Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thallium(I) copper(I) thorium(IV) triselenide, $\mathrm{TlCuThSe}_{3}$

Lukasz A. Koscielski and James A. Ibers*
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.northwestern.edu
Received 1 June 2012; accepted 12 June 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{Se}-\mathrm{Cu})=0.001 \AA$; R factor $=0.021 ; w R$ factor $=0.046$; data-to-parameter ratio $=19.8$.

Thallium(I) copper(I) thorium(IV) triselenide, $\mathrm{TlCuThSe}_{3}$, crystallizes with four formula units in the space group Cmcm in the KCuZrS_{3} structure type. There is one crystallographically independent Th, Tl, and Cu atom at a site of symmetry $2 / m . ., m 2 m$, and $m 2 m$, respectively. There are two crystallographically independent Se atoms at sites of symmetry m.. and $m 2 m$. The structure consists of sheets of edge-sharing ThSe_{6} octahedra and CuSe_{4} tetrahedra stacked parallel to the (010) face, separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms.

Related literature

For compounds of type $A M M^{\prime} Q_{3}$, see: Pell \& Ibers (1996); Klepp \& Gurtner (1996) for $A=\mathrm{Tl}$; Pell et al. (1997); Yao et al. (2008); Wells et al. (2009) for $M=\mathrm{Ag}$; Bugaris \& Ibers (2009) for $M=\mathrm{Au}$; Mansuetto et al. (1993); Pell \& Ibers (1996) for M^{\prime} $=\mathrm{Ti}$; Mansuetto et al. (1992, 1993); Huang et al. (2001); Pell et al. (1997) for $M^{\prime}=\mathrm{Zr}$; Klepp \& Sturmayr (1997, 1998); Pell et al. (1997) for $M^{\prime}=$ Hf; Seldy et al. (2005); Narducci \& Ibers (2000) for $M^{\prime}=\mathrm{Th}$; Yao et al. (2008); Sutorik et al. (1996); Bugaris \& Ibers (2009); Huang et al. (2001); Cody \& Ibers (1995) for $M^{\prime}=\mathrm{U}$; Wells et al. (2009) for $M^{\prime}=\mathrm{Np}$. For computational details, see: Gelato \& Parthé (1987). For additional synthetic details, see: Witt et al. (1956).

Experimental

Crystal data

$\mathrm{TlCuThSe}_{3}$
$M_{r}=736.83$
Orthorhombic, Cmcm
$a=4.1678$ (2) \AA
$b=14.2227$ (7) \AA
$c=10.8476(5) \AA$
$V=643.02(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=68.19 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.10 \times 0.07 \times 0.02 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: numerical (SADABS; Sheldrick, 2008b)
$T_{\text {min }}=0.101, T_{\text {max }}=0.489$

7476 measured reflections 474 independent reflections 451 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$

$$
\begin{aligned}
& 24 \text { parameters } \\
& \Delta \rho_{\max }=2.01 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.34 \mathrm{e}^{-3}
\end{aligned}
$$

$S=1.59$
474 reflections

Table 1
Selected bond lengths (\AA).

Th1-Se2 ${ }^{\text {i }}$	2.8844 (4)	Tl1-Se1 ${ }^{\text {viii }}$	3.3564 (6)
Th1-Se2	2.8844 (4)	Tl1-Se1 ${ }^{\text {vi }}$	3.3564 (6)
Th1-Se1 ${ }^{\text {ii }}$	2.9057 (5)	Tl1-Se1 ${ }^{\text {ix }}$	3.3564 (6)
Th1-Se1 ${ }^{\text {iii }}$	2.9057 (5)	Tl1-Se1 ${ }^{\text {vii }}$	3.3564 (6)
Th1-Se1 ${ }^{\text {iv }}$	2.9057 (5)	$\mathrm{Cu} 1-\mathrm{Se} 1$	2.4617 (11)
Th1-Se1 ${ }^{\text {v }}$	2.9057 (5)	$\mathrm{Cu} 1-\mathrm{Se}^{\text {x }}$	2.4617 (11)
T11-Se2 ${ }^{\text {vi }}$	3.2831 (9)	$\mathrm{Cu} 1-\mathrm{Se} 2^{\text {vii }}$	2.5517 (11)
Tl1-Se2 ${ }^{\text {vii }}$	3.2831 (9)	$\mathrm{Cu} 1-\mathrm{Se} 2^{\text {vi }}$	2.5517 (11)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (iv)
$-x-\frac{1}{2},-y+\frac{1}{2},-z$; (v) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (vi) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (vii) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (viii)
$x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ix) $x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (x) $x, y,-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.

