metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Discrete water clusters in tetra-*µ*cyanido-tetracyanidobis(1,4,7-triisopropyl-1,4,7-triazacyclononane)dicopper(II)dinickel(II) tetrahydrate

Hong-Xia Cui^a* and Yan-Chao Wang^b

^aDepartment of Chemistry and Chemical Engineering, Shengli College, China University of Petroleum, Dongying 257097, People's Republic of China, and ^bDepartment of Basic Science, Liao Ning Institute of Science and Technology, Benxi 117004, People's Republic of China Correspondence e-mail: chx1979124@126.com

Received 9 April 2012; accepted 28 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.074; data-to-parameter ratio = 19.2.

The title tetracyanidonickelate–copper complex, $[Cu_2Ni_2-(CN)_8(C_{15}H_{33}N_3)_2]\cdot 4H_2O$, was synthesized by self-assembly using potassium tetracyanidonickelate(II) and dichlorido-(1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II). The asymmetric unit contains half of a complex molecule and two water molecules. The entire complex has $\overline{1}$ symmetry and contains Ni(II) in a slightly distorted square-planar and Cu(II) in a square-pyramidal coordination environment. The crystal packing shows a discrete tetramer water cluster. Within the cluster, the four water molecules are fully coplanar and each water monomer acts both as single $O-H\cdots O$ and $O-H\cdots N$ hydrogen-bond donor and acceptor.

Related literature

For properties and applications of cyanide-bridged coordination complexes, see: Zhao *et al.* (2009); Dunbar & Heintz (1997); Orendac *et al.* (2002). For the use of the tetracyanidonickelate anion as a bridging ligand in the construction of one-, two- and three-dimensional structures, see: Bozoglian *et al.* (2005); Maji *et al.* (2001); Dunbar & Heintz (1997); Černák *et al.* (1988, 1990); Černák & Abboud (2000). For the influence on water aggregations of the overall structure of their surroundings, see: Long *et al.* (2004); Xantheas (1995). For water clusters, see: Ugalde *et al.* (2000); Gregory & Clary (1996). For the synthesis of the ligand, see: Hay & Norman (1979). Chen *et al.* (2009).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Cu}_2\mathrm{Ni}_2(\mathrm{CN})_8(\mathrm{C}_{15}\mathrm{H}_{33}\mathrm{N}_3)_2]\cdot 4\mathrm{H}_2\mathrm{O} \\ & M_r = 1035.59 \\ & \mathrm{Monoclinic}, \ P2_1/c \\ & a = 8.5896 \ (17) \ \mathrm{\AA} \\ & b = 18.092 \ (4) \ \mathrm{\AA} \\ & c = 15.615 \ (3) \ \mathrm{\AA} \\ & \beta = 95.61 \ (3)^\circ \end{split}$$

Data collection

Bruker P4 diffractometer Absorption correction: multi-scan (XSCANS; Bruker, 1999) $T_{min} = 0.798, T_{max} = 0.906$ 18582 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.074$ S = 1.035622 reflections 293 parameters 6 restraints 5622 independent reflections 4475 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ 3 standard reflections every 120 min intensity decay: 1.0%

V = 2415.1 (8) Å³

Mo $K\alpha$ radiation

 $0.14 \times 0.12 \times 0.06 \text{ mm}$

 $\mu = 1.69 \text{ mm}^-$

T = 293 K

Z = 2

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$01 - H1A \cdots N3^{i}$ $01 - H1B \cdots O2^{ii}$ $02 - H2A \cdots N2$ $02 - H2B \cdots O1^{iii}$	0.85 (2) 0.85 (2) 0.86 (2) 0.86 (3)	2.02 (2) 1.92 (2) 1.98 (2) 1.92 (3)	2.874 (3) 2.745 (3) 2.831 (3) 2.775 (3)	179 (3) 165 (2) 171 (3) 174 (2)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y, z + 1.

Data collection: *XSCANS* (Bruker, 1999); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Department of Chemistry and Chemical Engineering, Shengli College, China University of Petroleum, for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2171).

References

- Bozoglian, F., Macpherson, B. P. & Martinez, M. (2005). Coord. Chem. Rev. 249, 1902–1912.
- Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Černák, J. & Abboud, K. A. (2000). Acta Cryst. C56, 783-785.
- Černák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107.
- Černák, J., Chomič, J., Domiano, P., Ori, O. & Andreeti, G. D. (1990). Acta Cryst. C46, 2103–2107.
- Chen, G. J., Gao, F. X., Huang, F. P., Tian, J. L., Gu, W., Liu, X., Yan, S. P. & Liao, D. Z. (2009). Cryst. Growth Des. 9, 2662–2667.
- Dunbar, K. R. & Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 282-391.
- Gregory, J. K. & Clary, D. C. (1996). J. Phys. Chem. 100, 18014-18022.

