F6′	0.7642 (15)	0.6294 (11)	1.0369 (3)	0.159 (3)	0.571 (5)
		· · /	\` /	× /	(-)

					supportin	g information
<u>O6′</u>	0.522 (2)	1.1809 ((14)	0.9002 (3)	0.150 (4)	0.571 (5)
Atomic	displacement para	imeters $(Å^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
$\overline{C1}$	0 272 (12)	0 130 (7)	0.086 (5)	-0.012 (8)	0.017 (6)	0.017 (5)
F1	0.272(12) 0.256(7)	0.130(7)	0.000(5) 0.157(6)	0.012(0)	0.017(0)	-0.039(4)
F2	0.296(10)	0.111(5) 0.152(5)	0.091(4)	0.017(3)	0.030(5)	-0.012(3)
F3	0.235(7)	0.132(5) 0.127(5)	0.091(4) 0.150(5)	-0.012(5)	-0.011(5)	-0.052(4)
F1'	0.233(7) 0.178(11)	0.127(3) 0.156(11)	0.130(3)	0.012(9)	0.037(9)	-0.052(1)
F2'	0.147 (9)	0.120 (9)	0.116 (10)	-0.002(7)	0.037(5) 0.017(7)	-0.027(7)
F3'	0.147(5)	0.120(9) 0.164(12)	0.197 (13)	0.000(7)	0.017(7)	0.027(7)
C^{2}	0.184 (6)	0.104(12) 0.074(3)	0.197(13)	0.012(10)	0.011(10)	-0.001(2)
C2 C3	0.164(0)	0.074(3)	0.001(3)	-0.003(3)	0.003(3)	0.001(2)
C4	0.103(3)	0.090(4)	0.034(3)	-0.003(3)	-0.005(3)	0.010(3)
C4 C5	0.094(3)	0.003(2)	0.072(3)	-0.004(2)	0.003(2)	0.014(2) 0.0061(19)
C5 C6	0.038(2)	0.003(2)	0.038(2)	0.0022(17)	0.0071(17)	0.0001(19)
C_{7}	0.080(3)	0.072(3)	0.038(2)	0.013(2)	0.008(2)	0.012(2)
C11	0.130(4)	0.070(3)	0.078(3)	-0.0165(8)	-0.015(3)	0.000(2)
	0.1702(14)	0.0092(8)	0.0834(9)	-0.0103(8)	-0.0139(8)	0.0242(0)
	0.008(3)	0.003(2)	0.038(2)	0.0003(10)	0.0104(19)	0.0010(18)
C9	0.032(2)	0.088(3)	0.081(3)	0.009(2)	0.014(2)	0.002(2)
C10	0.051(2)	0.117(4) 0.102(2)	0.0/1(3)	0.014(2)	0.000(2)	0.002(3)
	0.055(2)	0.102(3)	0.061(3)	0.020(2)	0.0035(19)	0.001(2)
C12	0.051(2)	0.063(2)	0.054(2)	0.0072(10)	0.0043(10)	-0.0042(17)
C13	0.055(2)	0.060(2)	0.059(2)	0.0023(10)	0.0006(17)	-0.0021(17)
C14	0.055(2)	0.0/1(2)	0.054(2)	0.0106(17)	0.0024(18)	-0.0021(18)
C15	0.062(2)	0.067(2)	0.049 (2)	0.0043 (18)	0.0061 (17)	0.0102 (18)
C16	0.086 (3)	0.069 (3)	0.057 (2)	-0.003(2)	0.003(2)	0.0038 (19)
CI7	0.098 (3)	0.082 (3)	0.068 (3)	-0.030(3)	0.006 (3)	0.013 (2)
C18	0.081 (3)	0.083 (3)	0.067 (3)	-0.014 (2)	0.018 (2)	0.021 (2)