The research was supported at Northwestern University by the U. S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER15522. The research was also supported by funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs. A special thanks to Professor Thomas E. Albrecht-Schmitt at the University of Notre-Dame for his donation of thorium metal.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2644).

References

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bugaris, D. E. \& Ibers, J. A. (2009). J. Solid State Chem. 182, 2587-2590.
Cody, J. A. \& Ibers, J. A. (1995). Inorg. Chem. 34, 3165-3172.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Huang, F.-Q., Mitchell, K. \& Ibers, J. A. (2001). Inorg. Chem. 40, 5123-5126.
Klepp, K. O. \& Gurtner, D. (1996). J. Alloys Compd, 243, 6-11.
Klepp, K. O. \& Sturmayr, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 75.
Klepp, K. O. \& Sturmayr, D. (1998). Z. Kristallogr. New Cryst. Struct. 213, 693.
Mansuetto, M. F., Keane, P. M. \& Ibers, J. A. (1992). J. Solid State Chem. 101, 257-264.
Mansuetto, M. F., Keane, P. M. \& Ibers, J. A. (1993). J. Solid State Chem. 105, 580-587.
Narducci, A. A. \& Ibers, J. A. (2000). Inorg. Chem. 39, 688-691.
Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire,

inorganic compounds

Pell, M. A. \& Ibers, J. A. (1996). J. Alloys Compd, 240, 37-41.
Pell, M. A., Kleyn, A. G. \& Ibers, J. A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 92-?.
Seldy, H. D., Chan, B. C., Hess, R. F., Abney, K. D. \& Dorhout, P. K. (2005). Inorg. Chem. 44, 6463-6469.
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.
Sutorik, A. C., Albritton-Thomas, J., Hogan, T., Kannewurf, C. R. \& Kanatzidis, M. G. (1996). Chem. Mater. 8, 751-761.

Wells, D. M., Jin, G. B., Skanthakumar, S., Haire, R. G., Soderholm, L. \& Ibers, J. A. (2009). Inorg. Chem. 48, 11513-11517.

Witt, R. H., Nylin, J. \& McCullough, H. M. (1956). A Study of the Hydride Process for Producing Thorium Powder. United States Atomic Energy Commission, Atomic Energy Division, Sylvania Electric Products, Inc., Bayside, New York.
Yao, J., Wells, D. M., Chan, G.-H., Zeng, H., Ellis, D. E., van Duyne, R. P. \& Ibers, J. A. (2008). Inorg. Chem. 47, 6873-6879.

supporting information

Acta Cryst. (2012). E68, i52-i53 [https://doi.org/10.1107/S1600536812026669]