- Hay, R. W. & Norman, P. R. (1979). J. Chem. Soc. Dalton Trans. pp. 1441–1445.Long, L. S., Wu, Y. R., Huang, G. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800.
- Maji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Chaudhuri, N. R. (2001). *Chem. Commun.* pp. 1368–1369.
- Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51–66.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ugalde, J. M., Alkorta, I. & Elguero, J. (2000). Angew. Chem. Int. Ed. 39, 717-721.
- Xantheas, S. S. (1995). J. Chem. Phys. 102, 4505-4517.
- Zhao, C. C., Ni, W. W., Tao, J., Cui, A. L. & Kou, H. Z. (2009). CrystEngComm, 11, 632–637.

supporting information

Acta Cryst. (2012). E68, m880–m881 [https://doi.org/10.1107/S1600536812024282]

Discrete water clusters in tetra-µ-cyanido-tetracyanidobis(1,4,7-triisopropyl-1,4,7-triazacyclononane)dicopper(II)dinickel(II) tetrahydrate

Hong-Xia Cui and Yan-Chao Wang

S1. Comment

In recent years, much attention has been paid to assemble cyanide-bridged coordination complexes because of their promising properties and applications including electronics, magnetism and catalysis (Zhao *et al.*, 2009; Dunbar & Heintz, 1997; Orendac *et al.*, 2002), in which tetracyanonickelate complexes have also become the focus. On the one hand, diamagnetic $[Ni(CN)_4]^{2-}$ is an excellent model for magnetic studies which bridge paramagnetic ions, but on the other hand the tetracyanonickelate anion, as a bridging ligand, can be used to construct one-dimensional, two-dimensional and three-dimensional structures (Bozoglian *et al.*, 2005; Maji *et al.*, 2001; Dunbar & Heintz, 1997; Černák *et al.*, 2000; 1988; 1990). Low-dimensional cyanide-bridged complexes based on $[Ni(CN)_4]^{2-}$ form a new family of molecular magnetic materials. However, the use of macrocyclic ligands as terminal group to control the low-dimensional structure is still relatively rare. On the other hand, water clusters can play an important role in the stabilization of supramolecular systems both in solution and in the solid state, and there is clearly a need for a better understanding of how such water aggregations are influenced by the overall structure of their surroundings (Long *et al.*, 2004; Xantheas, 1995). In the past several decades, considerable attention has been focused on theoretical and experimental studies of small water clusters to understand the structures and characteristics of liquid water and ice (Ugalde *et al.*, 2000; Gregory *et al.*, 1996).

In this study, we report a complex 1 in which $[Ni(CN)_4]^2$ acts as bridging ligand to construct a low-dimensional complex. Complex 1 can be synthesized by the reaction of $[Ni(Pr_3TACN)]Cl_2$ with $K_2[Ni(CN)_4]$, which is a cyanide bridged [2 + 2] type of molecular square. The ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (Pr₃TACN) was synthesized according to the literature (Hay et al., 1979; Chen et al., 2009). The structure of the complex 1 is shown in Figure 1. The complex contains two [Ni(CN)₄]²⁻ bridges and two *cis*-[Cu(Pr₃TACN)]²⁺ moieties in *cis*-positions to form a [2+2] type of discrete molecular square. The Cu1-N(macrocycle) distances (2.0686 (17)-2.2153 (18) Å) are close to the Cu1-N(cyano) distances (1.9781 (18) and 1.9929 (17) Å) and they are longer than the Ni1-C(cyano) distances (1.861 (2)–1.871 (2) Å). Furthermore the C—N(coordinated) distances of the cyano groups are close to the C— N(uncoordinated) distances. Interestingly, a cyclic water tetramer is located in between the complexes 1. Within the cluster, the four water molecules are fully coplanar and each water monomer acts as both single hydrogen bond donor and acceptor. The hydrogen bond distances and angles within the water tetramer are as follows: $O1-O2^{i} = 2.775$ (3) Å, $O1-O2^{i}$ $O2^{ii} = 2.745$ (3) Å, $O1^{i} - O2 - O1^{iii} = 100.05$ (9)°, $O2^{i} - O1 - O2^{ii} = 79.95$ (8)° (symmetry codes: (i) x, y, -1 + z; (2) 1 - x, 1 - y, 1 - z; (iii) x, y, z + 1). The average hydrogen bond distance within the water tetramer is 2.76 (1) Å, which is slightly shorter than 2.78 Å estimated in the udud water tetramer of $(D_2O)_4$ (Ugalde et al., 2000). The most remarkable feature in 1 is that the cyclic water tetramer connects the [2 + 2] molecular square through hydrogen bonds to form a twodimensional structure (Fig. 2, Table 1).