C19	0.076 (3)	0.074 (3)	0.048 (2)	0.004 (2)	0.0071 (19)	0.0123 (19)
C20	0.060 (2)	0.071 (2)	0.056 (2)	-0.0042 (18)	0.0027 (18)	0.012 (2)
C21	0.073 (3)	0.095 (3)	0.060 (3)	0.017 (2)	0.012 (2)	0.025 (2)
C22	0.088 (3)	0.083 (3)	0.069 (3)	0.018 (2)	0.014 (2)	0.013 (2)
C23	0.140 (5)	0.086 (4)	0.084 (4)	0.023 (3)	0.017 (3)	0.022 (3)
C24	0.213 (8)	0.079 (4)	0.111 (5)	0.031 (4)	0.013 (5)	0.010 (4)
C25	0.225 (8)	0.098 (5)	0.106 (5)	0.044 (5)	-0.009(5)	-0.011 (4)
C26	0.197 (7)	0.100 (4)	0.070 (4)	0.055 (4)	0.013 (4)	0.011 (3)
C27	0.144 (4)	0.080 (3)	0.067 (3)	0.032 (3)	0.022 (3)	0.014 (2)
01	0.0889 (19)	0.0666 (16)	0.0598 (17) -0.0009 (14)	0.0135 (14)	0.0058 (13)
02	0.0510 (16)	0.125 (3)	0.0620 (17) 0.0010 (15)	0.0011 (13)	0.0167 (16)
03	0.0578 (15)	0.0908 (19)	0.0541 (16) 0.0127 (13)	0.0022 (12)	0.0080 (13)
O4	0.095 (2)	0.0740 (18)	0.0524 (16) 0.0045 (15)	0.0167 (13)	0.0099 (14)
05	0.138 (3)	0.116 (3)	0.068 (2)	0.047 (2)	0.0216 (19)	0.0280 (19)
C28	0.176 (18)	0.107 (16)	0.063 (12)	-0.023 (16)	0.049 (12)	-0.009 (11)
C29	0.112 (13)	0.085 (11)	0.075 (10)	0.002 (9)	0.005 (9)	0.001 (8)
C30	0.097 (10)	0.147 (18)	0.096 (12)	0.010 (11)	-0.001 (8)	-0.019 (12)
C31	0.149 (7)	0.126 (6)	0.087 (4)	0.041 (5)	0.007 (5)	0.011 (4)

supporting information

C32	0.177 (12)	0.128 (11)	0.134 (12)	-0.016 (9)	0.035 (9)	0.006 (9)
C33	0.162 (14)	0.169 (14)	0.153 (14)	0.030 (10)	0.031 (10)	-0.001 (10)
Cl2	0.192 (5)	0.132 (4)	0.175 (5)	-0.039 (3)	-0.012 (4)	0.035 (3)
C34	0.197 (7)	0.179 (7)	0.154 (7)	0.029 (6)	0.035 (6)	0.000 (6)
F4	0.278 (8)	0.222 (8)	0.255 (8)	0.045 (6)	0.017 (6)	0.031 (6)
F5	0.231 (11)	0.154 (8)	0.217 (10)	0.085 (8)	0.024 (8)	0.002 (7)
F6	0.190 (10)	0.225 (11)	0.214 (11)	0.042 (8)	0.035 (8)	0.062 (9)
O6	0.102 (6)	0.090 (6)	0.056 (5)	0.034 (5)	0.003 (4)	-0.011 (4)
C28′	0.155 (15)	0.084 (8)	0.056 (7)	0.045 (10)	-0.002 (8)	0.001 (6)
C29′	0.149 (12)	0.115 (10)	0.044 (6)	0.045 (10)	0.000 (6)	-0.008 (6)
C30′	0.160 (9)	0.123 (8)	0.086 (7)	-0.003 (8)	0.036 (7)	0.001 (6)