Thallium(I) copper(I) thorium(IV) triselenide, $\mathrm{TlCuThSe}_{3}$

Lukasz A. Koscielski and James A. Ibers

S1. Comment

Thallium(I) copper(I) thorium(IV) triselenide, $\mathrm{TlCuThSe}_{3}$, crystallizes in the KCuZrS_{3} structure type. The structure (Figs. $1,2)$ is layered and consists of sheets of edge-sharing ThSe_{6} octahedra and CuSe_{4} tetrahedra stacked parallel to the (010) face separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms. Because there are no $\mathrm{Se}-\mathrm{Se}$ bonds in the structure, oxidation states can be assigned as $\mathrm{Tl}^{+}, \mathrm{Cu}^{+}, \mathrm{Th}^{4+}$, and Se^{2-}.
The compound $\mathrm{TlCuThSe}_{3}$ is of the type $A M M^{\prime} Q_{3}$, where A is an alkali metal or thallium, M is a coinage metal, M^{\prime} is a tetravalent group IV metal or an actinide, and Q is a chalcogen. Including the title compound, 39 such compounds are known (Pell \& Ibers, 1996; Klepp \& Gurtner, 1996; Pell et al., 1997; Yao et al., 2008; Wells et al., 2009; Bugaris \& Ibers, 2009; Sutorik et al., 1996; Huang et al., 2001; Cody \& Ibers, 1995; Mansuetto et al., 1993, 1992; Klepp \& Sturmayr, 1997, 1998; Seldy et al., 2005; Narducci \& Ibers, 2000). In all cases, crystallographic data have been collected on single crystals. Most often, the A site contains an alkali metal and only 6 Tl analogues are known (Pell \& Ibers, 1996; Klepp \& Gurtner, 1996). The M site contains Cu in 28 analogues, Ag in 7 analogues (Pell et al., 1997; Yao et al., 2008; Wells et al., 2009), and Au in 4 analogues (Bugaris \& Ibers, 2009). The tetravalent metal is most often U with 14 analogues (Yao et al., 2008; Sutorik et al., 1996; Bugaris \& Ibers, 2009; Huang et al., 2001; Cody \& Ibers, 1995), followed by Zr with 9 analogues (Mansuetto et al., 1992, 1993; Huang et al., 2001; Pell et al., 1997), Hf with 5 analogues (Klepp \& Sturmayr, 1997, 1998; Pell et al., 1997), Np with 5 analogues (Wells et al., 2009), Th with 4 analogues (Seldy et al., 2005; Narducci \& Ibers, 2000), and Ti with 2 analogues (Mansuetto et al., 1993; Pell \& Ibers, 1996). This is the first compound of the type $A M M^{\prime} Q_{3}$ to contain both Tl and Th .
The compounds fall into three structure types. All the Na analogues, except for $\mathrm{NaCuZrS}_{3}$, are of the $\mathrm{NaCuTiS}_{3}$ type (space group Pnma) (Mansuetto et al., 1993; Klepp \& Sturmayr, 1997); the compounds $\mathrm{TlCuTiTe}_{3}$ and $\mathrm{RbAgHfTe}_{3}$ are of the $\mathrm{TlCuTiTe}_{3}$ type (space group $P 2_{1} / m$) (Pell \& Ibers, 1996; Pell et al., 1997); and the remaining compounds are of the KCuZrS_{3} type (space group Cmcm).
Interatomic distances in $\mathrm{TlCuThSe}_{3}$ are listed in Table 1 and are nearly identical to those in the analogues $A \mathrm{CuThSe}_{3}(A$ $=\mathrm{K}, \mathrm{Cs}$) (Narducci \& Ibers, 2000). The TlCuThSe ${ }_{3} \mathrm{Th}$ —Se distances of 2.8844 (4) and 2.9057 (5) \AA match those in $\mathrm{KCuThSe}_{3}\left(2.893\right.$ (1) and $2.900(1) \AA$) and $\mathrm{CsCuThSe}_{3}(2.878$ (1) and 2.906 (1) \AA). The $\mathrm{Cu} — \mathrm{Se}$ distances of 2.4617 (11) and 2.5517 (11) \AA also match those in $\mathrm{KCuThSe}_{3}\left(2.459\right.$ (2) and 2.545 (2) \AA) and $\mathrm{CsCuThSe}_{3}$ (2.464 (2) and 2.556 (2) \AA).