S2. Experimental

A water solution (25 ml) of potassium tetracyanonickel (0.111 g, 0.4 mmol) was layered with an acetonitrile solution (25 ml) of dichloro-(1,4,7-triisopropyl-1,4,7-triazcyclononane)-copper(II) (0.151 g, 0.4 mmol). After about 3 weeks, prism-shaped blue crystals of 1 formed from the solution. The crystals were collected, washed with water and methanol, and dried in the air. Yield: 45% (based on tetracyanonickelate salts). Anal. Calcd for $C_{19}H_{37}N_7CuNiO_2$: C, 44.07; H, 7.20; N, 18.93. Found: C, 44.25; H, 7.25; N, 19.02%. IR (KBr, cm⁻¹): 3455 (s), 2974 (s), 2164 (CN, coordinated) and 2135 (CN, uncoordinated), 1652 (s).

S3. Refinement

A total of 6 similarity restraints were used for the H atoms of the water molecules which were initially refined with fixed O—H distances of 0.85 Å and $1.2U_{eq}(O)$. The other H atoms were placed in calculated positions and refined as riding on the parent C atoms with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of **1** showing 30% probability displacement ellipsoids for non-H atoms. The second half of the molecule is generated by symmetry code -x, -y - 1, -z - 1.

Figure 2

Stacking diagram of 1 and hydrogen bonding in the water cluster (symmetry code A: 1 - x, 1 - y, -z).

tetra- μ -cyanido-1:2 κ^2 C:N;2:3 κ^2 N:C; 3:4 κ^2 C:N;4:1 κ^2 N:C-tetracyanido- 1 κ^2 C,3 κ^2 C-bis(1,4,7-triisopropyl-1,4,7-triazacyclononane)-2 κ^3 N,N',N''; 4 κ^3 N,N',N''-dicopper(II)dinickel(II) tetrahydrate

Crystal data

 $[Cu_2Ni_2(CN)_8(C_{15}H_{33}N_3)_2]\cdot 4H_2O$ $M_r = 1035.59$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.5896 (17) Å b = 18.092 (4) Å c = 15.615 (3) Å $\beta = 95.61 (3)^\circ$ $V = 2415.1 (8) \text{ Å}^3$ Z = 2

Data collection

Bruker P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*XSCANS*; Bruker, 1999) $T_{\min} = 0.798$, $T_{\max} = 0.906$ 18582 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.074$ S = 1.035622 reflections 293 parameters F(000) = 1092 $D_x = 1.424 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3989 reflections $\theta = 2.0-25.5^{\circ}$ $\mu = 1.69 \text{ mm}^{-1}$ T = 293 KPrism, blue $0.14 \times 0.12 \times 0.06 \text{ mm}$

5622 independent reflections 4475 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -11 \rightarrow 10$ $k = -23 \rightarrow 23$ $I = -20 \rightarrow 12$ 3 standard reflections every 120 min intensity decay: 1.0%