C31′	0.149 (7)	0.126 (6)	0.087 (4)	0.041 (5)	0.007 (5)	0.011 (4)
C32′	0.161 (10)	0.191 (12)	0.158 (12)	0.036 (9)	-0.001 (9)	-0.005 (9)
C33′	0.166 (11)	0.153 (12)	0.139 (10)	0.003 (9)	0.027 (9)	-0.009 (9)
Cl2′	0.170 (4)	0.396 (10)	0.220 (6)	0.051 (5)	-0.027 (4)	-0.156 (6)
C34′	0.197 (7)	0.179 (7)	0.154 (7)	0.029 (6)	0.035 (6)	0.000 (6)
F4′	0.278 (8)	0.222 (8)	0.255 (8)	0.045 (6)	0.017 (6)	0.031 (6)
F5′	0.218 (8)	0.225 (8)	0.176 (7)	0.096 (7)	-0.003 (6)	0.015 (6)
F6′	0.207 (8)	0.168 (7)	0.105 (5)	0.036 (6)	0.012 (5)	0.052 (4)
O6′	0.217 (10)	0.128 (7)	0.096 (6)	0.019 (7)	-0.006 (6)	-0.010 (5)

Geometric parameters (Å, °)

C1—F2	1.307 (7)	C21—O4	1.348 (5)
C1—F3′	1.312 (8)	C21—C22	1.464 (6)
C1—F1	1.337 (7)	C22—C27	1.387 (6)
C1—F2′	1.367 (8)	C22—C23	1.391 (7)
C1—F3	1.372 (7)	C23—C24	1.340 (8)
C1—F1′	1.394 (9)	C23—H23	0.9300
C1—C2	1.487 (8)	C24—C25	1.340 (9)
С2—С7	1.366 (7)	C24—H24	0.9300
C2—C3	1.389 (7)	C25—C26	1.383 (8)
C3—C4	1.353 (6)	C25—H25	0.9300
С3—Н3	0.9300	C26—C27	1.344 (7)
C4—C5	1.392 (6)	C26—O6′	1.418 (9)
C4—Cl1	1.723 (4)	C26—O6	1.444 (9)
C5—O1	1.355 (5)	C27—H27	0.9300
С5—С6	1.385 (6)	C28—C29	1.3900
С6—С7	1.352 (6)	C28—C33	1.3900
С6—Н6	0.9300	C28—O6	1.442 (12)
С7—Н7	0.9300	C29—C30	1.3900
С8—С9	1.360 (6)	C29—C12	1.770 (9)
C8—C13	1.376 (5)	C30—C31	1.3900
C8—O1	1.409 (5)	C30—H30	0.9300
C9—C10	1.368 (6)	C31—C32	1.3900
С9—Н9	0.9300	C31—C34	1.489 (11)
C10-C11	1.382 (6)	C32—C33	1.3900
C10—H10	0.9300	C32—H32	0.9300

C11—C12	1.385 (5)	С33—Н33	0.9300
C11—H11	0.9300	C34—F4	1.321 (9)
C12—C13	1.386 (5)	C34—F5	1.330 (9)
C12—C14	1.479 (5)	C34—F6	1.343 (9)
C13—H13	0.9300	C28′—O6′	1.295 (13)
C14—O2	1,195 (4)	C28'—C29'	1.3900
C14—O3	1.356 (4)	C28'—C33'	1.3900
C15—C20	1.363 (5)	C29'—C30'	1.3900
C15—C16	1.384 (6)	C29'—C12'	1.673 (7)
$C_{15} - O_{3}$	1 407 (4)	C30'-C31'	1 3900
C_{16} $-C_{17}$	1 365 (6)	C30'—H30'	0.9300
C16—H16	0.9300	C31' - C32'	1 3900
C17-C18	1 368 (6)	C31' - C34'	1.5700
C17—H17	0.9300	$C_{32}' - C_{33}'$	1 3900
C18-C19	1 362 (6)	$C_{32}' = H_{32}'$	0.9300