S2. Experimental

Cu (Aldrich, 99.5%), $\mathrm{Tl}_{2} \mathrm{Se}$ (Aldrich, 99.999%), and Se (Cerac, 99.999%) were used as received. Th chunks were powdered according to a literature procedure (Witt et al., 1956). A fused-silica tube was loaded with $\mathrm{Th}(30 \mathrm{mg}, 0.129$ $\mathrm{mmol}), \mathrm{Cu}(7.0 \mathrm{mg}, 0.110 \mathrm{mmol}), \mathrm{Tl}_{2} \mathrm{Se}(36.6 \mathrm{mg}, 0.075 \mathrm{mmol})$, and $\mathrm{Se}(20.4 \mathrm{mg}, 0.258 \mathrm{mmol})$, evacuated to near 10^{-4} Torr, flame sealed, and placed in a computer-controlled furnace. It was heated to 597 K in 3 h , kept at 597 K for 24 h ,
heated to 1073 K in 24 h , kept at 1073 K for 96 h , cooled to 597 K in 96 h , cooled to 547 in 24 h , and then rapidly cooled to 298 K in 3 h . The reaction produced orange-red plates of $\mathrm{TlCuThSe} \mathrm{e}_{3}$. The elemental composition of the crystals was determined to be $\mathrm{Tl} / \mathrm{Cu} / \mathrm{Th} / \mathrm{Se}$ in an approximate ratio of $1 / 1 / 1 / 3$ on an EDX-equipped Hitachi S-3400 SEM.

S3. Refinement

The structure was standardized by means of the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The highest peak (2.0 (3) e \AA^{-3}) is $0.98 \AA$ from atom Tl 1 and the deepest hole $\left(-1.3(3)\right.$ e $\left.\AA^{-3}\right)$ is $1.96 \AA$ from atom Se 1 .

Figure 1
Structure of $\mathrm{TlCuThSe}_{3}$ viewed approximately down the a-axis. The 95% probability displacement ellipsoids are depicted with the unit cell outlined in red. Color key: black -Th , green -Cu , blue -Tl , orange -Se .

Figure 2
Polyhedral view of $\mathrm{TlCuThSe}_{3}$ showing sheets of edge-sharing ThSe_{6} octahedra (black) and CuSe_{4} tetrahedra (green) separated by voids filled with Tl (blue). The unit cell is outlined in red.

Thallium(I) copper(I) thorium(IV) triselenide

Crystal data

TlCuThSe ${ }_{3}$
$M_{r}=736.83$
Orthorhombic, Cmcm
Hall symbol: -C 2c 2
$a=4.1678$ (2) \AA
$b=14.2227$ (7) \AA
$c=10.8476$ (5) \AA
$V=643.02(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
(SADABS; Sheldrick, 2008b)
$T_{\text {min }}=0.101, T_{\text {max }}=0.489$
$F(000)=1208$
$D_{\mathrm{x}}=7.611 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1794 reflections
$\theta=2.9-28.2^{\circ}$
$\mu=68.19 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rectangular plate, orange
$0.10 \times 0.07 \times 0.02 \mathrm{~mm}$

7476 measured reflections
474 independent reflections
451 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-5 \rightarrow 5$
$k=-18 \rightarrow 18$
$l=-14 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.046$
$S=1.59$
474 reflections