6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.002$
and constrained refinement	$\Delta \rho_{\rm max} = 0.52 \text{ e} \text{ Å}^{-3}$
$w = 1/[\sigma^2(F_o^2) + (0.0357P)^2]$	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cu1	0.14378 (3)	0.639359 (12)	0.659167 (15)	0.01450 (7)
Ni1	0.20048 (3)	0.370161 (13)	0.612942 (16)	0.01552 (8)
N1	0.12720 (19)	0.52998 (9)	0.64625 (11)	0.0183 (4)
N2	0.4785 (2)	0.39240 (11)	0.74309 (12)	0.0336 (5)
N3	0.2998 (2)	0.21257 (10)	0.58992 (14)	0.0358 (5)
N4	-0.0304 (2)	0.35220 (9)	0.45692 (11)	0.0188 (4)
N5	0.18877 (19)	0.63639 (9)	0.79170 (10)	0.0164 (4)
N6	0.40058 (19)	0.63663 (9)	0.65419 (11)	0.0200 (4)
N7	0.16954 (19)	0.75278 (9)	0.67369 (10)	0.0173 (4)
C1	0.1467 (2)	0.46860 (11)	0.63196 (13)	0.0173 (4)
C2	0.3701 (3)	0.38215 (11)	0.69594 (13)	0.0220 (5)
C3	0.2615 (2)	0.27259 (12)	0.59875 (14)	0.0225 (5)
C4	0.0494 (2)	0.35903 (10)	0.51975 (13)	0.0174 (4)
C5	0.3626 (2)	0.62659 (12)	0.81156 (14)	0.0226 (5)
H5A	0.3815	0.5925	0.8594	0.027*
H5B	0.4083	0.6738	0.8296	0.027*
C6	0.4447 (2)	0.59780 (12)	0.73657 (13)	0.0239 (5)
H6A	0.5568	0.6024	0.7507	0.029*
H6B	0.4209	0.5457	0.7289	0.029*
C7	0.4476 (2)	0.71567 (12)	0.65622 (15)	0.0252 (5)
H7A	0.5301	0.7228	0.6188	0.030*
H7B	0.4891	0.7287	0.7143	0.030*
C8	0.3109 (3)	0.76665 (11)	0.62750 (14)	0.0234 (5)
H8A	0.3438	0.8175	0.6370	0.028*
H8B	0.2832	0.7602	0.5662	0.028*
C9	0.2005 (3)	0.77059 (11)	0.76740 (13)	0.0206 (5)
H9A	0.1495	0.8168	0.7793	0.025*
H9B	0.3121	0.7769	0.7820	0.025*
C10	0.1412 (3)	0.71016 (11)	0.82235 (13)	0.0205 (5)
H10A	0.1833	0.7171	0.8817	0.025*
H10B	0.0281	0.7127	0.8198	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C11	0.4573 (2)	0.59355 (13)	0.58066 (14)	0.0256 (5)
H11	0.4070	0.5449	0.5806	0.031*
C12	0.4061 (3)	0.62923 (13)	0.49380 (15)	0.0331 (6)
H12A	0.2950	0.6372	0.4888	0.050*
H12B	0.4322	0.5972	0.4484	0.050*
H12C	0.4587	0.6757	0.4897	0.050*
C13	0.6336 (3)	0.58003 (14)	0.59072 (17)	0.0376 (6)
H13A	0.6875	0.6265	0.5960	0.056*
H13B	0.6632	0.5541	0.5412	0.056*
H13C	0.6610	0.5509	0.6414	0.056*
C14	0.0316 (2)	0.79650 (11)	0.63208 (14)	0.0219 (5)
H14	0.0216	0.7844	0.5706	0.026*
C15	0.0510(3)	0.88029 (11)	0.63950 (15)	0.0279 (5)
H15A	0.0495	0.8949	0.6985	0.042*
H15B	-0.0331	0.9042	0.6051	0.042*
H15C	0.1489	0.8945	0.6195	0.042*
C16	-0.1201 (3)	0.77345 (12)	0.66699 (14)	0.0273 (5)
H16A	-0.1295	0.7206	0.6650	0.041*
H16B	-0.2070	0.7953	0.6326	0.041*
H16C	-0.1199	0.7900	0.7254	0.041*
C17	0.1007 (3)	0.57566 (11)	0.83338 (13)	0.0215 (5)
H17	0.1460	0.5283	0.8183	0.026*
C18	-0.0718 (3)	0.57506 (12)	0.79870 (14)	0.0253 (5)
H18A	-0.1217	0.6189	0.8173	0.038*
H18B	-0.1217	0.5323	0.8201	0.038*
H18C	-0.0804	0.5736	0.7370	0.038*
C19	0.1143 (3)	0.58101 (12)	0.93095 (13)	0.0300 (6)
H19A	0.2220	0.5877	0.9523	0.045*
H19B	0.0754	0.5364	0.9544	0.045*
H19C	0.0540	0.6223	0.9478	0.045*
01	0.3097 (2)	0.42588 (10)	0.00040 (11)	0.0420 (5)
O2	0.5596 (2)	0.45720 (11)	0.90642 (13)	0.0454 (5)
H1A	0.308 (3)	0.3849 (7)	0.0270 (14)	0.058 (10)*
H1B	0.340 (3)	0.4592 (9)	0.0362 (12)	0.048 (9)*
H2A	0.542 (3)	0.4407 (18)	0.8550 (9)	0.095 (14)*
H2B	0.481 (3)	0.4447 (17)	0.9337 (16)	0.075 (12)*
		× /		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.01485 (13)	0.01184 (12)	0.01636 (14)	-0.00097 (10)	-0.00065 (9)	-0.00208 (10)
Ni1	0.01783 (14)	0.01198 (13)	0.01623 (15)	0.00133 (10)	-0.00106 (10)	-0.00066 (10)
N1	0.0188 (9)	0.0156 (9)	0.0200 (9)	-0.0002 (7)	-0.0007 (7)	-0.0017 (7)
N2	0.0328 (12)	0.0317 (11)	0.0337 (12)	0.0063 (9)	-0.0098 (9)	-0.0029 (9)
N3	0.0373 (12)	0.0190 (10)	0.0513 (14)	0.0058 (9)	0.0058 (10)	-0.0024 (9)
N4	0.0203 (9)	0.0149 (9)	0.0209 (10)	-0.0008 (7)	0.0010 (7)	-0.0016 (7)
N5	0.0179 (9)	0.0143 (8)	0.0168 (9)	0.0009 (7)	-0.0001 (7)	-0.0013 (7)
N6	0.0158 (9)	0.0192 (9)	0.0250 (10)	-0.0034 (7)	0.0026 (7)	-0.0059 (7)