C18—H18	0.9300	C33' - H33'	0.9300
C_{10} C_{20}	1 396 (5)	C34' - F5'	1 327 (8)
$C_{19} = C_{20}$	1.390(5) 1.397(5)	C34' = F6'	1.327(8)
C20_H20	0.9300	$C_{34} = F_{4}$	1.341(0) 1 351(0)
$C_{20} = 1120$	1 196 (5)	054-14	1.551 (5)
05	1.190 (5)		
F2	117 4 (12)	05-C21-04	122 5 (4)
F_2 — C_1 — F_1	109.1 (6)	$05 - C^{21} - C^{22}$	122.3(1) 1244(4)
$F_{3'} - C_{1} - F_{1}$	51 7 (8)	$04 - C^{21} - C^{22}$	12 (1) 113 1 (4)
F_{2} C_{1} F_{2}'	39.9 (6)	C_{27} C_{22} C_{23}	119.1(1) 118.1(4)
$F_{2}' = C_{1} = F_{2}'$	106 4 (8)	C27 - C22 - C23	122 6 (4)
$F_1 - C_1 - F_2'$	135.0(10)	C_{23} C_{22} C_{21}	1122.0(1) 1194(4)
F_2 — C_1 — F_3	107.1(7)	C_{24} C_{23} C_{23} C_{22}	121.0(5)
$F_{3'} - C_{1} - F_{3}$	50.8 (8)	C24—C23—H23	119.5
F1 - C1 - F3	102 4 (6)	$C^{22} - C^{23} - H^{23}$	119.5
F2'-C1-F3	71.8(7)	C^{23} C^{24} C^{25}	120.9 (6)
F_{2}^{2} C_{1}^{2} F_{1}^{2}	60.3(7)	C^{23} C^{24} H^{24}	119.5
$F_{3'}$ C_{1} $F_{1'}$	103.6(8)	$C_{25} = C_{24} = H_{24}$	119.5
$F_1 - C_1 - F_1'$	59.1 (8)	C_{24} C_{25} C_{26} C_{26}	119.2 (6)
F2'-C1-F1'	1000(7)	C24—C25—H25	120.4
$F_3 - C_1 - F_1'$	1454(9)	C26-C25-H25	120.1
$F_2 - C_1 - C_2$	115.0(6)	C_{27} C_{26} C_{25} C_{25} C_{25} C_{25} C_{25}	120.1
$F_{2}' - C_{1} - C_{2}$	127.5(11)	$C_{27} - C_{26} - C_{25}$	127.2(0) 127.3(7)
$F_1 - C_1 - C_2$	113.1 (6)	$C_{25} - C_{26} - O_{6'}$	127.3(7) 108.8(7)
$F_{2}'-C_{1}-C_{2}$	110.7(9)	$C_{27} - C_{26} - O_{6}$	100.0(7)
F_{3} $-C_{1}$ $-C_{2}$	109.3 (6)	$C_{25} - C_{26} - C_{6}$	117.8 (6)
$F_1' - C_1 - C_2$	105.3(0) 105.1(9)	$O6' - C^{2}6 - O6$	32 3 (6)
C7 - C2 - C3	100.1(9) 120.0(4)	$C_{26} = C_{27} = C_{27}$	1195(5)
C7-C2-C1	120.0(4) 120.2(5)	C26—C27—H27	120.2
C_{3} C_{2} C_{1}	119 8 (5)	$C_{22} - C_{27} - H_{27}$	120.2
C4-C3-C2	119.5 (4)	$C_{5} - C_{1} - C_{8}$	118 1 (3)
C4—C3—H3	120.3	C14-O3-C15	117 1 (3)
C2—C3—H3	120.3	C21—O4—C19	117.9 (3)

C3—C4—C5	121.2 (4)	C29—C28—C33	120.0
C3—C4—Cl1	119.5 (4)	C29—C28—O6	117.6 (10)
C5—C4—Cl1	119.3 (3)	C33—C28—O6	122.1 (10)
O1—C5—C6	125.3 (4)	C28—C29—C30	120.0