24 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
\(\left[1.00000+0.00000 \exp \left(0.00(\sin \theta / \lambda)^{2}\right)\right] /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right.\)
    \(+0.0000+0.0000 * P+(0.0193 P)^{2}+\)
    \(0.0000 \sin \theta / \lambda]\)
    where \(P=1.00000 F_{\mathrm{o}}{ }^{2}+0.00000 F_{\mathrm{c}}{ }^{2}\)
\((\Delta / \sigma)_{\max }<0.001\)
```

$$
\Delta \rho_{\max }=2.01 \mathrm{e} \AA^{-3}
$$

$\Delta \rho_{\text {min }}=-1.34$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008a), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.00066 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\boldsymbol{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Th1	0.0000	0.0000	0.0000	$0.00558(15)$
Tl1	0.0000	$0.74746(3)$	0.2500	$0.01247(16)$
Se1	0.0000	$0.36628(5)$	$0.06410(7)$	$0.0067(2)$
Se2	0.0000	$0.06909(8)$	0.2500	$0.0059(2)$
Cu 1	0.0000	$0.46554(10)$	0.2500	$0.0085(3)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Th1	$0.0050(2)$	$0.0078(2)$	$0.0040(2)$	0.000	0.000	$-0.00012(14)$
Tl1	$0.0101(3)$	$0.0092(3)$	$0.0181(3)$	0.000	0.000	0.000
Se1	$0.0062(4)$	$0.0071(4)$	$0.0067(4)$	0.000	0.000	$-0.0002(3)$
Se2	$0.0069(5)$	$0.0064(5)$	$0.0043(5)$	0.000	0.000	0.000
Cu 1	$0.0100(7)$	$0.0096(7)$	$0.0060(6)$	0.000	0.000	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Th1—Se2 ${ }^{\text {i }}$	2.8844 (4)	Se1—Th1 ${ }^{\text {ix }}$	2.9057 (5)
Th1—Se2	2.8844 (4)	Se1-Th1 ${ }^{\text {viii }}$	2.9057 (5)
Th1—Se1 ${ }^{\text {ii }}$	2.9057 (5)	Se1-Tl1 ${ }^{\text {v }}$	3.3564 (6)
Th1—Se1 ${ }^{\text {iii }}$	2.9057 (5)	Se1-Tl1 ${ }^{\text {iii }}$	3.3564 (6)
Th1-Se1 ${ }^{\text {iv }}$	2.9057 (5)	Se1-Tl1 ${ }^{\text {xii }}$	3.7717 (8)
Th1—Se1 ${ }^{\text {v }}$	2.9057 (5)	$\mathrm{Se} 1-\mathrm{Tl1}{ }^{\text {xiv }}$	5.6211 (6)
Th1-Cu1 ${ }^{\text {iv }}$	3.4550 (2)	Sel-Tl1 ${ }^{\text {xv }}$	5.6211 (6)
Th1-Cu1 ${ }^{\text {v }}$	3.4550 (2)	$\mathrm{Se} 2-\mathrm{Cu} 1^{\text {iii }}$	2.5517 (11)
Th1-Cu1 ${ }^{\text {ii }}$	3.4550 (2)	$\mathrm{Se} 2-\mathrm{Cu}{ }^{\text {v }}$	2.5517 (11)
Th1-Cu1 ${ }^{\text {iii }}$	3.4550 (2)	Se 2 - Th1 ${ }^{\text {xvi }}$	2.8844 (4)
Th1-Th1 ${ }^{\text {vi }}$	4.1678 (2)	$\mathrm{Se} 2-\mathrm{Tl} 1^{\text {v }}$	3.2831 (9)