supporting information

N7	0.0194 (9)	0.0133 (8)	0.0194 (9)	-0.0004 (7)	0.0025 (7)	0.0000 (7)
C1	0.0146 (10)	0.0211 (11)	0.0155 (10)	-0.0035 (8)	-0.0020 (8)	-0.0003 (8)
C2	0.0271 (12)	0.0169 (11)	0.0218 (12)	0.0051 (9)	0.0018 (9)	0.0006 (9)
C3	0.0234 (12)	0.0212 (11)	0.0227 (12)	0.0000 (9)	0.0013 (9)	0.0005 (9)
C4	0.0196 (11)	0.0107 (10)	0.0222 (12)	0.0000 (8)	0.0041 (8)	-0.0009 (8)
C5	0.0171 (11)	0.0240 (12)	0.0250 (12)	0.0010 (9)	-0.0067 (9)	-0.0009 (9)
C6	0.0149 (11)	0.0241 (12)	0.0315 (13)	0.0002 (9)	-0.0030 (9)	-0.0051 (10)
C7	0.0210 (12)	0.0236 (12)	0.0317 (13)	-0.0074 (9)	0.0057 (10)	-0.0072 (10)
C8	0.0274 (12)	0.0198 (11)	0.0241 (12)	-0.0080 (9)	0.0083 (9)	-0.0018 (9)
C9	0.0242 (11)	0.0161 (10)	0.0209 (11)	-0.0013 (9)	-0.0004 (9)	-0.0056 (8)
C10	0.0260 (12)	0.0163 (10)	0.0188 (11)	-0.0006 (9)	0.0007 (9)	-0.0027 (8)
C11	0.0203 (12)	0.0266 (12)	0.0309 (13)	-0.0041 (9)	0.0071 (9)	-0.0100 (10)
C12	0.0297 (14)	0.0410 (15)	0.0305 (14)	-0.0048 (11)	0.0132 (11)	-0.0093 (11)
C13	0.0227 (13)	0.0421 (16)	0.0498 (17)	-0.0012 (11)	0.0121 (11)	-0.0172 (13)
C14	0.0269 (12)	0.0171 (10)	0.0213 (11)	0.0005 (9)	0.0003 (9)	-0.0002 (9)
C15	0.0400 (14)	0.0167 (11)	0.0274 (13)	0.0031 (10)	0.0044 (10)	0.0016 (9)
C16	0.0257 (12)	0.0247 (12)	0.0309 (13)	0.0036 (10)	0.0010 (10)	0.0021 (10)
C17	0.0279 (12)	0.0158 (11)	0.0206 (11)	-0.0004 (9)	0.0023 (9)	0.0028 (8)
C18	0.0282 (13)	0.0198 (11)	0.0290 (13)	-0.0021 (9)	0.0081 (10)	0.0020 (9)
C19	0.0439 (15)	0.0271 (13)	0.0193 (12)	0.0006 (11)	0.0042 (10)	0.0052 (9)
01	0.0551 (13)	0.0261 (10)	0.0424 (11)	-0.0098 (9)	-0.0069 (9)	0.0031 (9)
O2	0.0513 (14)	0.0450 (12)	0.0393 (12)	-0.0076 (10)	0.0015 (10)	-0.0159 (10)

Geometric parameters (Å, °)