O1—C5—C4	116.8 (4)	C28—C29—C12	124.1 (8)
C6—C5—C4	117.9 (4)	C30—C29—C12	115.6 (8)
C7—C6—C5	121.1 (4)	$C_{29} - C_{30} - C_{31}$	120.0
C7—C6—H6	119.4	$C_{29} = C_{30} = H_{30}$	120.0
C5-C6-H6	119.1	C_{31} C_{30} H_{30}	120.0
C6-C7-C2	120.2(4)	C_{32} C_{31} C_{30}	120.0
C6 C7 H7	110.0	$C_{32} = C_{31} = C_{30}$	120.0
C_{0}	119.9	$C_{32} = C_{31} = C_{34}$	121.0(3) 1185(5)
$C_2 - C_1 - H_1$	119.9	$C_{30} = C_{31} = C_{34}$	110.5 (5)
$C_{9} = C_{8} = C_{13}$	122.0(4)	$C_{33} = C_{32} = C_{31}$	120.0
C_{2}	119.2 (4)	C33—C32—H32	120.0
C13 - C8 - O1	118.7 (3)	C31—C32—H32	120.0
C8—C9—C10	119.0 (4)	C32—C33—C28	120.0
С8—С9—Н9	120.5	С32—С33—Н33	120.0
С10—С9—Н9	120.5	С28—С33—Н33	120.0
C9—C10—C11	121.2 (4)	F4—C34—F5	111.1 (9)
C9—C10—H10	119.4	F4—C34—F6	111.5 (9)
C11—C10—H10	119.4	F5—C34—F6	110.0 (8)
C10-C11-C12	118.9 (4)	F4—C34—C31	106.9 (11)
C10-C11-H11	120.6	F5—C34—C31	106.0 (13)
C12—C11—H11	120.6	F6—C34—C31	111.1 (13)
C11—C12—C13	120.3 (4)	C28—O6—C26	116.3 (10)
C11—C12—C14	122.3 (4)	O6'—C28'—C29'	127.3 (11)
C13—C12—C14	117.4 (3)	O6'—C28'—C33'	112.2 (11)
C8—C13—C12	118.5 (3)	C29'—C28'—C33'	120.0
С8—С13—Н13	120.7	C28'—C29'—C30'	120.0
C12—C13—H13	120.7	C28'-C29'-C12'	115.6 (8)
02	122.7 (4)	C30'—C29'—C12'	124.4 (8)
02-C14-C12	124 9 (4)	C29'-C30'-C31'	120.0
03-C14-C12	1124(3)	C29'-C30'-H30'	120.0
C_{20} C_{15} C_{16}	112.1(3) 122.6(4)	$C_{31}' - C_{30}' - H_{30}'$	120.0
$C_{20} - C_{15} - C_{10}$	122.0(4) 116.5(3)	$C_{32}' - C_{31}' - C_{30}'$	120.0
$C_{20} = C_{15} = 03$	110.5(3)	$C_{32} = C_{31} = C_{30}$	120.0
$C_{10} = C_{13} = 0.5$	120.9(3)	$C_{32} = C_{31} = C_{34}$	121.0(4)
C17 - C16 - C13	117.1 (4)	$C_{30} = C_{31} = C_{34}$	119.0 (4)
C17 - C10 - H10	121.4	$C_{33} = C_{32} = C_{31}$	120.0
C15-C16-H16	121.4	$C_{33} = C_{32} = H_{32}$	120.0
	122.8 (4)	$C31^{2}-C32^{2}-H32^{2}$	120.0
С16—С17—Н17	118.6	C32'—C33'—C28'	120.0
C18—C17—H17	118.6	C32'—C33'—H33'	120.0
C19—C18—C17	118.4 (4)	C28'—C33'—H33'	120.0
C19—C18—H18	120.8	F5'—C34'—F6'	108.8 (8)