Th1—Th1 ${ }^{\text {vii }}$	4.1678 (2)	Se2-Tl1 ${ }^{\text {iii }}$	3.2831 (9)
Tl1-Se2 ${ }^{\text {viii }}$	3.2831 (9)	Se 2 - $\mathrm{Tl} 1^{\text {xvii }}$	4.5744 (12)
Tl1—Se2 ${ }^{\text {ix }}$	3.2831 (9)	Cu1-Se1	2.4617 (11)

Tl1-Se1 ${ }^{\text {x }}$
Tl1—-Se1 ${ }^{\text {viii }}$
Tl1-Se1 ${ }^{\text {xi }}$
Tl1-S
Tl1-Cu1 ${ }^{\text {ix }}$
$\mathrm{Tl} 1-\mathrm{Cu1}{ }^{\text {viii }}$
Tl1-S
Tl1-Se1 ${ }^{\text {x }}$
Tl1-Cu1
Tl1-Tl1 ${ }^{\text {vil }}$

Se2 ${ }^{\text {i }}$ —Th1—Se2
$\mathrm{Se} 2^{\mathrm{i}}-\mathrm{Th} 1 — \mathrm{Se} 1^{\text {ii }}$
$\mathrm{Se} 2-\mathrm{Th} 1 — \mathrm{Se} 1^{\text {ii }}$
Se2 ${ }^{\text {i }}-\mathrm{Th} 1 — \mathrm{Se} 1^{\text {iii }}$
$\mathrm{Se} 2-\mathrm{Th} 1 — \mathrm{Se} 1^{\text {iii }}$
$\mathrm{Sel}^{1 i}-\mathrm{Th} 1 — \mathrm{Sel}^{\mathrm{iii}}$
Se $2^{i}-\mathrm{Th} 1 — \mathrm{Se} 1^{\text {iv }}$
$\mathrm{Se} 2-\mathrm{Th} 1 — \mathrm{Se} 1^{\text {iv }}$
$\mathrm{Sel}^{1 i}-\mathrm{Th} 1-\mathrm{Sel}^{\mathrm{iv}}$
Sel ${ }^{\text {iii- }}$ Th1— $\mathrm{Se}^{\text {iv }}$
$\mathrm{Se}^{\mathrm{i}}-\mathrm{Th} 1-\mathrm{Se}^{\text {v }}$
$\mathrm{Se} 2-\mathrm{Th} 1-\mathrm{Se} 1^{v}$
$\mathrm{Se} 1^{\mathrm{ii}}-\mathrm{Th} 1-\mathrm{Sel}^{v}$
$\mathrm{Se}^{1 i i}{ }^{\text {iii }} \mathrm{Th} 1 — \mathrm{Se}^{\mathrm{v}}$
$\mathrm{Se}^{1{ }^{\mathrm{iv}}-\mathrm{Th}} 1 — \mathrm{Se}^{\mathrm{v}}$
$\mathrm{Se} 2^{\text {viii- }} \mathrm{Tl} 1-\mathrm{Se} 2^{\text {ix }}$
Se2 ${ }^{\text {viii- }} \mathrm{Tl} 1 — \mathrm{Se}^{\mathrm{x}}$
$\mathrm{Se} 2^{\mathrm{ix}}$ - $\mathrm{Tl} 1-\mathrm{Se}^{1}{ }^{\mathrm{x}}$
$\mathrm{Se}^{\text {viii }}$-Tl1—Se1 ${ }^{\text {viii }}$
$\mathrm{Se} 2^{\mathrm{ix}}$ —Tl1——Se1 ${ }^{\text {viii }}$
Se1 ${ }^{x}$-Tl1——Se1 ${ }^{\text {viii }}$
Se2 ${ }^{\text {viii }}-\mathrm{Tl} 1 — \mathrm{Se}^{\mathrm{xi}}$
$\mathrm{Se}^{2 \mathrm{ix}}-\mathrm{Tl} 1-\mathrm{Se}^{\mathrm{xi}}$
Se1 ${ }^{\mathrm{x}}-\mathrm{Tl} 1$ —Se1 ${ }^{\mathrm{xi}}$
Se1 ${ }^{\text {viii_-Tl1—Sel }}{ }^{\text {xi }}$
Se2 ${ }^{\text {viii- }}$ Tl1——Se1 ${ }^{\text {ix }}$
$\mathrm{Se}^{2 \mathrm{ix}}-\mathrm{Tl} 1 — \mathrm{Se}^{\mathrm{ix}}$
Se1 ${ }^{x}-\mathrm{Tl} 1-\mathrm{Se} 1^{\mathrm{ix}}$