Cu1—N4 ⁱ	1.9781 (18)	С9—Н9В	0.9700
Cu1—N1	1.9929 (17)	C10—H10A	0.9700
Cu1—N5	2.0686 (17)	C10—H10B	0.9700
Cu1—N7	2.0740 (17)	C11—C13	1.527 (3)
Cu1—N6	2.2153 (18)	C11—C12	1.527 (3)
Ni1—C3	1.861 (2)	C11—H11	0.9800
Ni1—C4	1.864 (2)	C12—H12A	0.9600
Ni1—C2	1.866 (2)	C12—H12B	0.9600
Ni1—C1	1.871 (2)	C12—H12C	0.9600
N1C1	1.148 (3)	C13—H13A	0.9600
N2—C2	1.144 (3)	C13—H13B	0.9600
N3—C3	1.147 (3)	C13—H13C	0.9600
N4—C4	1.147 (3)	C14—C16	1.520 (3)
N4—Cu1 ⁱ	1.9781 (18)	C14—C15	1.528 (3)
N5—C10	1.488 (2)	C14—H14	0.9800
N5—C5	1.506 (2)	C15—H15A	0.9600
N5—C17	1.517 (3)	C15—H15B	0.9600
N6—C6	1.482 (3)	C15—H15C	0.9600
N6—C7	1.485 (3)	C16—H16A	0.9600
N6-C11	1.507 (3)	C16—H16B	0.9600
N7—C8	1.493 (3)	C16—H16C	0.9600
N7—C9	1.496 (2)	C17—C19	1.520 (3)
N7—C14	1.517 (3)	C17—C18	1.527 (3)

supporting information

C5—C6	1.517 (3)	С17—Н17	0.9800
С5—Н5А	0.9700	C18—H18A	0.9600
С5—Н5В	0.9700	C18—H18B	0.9600
С6—Н6А	0.9700	C18—H18C	0.9600
С6—Н6В	0.9700	С19—Н19А	0.9600
C7—C8	1.526 (3)	C19—H19B	0.9600
C7—H7A	0.9700	C19—H19C	0.9600
C7—H7B	0.9700	01—H1A	0.851 (9)
C8—H8A	0.9700	01—H1B	0.846(9)
C8 H8B	0.9700	$O_2 H_2 \Lambda$	0.856(10)
$C_0 = C_{10}$	1.500(2)	02 112A	0.850(10)
$C_{0} = 0$	1.309(3)	02—112B	0.801 (10)
С9—п9А	0.9700		
N4 ⁱ —Cu1—N1	87.71 (7)	С10—С9—Н9А	109.4
$N4^{i}$ —Cu1—N5	161.08 (7)	N7—C9—H9B	109.4
N1—Cu1—N5	94.59 (6)	C10—C9—H9B	109.4
$N4^{i}$ Cu1 N7	93 53 (6)	H9A - C9 - H9B	108.0
N1 - Cu1 - N7	177 96 (7)	N5-C10-C9	110.39(17)
N5-Cu1-N7	84 76 (6)	N5-C10-H10A	109.6
N_{i}^{i} Cul N6	111 86 (8)	C_{0} C_{10} H_{10A}	109.6
N1 Cu1 N6	92.05(7)	N5 C10 H10R	109.6
N5 Cu1 N6	92.03 (7) 86.86 (7)	C_{0} C_{10} H_{10B}	109.0
N7 Cu1 N6	80.80 (7)		109.0
N = Cu = N0	83.98 (0) 80.27 (0)	HI0A - CI0 - HI0B	108.1
$C_3 = N_1 = C_4$	89.27 (9)	N6-C11-C13	113.30 (18)
C3-N1-C2	89.03 (9)	N6-C11-C12	111.79 (18)
C4—N11—C2	172.72 (9)	C13—C11—C12	110.86 (19)
C3—N11—C1	177.13 (9)	N6—C11—H11	106.8
C4—Ni1—C1	93.60 (8)	C13—C11—H11	106.8
C2—Ni1—C1	88.13 (9)	C12—C11—H11	106.8
C1—N1—Cu1	165.89 (17)	C11—C12—H12A	109.5
$C4$ — $N4$ — $Cu1^i$	167.12 (16)	C11—C12—H12B	109.5
C10—N5—C5	109.71 (15)	H12A—C12—H12B	109.5
C10—N5—C17	110.33 (16)	C11—C12—H12C	109.5
C5—N5—C17	110.65 (15)	H12A—C12—H12C	109.5
C10—N5—Cu1	105.55 (11)	H12B-C12-H12C	109.5
C5—N5—Cu1	107.08 (13)	C11—C13—H13A	109.5
C17—N5—Cu1	113.32 (12)	C11—C13—H13B	109.5
C6—N6—C7	113.06 (16)	H13A—C13—H13B	109.5
C6—N6—C11	109.99 (16)	C11—C13—H13C	109.5
C7—N6—C11	113.98 (17)	H13A—C13—H13C	109.5
C6—N6—Cu1	98.69 (12)	H13B—C13—H13C	109.5
C7—N6—Cu1	104.33 (12)	N7—C14—C16	111.39 (17)
C11—N6—Cu1	115.81 (12)	N7—C14—C15	114.21 (17)
C8—N7—C9	111.17 (16)	C16—C14—C15	109.64 (18)
C8—N7—C14	110.08 (16)	N7—C14—H14	107.1
C9—N7—C14	111.30 (16)	C16—C14—H14	107.1
C8—N7—Cu1	101 33 (12)	C15-C14-H14	107.1
C9—N7—Cu1	109.08 (12)	C14—C15—H15A	109.5
	····· (- -)		