C17—C18—H18	120.8	F5'—C34'—F4'	112.4 (8)
C18—C19—C20	121.5 (4)	F6'—C34'—F4'	106.6 (8)
C18—C19—O4	119.1 (4)	F5'—C34'—C31'	105.2 (7)
C20—C19—O4	119.4 (4)	F6'—C34'—C31'	111.3 (10)

C15—C20—C19	117.6 (4)	F4'—C34'—C31'	112.4 (12)
C15—C20—H20	121.2	C28'—O6'—C26	116.6 (10)
C19—C20—H20	121.2		
$F_{2} = C_{1} = C_{2} = C_{2}$	170 ((9)		17(9)
$F_2 = C_1 = C_2 = C_7$	1/9.0 (8)	$C_{23} = C_{22} = C_{27} = C_{26}$	1.7(8)
$F_{3} = C_{1} = C_{2} = C_{7}$	4.4 (1 <i>3</i>)	$C_{21} = C_{22} = C_{2} = C_{20}$	-1/8.0(3)
FI = CI = CZ = C7	-34.1(9)	$C_{0} = C_{3} = 0_{1} = C_{8}$	-5.4(5)
$F2^{}C1^{}C2^{}C7$	136.4 (9)	C4 - C5 - 01 - C8	1/4.6 (3)
F3-C1-C2-C7	59.2 (8)	C9-C8-01-C5	101.9 (4)
F1′—C1—C2—C7	-116.5 (11)	C13-C8-O1-C5	-81.9 (4)
F2—C1—C2—C3	-1.8 (11)	O2—C14—O3—C15	-9.2 (5)
F3'-C1-C2-C3	-177.0 (13)	C12—C14—O3—C15	171.2 (3)
F1—C1—C2—C3	124.4 (7)	C20-C15-O3-C14	-108.2 (4)
F2'—C1—C2—C3	-45.0 (11)	C16—C15—O3—C14	74.5 (4)
F3—C1—C2—C3	-122.2 (7)	O5-C21-O4-C19	6.7 (6)
F1'-C1-C2-C3	62.1 (11)	C22—C21—O4—C19	-173.5 (3)
C7—C2—C3—C4	-1.3 (10)	C18—C19—O4—C21	-119.5 (4)
C1—C2—C3—C4	-179.9 (6)	C20-C19-O4-C21	63.5 (5)
C2—C3—C4—C5	-0.1 (8)	C33—C28—C29—C30	0.0
C2—C3—C4—Cl1	179.9 (5)	O6—C28—C29—C30	174.0 (17)
C3—C4—C5—O1	-179.1 (4)	C33—C28—C29—Cl2	-174.4 (14)
Cl1—C4—C5—O1	0.9 (5)	O6—C28—C29—Cl2	-0.4 (15)
C3—C4—C5—C6	0.9 (7)	C28—C29—C30—C31	0.0
Cl1—C4—C5—C6	-179.1(3)	C_{12} C_{29} C_{30} C_{31}	174.9 (13)
01 - C5 - C6 - C7	179 8 (4)	C_{29} C_{30} C_{31} C_{32}	0.0
C4-C5-C6-C7	-0.2(6)	C_{29} C_{30} C_{31} C_{34}	-172(2)
$C_{5} - C_{6} - C_{7} - C_{2}^{2}$	-1.2(8)	C_{30} C_{31} C_{32} C_{33}	0.0
C_{3} C_{2} C_{7} C_{6}	20(9)	C_{34} C_{31} C_{32} C_{33}	172(2)
$C_{1} = C_{2} = C_{1} = C_{0}$	-1704(6)	C_{31} C_{32} C_{33} C_{38}	1/2(2)
$C_1 = C_2 = C_1 = C_0$	-0.4(6)	$C_{31} - C_{32} - C_{33} - C_{28}$	0.0
C15 - C8 - C9 - C10	0.4(0)	$C_{29} = C_{20} = C_{33} = C_{32}$	1727(17)
01 - 03 - 09 - 010	1/3.0(4)	00-028-035-032	-1/3.7(17)
	1.6 (/)	C_{32} — C_{31} — C_{34} — F_{4}	-14.0(17)
	-0.9 (/)	C_{30} $-C_{31}$ $-C_{34}$ $-F_{4}$	158.2 (12)