Sel ${ }^{\text {xi }}-\mathrm{Tl} 1 —$ Se $1^{\text {ix }}$
Se2 ${ }^{\text {viii_ }} \mathrm{Tl} 1 —$ Se1 ${ }^{\text {xii }}$
Se2 $2^{\text {ix }}-\mathrm{Tl} 1 — \mathrm{Se} 1^{\text {xii }}$
Se1 ${ }^{x}-\mathrm{Tl} 1-\mathrm{Se}^{\mathrm{xii}}$
Se1 ${ }^{\text {viii_-Tl1—Sel }}{ }^{\text {xii }}$
Se1 ${ }^{\text {xi }}-\mathrm{Tl} 1$ — $\mathrm{Se}^{\text {xii }}$
Sel ${ }^{\text {ix }} —$ Tll——Se1 ${ }^{\text {xii }}$
$\mathrm{Cu} 1^{\mathrm{ix}}-\mathrm{Tl} 1 — \mathrm{Se}^{\mathrm{xii}}$
$3.3564(6)$
$3.3564(6)$
$3.3564(6)$
$3.3564(6)$
$3.7368(13)$
$3.7368(13)$
$3.7717(8)$
$3.7717(8)$
$4.0095(16)$
$4.1678(2)$
180.0
89.89 (2)
90.11 (2)
90.11 (2)
89.89 (2)
180.00 (4)
89.89 (2)
90.11 (2)
91.64 (2)
88.36 (2)
90.11 (2)
89.89 (2)
88.36 (2)
91.64 (2)
180.00 (4)
78.80 (3)
141.551 (14)
89.713 (15)
89.713 (15)
141.551 (14)
119.54 (3)
89.713 (15)
141.551 (14)
76.760 (17)
73.86 (2)
141.551 (14)
89.713 (15)
73.86 (2)
76.760 (17)
119.54 (3)
70.645 (11)
70.645 (11)
139.351 (12)
70.924 (17)
139.351 (11)
70.924 (17)
110.855 (11)

Cu1-Se1 ${ }^{\text {xviii }}$	2.4617 (11)
$\mathrm{Cu} 1-\mathrm{Se} 2^{\text {ix }}$	2.5517 (11)
$\mathrm{Cu} 1-\mathrm{Se} 2^{\text {viii }}$	2.5517 (11)
$\mathrm{Cu} 1-\mathrm{Th} 1^{\text {xix }}$	3.4550 (2)
$\mathrm{Cu} 1-\mathrm{Th} 1^{\text {viii }}$	3.4550 (2)
Cu1-Th1 ${ }^{\text {xx }}$	3.4550 (2)
$\mathrm{Cu} 1-\mathrm{Th} 1^{\text {ix }}$	3.4550 (2)
$\mathrm{Cu}-\mathrm{Tl1}{ }^{\text {iii }}$	3.7368 (13)
$\mathrm{Cu}-\mathrm{Tl1}{ }^{\text {v }}$	3.7368 (13)

91.607 (8)
156.72 (3)
78.26 (3)
156.72 (3)
91.607 (8)
76.761 (17)
170.40 (4)
93.702 (18)
93.702 (18)
109.076 (17)
109.076 (17)
131.422 (8)
125.11 (2)
60.762 (10)
132.816 (19)
76.051 (8)
47.856 (6)
131.422 (9)
60.763 (10)
125.11 (2)
76.051 (8)
132.816 (19)
47.856 (6)
95.712 (12)
109.50 (7)
78.662 (19)
78.662 (19)
78.662 (19)
78.662 (19)
140.17 (4)
164.65 (4)
85.85 (3)
105.262 (13)
105.262 (13)
85.85 (3)
164.65 (4)
105.262 (13)
supporting information

Cu1 ${ }^{\text {viii }}$-Tl1—Se1 ${ }^{\text {xii }}$	110.855 (11)	Th1 ${ }^{\text {xvi }}$-Se2-Tl1 ${ }^{\text {iii }}$	105.262 (13)
Se2 ${ }^{\text {viii }}$-Tl1—Se1 ${ }^{\text {xiii }}$	70.645 (11)	Tl1 ${ }^{\mathrm{v}}$ - $\mathrm{Se} 2 — \mathrm{Tl1}{ }^{\text {iii }}$	78.80 (3)