C14—N7—Cu1	113.49 (12)	C14—C15—H15B	109.5
N1—C1—Ni1	173.96 (18)	H15A—C15—H15B	109.5
N2—C2—Ni1	175.5 (2)	C14—C15—H15C	109.5
N3—C3—Ni1	179.7 (2)	H15A—C15—H15C	109.5
N4—C4—Ni1	172.6 (2)	H15B—C15—H15C	109.5
N5—C5—C6	114.07 (17)	C14—C16—H16A	109.5
N5—C5—H5A	108.7	C14—C16—H16B	109.5
С6—С5—Н5А	108.7	H16A—C16—H16B	109.5
N5—C5—H5B	108.7	C14—C16—H16C	109.5
С6—С5—Н5В	108.7	H16A—C16—H16C	109.5
H5A—C5—H5B	107.6	H16B—C16—H16C	109.5
N6—C6—C5	114.12 (17)	N5—C17—C19	113.04 (17)
N6—C6—H6A	108.7	N5—C17—C18	111.13 (16)
С5—С6—Н6А	108.7	C19—C17—C18	109.45 (18)
N6—C6—H6B	108.7	N5—C17—H17	107.7
C5—C6—H6B	108.7	С19—С17—Н17	107.7
H6A—C6—H6B	107.6	С18—С17—Н17	107.7
N6-C7-C8	112.05 (17)	C17—C18—H18A	109.5
N6-C7-H7A	109.2	C17—C18—H18B	109.5
C8-C7-H7A	109.2	H18A - C18 - H18B	109.5
N6-C7-H7B	109.2	C17 - C18 - H18C	109.5
C8-C7-H7B	109.2	H18A - C18 - H18C	109.5
H7A - C7 - H7B	107.9	H18B-C18-H18C	109.5
N7 - C8 - C7	113 29 (17)	C17 - C19 - H19A	109.5
N7_C8_H8A	108.9	C17 $C19$ $H19R$	109.5
C7 - C8 - H8A	108.9	H19A - C19 - H19B	109.5
N7-C8-H8B	108.9	C17 - C19 - H19C	109.5
C7 - C8 - H8B	108.9	H19A - C19 - H19C	109.5
H8A - C8 - H8B	107.7	H19B-C19-H19C	109.5
N7 - C9 - C10	111 25 (16)	H1A = 01 = H1B	109.5 108.6 (15)
N7 C9 H9A	100 /	$H_{2A} = O_2 = H_{2B}$	107.6(15)
	107.4	112/A 02 112D	107.0 (15)
N4 ⁱ —Cu1—N1—C1	90.8 (7)	C4—Ni1—C3—N3	117 (40)
N5—Cu1—N1—C1	-108.0(7)	C2—Ni1—C3—N3	-56 (40)
N7—Cu1—N1—C1	-37 (2)	C1—Ni1—C3—N3	-65 (40)
N6—Cu1—N1—C1	-21.0(7)	Cu1 ⁱ —N4—C4—Ni1	-54.8 (18)
N4 ⁱ —Cu1—N5—C10	-60.4(2)	C3—Ni1—C4—N4	-72.1(13)
N1—Cu1—N5—C10	-156.75 (13)	C2—Ni1—C4—N4	4.4 (18)
N7—Cu1—N5—C10	25.19 (12)	C1—Ni1—C4—N4	108.0 (13)
N6—Cu1—N5—C10	111.44 (13)	C10—N5—C5—C6	-132.57(18)
$N4^{i}$ —Cu1—N5—C5	-177.27(18)	C17 - N5 - C5 - C6	105.5 (2)
N1-Cu1-N5-C5	86.39 (12)	Cu1—N5—C5—C6	-18.5(2)
N7—Cu1—N5—C5	-91.67 (12)	C7—N6—C6—C5	64.5 (2)
N6—Cu1—N5—C5	-5.42 (12)	$C_{11} - N_{6} - C_{6} - C_{5}$	-166.80(17)
$N4^{i}$ —Cu1—N5—C17	60.4 (3)	Cu1-N6-C6-C5	-45.18 (18)
N1—Cu1—N5—C17	-35.91 (14)	N5-C5-C6-N6	47.3 (2)
N7—Cu1—N5—C17	146.03 (14)	C6—N6—C7—C8	-127.45(19)
N_{6} C_{11} N_{5} C_{17}	-12772(13)	$C_{11} = N_{6} = C_{7} = C_{8}$	1060(2)
	121.12(13)		100.0 (2)