C10-C11-C12-C13	-0.9(6)	C_{32} — C_{31} — C_{34} —F5	104.6 (14)
C10—C11—C12—C14	-179.2 (4)	C30-C31-C34-F5	-83.2 (15)
C9—C8—C13—C12	-1.4 (6)	C32—C31—C34—F6	-135.9 (12)
O1—C8—C13—C12	-177.4 (3)	C30—C31—C34—F6	36.3 (18)
C11—C12—C13—C8	2.0 (6)	C29—C28—O6—C26	61.6 (15)
C14—C12—C13—C8	-179.6 (3)	C33—C28—O6—C26	-124.6 (12)
C11—C12—C14—O2	172.4 (4)	C27—C26—O6—C28	41.3 (13)
C13—C12—C14—O2	-5.9 (6)	C25—C26—O6—C28	-155.0 (10)
C11—C12—C14—O3	-8.0 (5)	O6'—C26—O6—C28	-73.7 (15)
C13—C12—C14—O3	173.7 (3)	O6'—C28'—C29'—C30'	-170.9 (14)
C20-C15-C16-C17	1.2 (6)	C33'—C28'—C29'—C30'	0.0
O3—C15—C16—C17	178.3 (4)	O6'—C28'—C29'—Cl2'	8.6 (14)
C15—C16—C17—C18	0.1 (7)	C33'—C28'—C29'—Cl2'	179.5 (9)
C16—C17—C18—C19	-0.9 (7)	C28'—C29'—C30'—C31'	0.0
C17—C18—C19—C20	0.4 (6)	Cl2'—C29'—C30'—C31'	-179.4 (10)

C17—C18—C19—O4	-176.5 (4)	C29'—C30'—C31'—C32'	0.0
C16—C15—C20—C19	-1.7 (5)	C29'—C30'—C31'—C34'	-179.2 (15)
O3—C15—C20—C19	-178.9 (3)	C30'—C31'—C32'—C33'	0.0
C18—C19—C20—C15	0.8 (6)	C34'—C31'—C32'—C33'	179.2 (15)
O4—C19—C20—C15	177.7 (3)	C31'—C32'—C33'—C28'	0.0
O5—C21—C22—C27	174.1 (5)	O6'—C28'—C33'—C32'	172.2 (12)
O4—C21—C22—C27	-5.7 (6)	C29'—C28'—C33'—C32'	0.0
O5—C21—C22—C23	-5.6 (7)	C32'—C31'—C34'—F5'	-10.0 (13)
O4—C21—C22—C23	174.6 (4)	C30'—C31'—C34'—F5'	169.1 (9)
C27—C22—C23—C24	0.5 (9)	C32'—C31'—C34'—F6'	107.7 (10)
C21—C22—C23—C24	-179.8 (5)	C30'—C31'—C34'—F6'	-73.1 (12)
C22—C23—C24—C25	-1.8 (11)	C32'—C31'—C34'—F4'	-132.7 (10)
C23—C24—C25—C26	0.9 (12)	C30'—C31'—C34'—F4'	46.5 (14)
C24—C25—C26—C27	1.4 (12)	C29'—C28'—O6'—C26	-88.4 (16)
C24—C25—C26—O6'	164.3 (9)	C33'—C28'—O6'—C26	100.1 (12)
C24—C25—C26—O6	-161.9 (8)	C27—C26—O6'—C28'	-6.7 (19)
C25—C26—C27—C22	-2.6 (10)	C25—C26—O6'—C28'	-168.2 (11)
O6'—C26—C27—C22	-162.2 (9)	O6—C26—O6'—C28'	79.3 (16)
O6—C26—C27—C22	160.4 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H··· A
C20—H20…O1 ⁱ	0.93	2.50	3.412 (5)	166
C10—H10…O2 ⁱⁱ	0.93	2.59	3.152 (5)	120

Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y, z.