Se2 ${ }^{\text {ix }}$-Tl1—Se1 ${ }^{\text {xiii }}$	70.645 (11)	$\mathrm{Cu1}{ }^{\text {iii- }} \mathrm{Se} 2 — \mathrm{Tl} 1^{\text {xvii }}$	54.75 (3)
Se1 ${ }^{\text {x }}$-Tl1-Se1 ${ }^{\text {xiii }}$	70.924 (17)	$\mathrm{Cu} 1^{v}-\mathrm{Se} 2-\mathrm{Tl1}{ }^{\text {xvii }}$	54.75 (3)
Se1 ${ }^{\text {viii }}$-Tl1—Se1 ${ }^{\text {xiii }}$	139.351 (11)	Th1—Se2-Tl1 ${ }^{\text {xvii }}$	70.08 (2)
Se1 ${ }^{\text {xi }}$-Tl1——Se1 ${ }^{\text {xiii }}$	70.924 (17)	Th1 ${ }^{\text {xvi }}$-Se2— ${ }^{\text {Tl1 }}{ }^{\text {xvii }}$	70.08 (2)
Se1 ${ }^{\text {ix }}$-Tl1——Se1 ${ }^{\text {xiii }}$	139.351 (11)	Tl1 ${ }^{2}-\mathrm{Se} 2-\mathrm{Tl} 1^{\text {xvii }}$	140.600 (14)
$\mathrm{Cu} 1^{\mathrm{ix}}$ —Tl1—-Se1 ${ }^{\text {xiii }}$	110.855 (11)	Tl1 ${ }^{\text {iii }}$-Se2— $\mathrm{Tl}^{\text {xvii }}$	140.600 (14)
Cu1 ${ }^{\text {viii_ }}$ Tl1—Se1 ${ }^{\text {xiii }}$	110.855 (11)	$\mathrm{Se} 1-\mathrm{Cu} 1-\mathrm{Se} 1^{\text {xvii }}$	110.01 (7)
Se1 ${ }^{\text {xii }}$-Tl1—Se1 ${ }^{\text {xiii }}$	129.21 (3)	$\mathrm{Se} 1-\mathrm{Cu} 1-\mathrm{Se}^{\text {ix }}$	109.328 (14)
Cu1—Se1—Th1 ${ }^{\text {ix }}$	79.67 (3)	Se1 ${ }^{\text {xviii }}$ - $\mathrm{Cu} 1-\mathrm{Se} 2^{\text {ix }}$	109.328 (14)
Cu1—Se1—Th1 ${ }^{\text {viii }}$	79.67 (3)	$\mathrm{Se} 1-\mathrm{Cu} 1-\mathrm{Se} 2^{\text {viii }}$	109.328 (14)
Th1 ${ }^{\text {ix }}$-Se1—Th1 ${ }^{\text {viii }}$	91.64 (2)	Se1 ${ }^{\text {xviii }} \mathrm{Cu} 1-\mathrm{Se} 2^{\text {viii }}$	109.328 (14)
$\mathrm{Cu}-\mathrm{Se} 1-\mathrm{Tl1}{ }^{\text {v }}$	78.26 (3)	$\mathrm{Se} 2^{\text {ix }}-\mathrm{Cu} 1-\mathrm{Se}^{\text {viii }}$	109.51 (7)

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x+1 / 2,-y+1 / 2,-z$; (iii) $x-1 / 2, y-1 / 2, z$; (iv) $-x-1 / 2,-y+1 / 2,-z$; (v) $x+1 / 2, y-1 / 2, z$; (vi) $x-1, y, z$; (vii) $x+1, y, z$; (viii) $x-1 / 2, y+1 / 2, z$; (ix) $x+1 / 2, y+1 / 2, z$; (x) $x+1 / 2, y+1 / 2,-z+1 / 2$; (xi) $x-1 / 2, y+1 / 2,-z+1 / 2$; (xii) $-x,-y+1,-z$; (xiii) $-x,-y+1, z+1 / 2$; (xiv) $-x-1,-y+1$, $-z$; (xv) $-x+1,-y+1,-z$; (xvi) $-x,-y, z+1 / 2$; (xvii) $x, y-1, z$; (xviii) $x, y,-z+1 / 2$; (xix) $-x+1 / 2,-y+1 / 2, z+1 / 2 ;(\mathrm{xx})-x-1 / 2,-y+1 / 2, z+1 / 2$.