N4 ⁱ —Cu1—N6—C6	-155.83 (11)	Cu1—N6—C7—C8	-21.3 (2)
N1—Cu1—N6—C6	-67.47 (12)	C9—N7—C8—C7	65.3 (2)
N5—Cu1—N6—C6	27.02 (12)	C14—N7—C8—C7	-170.92 (17)
N7—Cu1—N6—C6	111.98 (12)	Cu1—N7—C8—C7	-50.51 (18)
N4 ⁱ —Cu1—N6—C7	87.55 (13)	N6—C7—C8—N7	51.3 (2)
N1—Cu1—N6—C7	175.91 (13)	C8—N7—C9—C10	-133.78 (18)
N5—Cu1—N6—C7	-89.60 (13)	C14—N7—C9—C10	103.11 (19)
N7—Cu1—N6—C7	-4.64 (13)	Cu1—N7—C9—C10	-22.9 (2)
N4 ⁱ —Cu1—N6—C11	-38.57 (16)	C5—N5—C10—C9	70.3 (2)
N1—Cu1—N6—C11	49.79 (15)	C17—N5—C10—C9	-167.58 (15)
N5—Cu1—N6—C11	144.28 (15)	Cu1—N5—C10—C9	-44.80 (18)
N7—Cu1—N6—C11	-130.76 (15)	N7—C9—C10—N5	46.1 (2)
N4 ⁱ —Cu1—N7—C8	-83.12 (13)	C6—N6—C11—C13	-57.2 (2)
N1—Cu1—N7—C8	44.1 (19)	C7—N6—C11—C13	71.0 (2)
N5—Cu1—N7—C8	115.77 (13)	Cu1—N6—C11—C13	-167.98 (15)
N6—Cu1—N7—C8	28.57 (12)	C6—N6—C11—C12	176.65 (17)
N4 ⁱ —Cu1—N7—C9	159.55 (13)	C7—N6—C11—C12	-55.2 (2)
N1—Cu1—N7—C9	-73.2 (19)	Cu1—N6—C11—C12	65.9 (2)
N5—Cu1—N7—C9	-1.55 (13)	C8—N7—C14—C16	169.88 (17)
N6—Cu1—N7—C9	-88.76 (14)	C9—N7—C14—C16	-66.4 (2)
N4 ⁱ —Cu1—N7—C14	34.84 (14)	Cu1—N7—C14—C16	57.11 (19)
N1—Cu1—N7—C14	162.1 (19)	C8—N7—C14—C15	-65.2 (2)
N5—Cu1—N7—C14	-126.26 (14)	C9—N7—C14—C15	58.5 (2)
N6—Cu1—N7—C14	146.53 (14)	Cu1—N7—C14—C15	-178.02 (14)
Cu1—N1—C1—Ni1	41 (2)	C10-N5-C17-C19	-53.0 (2)
C3—Ni1—C1—N1	32 (3)	C5—N5—C17—C19	68.6 (2)
C4—Ni1—C1—N1	-149.3 (18)	Cu1—N5—C17—C19	-171.15 (14)
C2—Ni1—C1—N1	23.7 (18)	C10—N5—C17—C18	70.5 (2)
C3—Ni1—C2—N2	110 (3)	C5—N5—C17—C18	-167.91 (16)
C4—Ni1—C2—N2	33 (3)	Cu1—N5—C17—C18	-47.63 (19)
C1—Ni1—C2—N2	-71 (3)		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H··· A
O1—H1A····N3 ⁱⁱ	0.85 (2)	2.02 (2)	2.874 (3)	179 (3)
O1—H1 <i>B</i> ···O2 ⁱⁱⁱ	0.85 (2)	1.92 (2)	2.745 (3)	165 (2)
O2—H2A···N2	0.86 (2)	1.98 (2)	2.831 (3)	171 (3)
O2—H2 B ····O1 ^{iv}	0.86 (3)	1.92 (3)	2.775 (3)	174 (2)

Symmetry codes: (ii) x, -y+1/2, z-1/2; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1.