Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*u*-Naphthalene-1,5-disulfonato- $\kappa^2 O^1: O^5$) bis[triagua(glycinato- $\kappa^2 N, O$)copper(II)]

Shan Gao^a and Seik Weng Ng^{b,c}*

^aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.mv

Received 24 April 2012; accepted 30 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.073; data-to-parameter ratio = 15.8.

In the title compound, $[Cu_2(C_2H_4NO_2)_2(C_{10}H_6O_6S_2)(H_2O_6)]$, the naphthalenedisulfonate group lies on a center of inversion and bridges two glycinate-chelated Cu^{II} atoms. The Cu^{II} atom exists in a CuNO₄ square-pyramidal geometry that is distorted towards an octahedron owing to a long Cu-O_{sulfonate} bond [2.636 (2) Å]. In the crystal, extensive N-H···O and O-H...O hydrogen bonds link adjacent molecules into a threedimensional network

Related literature

For a review of metal arenesulfonates, see: Cai (2004).

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.498, \ \tilde{T}_{\max} = 0.688$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	166 parameters
$wR(F^2) = 0.073$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
2615 reflections	$\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$

10939 measured reflections

 $R_{\rm int} = 0.022$

2615 independent reflections

2482 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond g	geometry (Å,	0)
-----------------	------------	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1w - H11 \cdots O2^{i}$	0.84	2.02	2.741 (2)	143
$O1w - H12 \cdots O5^{ii}$	0.84	2.10	2.785 (2)	139
$O2w - H21 \cdots O4^{iii}$	0.84	2.00	2.773 (2)	152
$O2w - H22 \cdots O4^{iv}$	0.84	2.02	2.823 (2)	158
$O3w - H31 \cdots O2^{ii}$	0.84	1.91	2.676 (2)	151
$O3w - H32 \cdots O3^{iv}$	0.84	1.93	2.691 (2)	150
$N1 - H1 \cdots O5$	0.88	2.53	3.079 (3)	121
$N1 - H2 \cdots O2^{ii}$	0.88	2.50	3.194 (3)	137

Symmetry codes: (i) $-x, y = \frac{1}{2}, -z = \frac{1}{2}$; (ii) $-x + 1, y = \frac{1}{2}, -z = \frac{1}{2}$; (iii) x = 1, y, z; (iv) -x + 1, -y + 1, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (Nos. 12511z023 and 2011CJHB006), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University (Hdtd2010-04) and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5523).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Cai, J. (2004). Coord. Chem. Rev. 248, 1061-1083.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m730 [doi:10.1107/S1600536812019332]

(μ -Naphthalene-1,5-disulfonato- $\kappa^2 O^1:O^5$)bis[triaqua(glycinato- $\kappa^2 N, O$)copper(II)]

Shan Gao and Seik Weng Ng

S1. Comment

Metal arenesulfonates are generally crystalline compounds; in some, the metal is connected to the arenesulfonate by a covalent bond whereas in others, the arenesulfonate interacts indirectly with the metal center in an outer-sphere type of coordination (Cai, 2004). In the title compound (Scheme I), the Cu^{II} atom exists in a CuNO₄ square-pyramidal geometry that is distorted towards an octahedron owing to the long Cu–O_{sulfonate} bond (2.636 (2) Å). The atom lies above the square plane (r.m.s. deviation 0.082 Å) and the apical water molecule lies 2.371 (2) Å above the plane (Fig.1). Extensive N–H···O and O–H···O hydrogen bonds link adjacent molecules into a three-dimensional network (Table 1).

S2. Experimental

Dicopper carbonate dihydroxide (1 mmol, 221 mg), glycine (2 mmol, 150 mg) 1,5-naphthalenedisulfonic acid tetrahydrate (2 mmol, 720 mg) were dissolved in water (10 ml). The solution was heated for 5 h and then filtered. Blue crystals separated from the solution after several days.

S3. Refinement

H-atoms were placed in calculated positions (C–H 0.93–0.97, N–H 0.88, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(*C*,*N*,*O*).

The (2 2 3) reflection was omitted owing to bad disagreement.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry-related atoms are not labeled.

(μ -Naphthalene-1,5-disulfonato- $\kappa^2 O^1: O^5$)bis[triaqua(glycinato- $\kappa^2 N, O$)copper(II)]

Crystal data

 $[Cu_{2}(C_{2}H_{4}NO_{2})_{2}(C_{10}H_{6}O_{6}S_{2})(H_{2}O)_{6}]$ $M_{r} = 669.57$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 5.802 (3) Å b = 11.341 (6) Å c = 17.613 (8) Å $\beta = 99.793$ (18)° V = 1142.1 (9) Å³ Z = 2

Data collection

Rigaku R-AXIS RAPID IP	10939 measured reflections
diffractometer	2615 independent reflections
Radiation source: fine-focus sealed tube	2482 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int}=0.022$
ωscan	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.6^{\circ}$
Absorption correction: multi-scan	$h = -7 \longrightarrow 6$
(ABSCOR; Higashi, 1995)	$k = -14 \rightarrow 14$
$T_{\min} = 0.498, \ T_{\max} = 0.688$	$l = -21 \rightarrow 22$
Refinement	
D ofinament on F^2	Secondary storn site leastion, difference E

F(000) = 684

 $\theta = 3.6 - 27.5^{\circ}$

 $\mu = 2.13 \text{ mm}^{-1}$

 $0.38 \times 0.26 \times 0.19 \text{ mm}$

T = 293 K

Prism. blue

 $D_{\rm x} = 1.947 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 10177 reflections

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.073$ S = 1.072615 reflections 166 parameters 0 restraints Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.6921P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.47$ e Å⁻³ $\Delta\rho_{min} = -0.63$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	v	7	Uine*/Un	
<u> </u>	A 250(5 (4)	<i>y</i>	2		
Cul	0.35965 (4)	0.51409 (2)	0.341914 (12)	0.02354 (9)	
S1	0.70836 (8)	0.73372 (4)	0.44741 (2)	0.02159 (11)	
01	0.1995 (2)	0.64747 (12)	0.28644 (8)	0.0287 (3)	
O2	0.2226 (3)	0.77425 (13)	0.19250 (8)	0.0343 (3)	
O1w	0.1638 (3)	0.37202 (15)	0.26192 (9)	0.0397 (4)	
H11	0.0956	0.3256	0.2879	0.060*	
H12	0.2599	0.3342	0.2407	0.060*	
O2w	0.1040 (3)	0.50030 (11)	0.40277 (8)	0.0265 (3)	
H21	0.0939	0.5633	0.4271	0.040*	
H22	0.1325	0.4441	0.4340	0.040*	
O3w	0.5629 (3)	0.39956 (14)	0.40378 (8)	0.0369 (3)	
H31	0.5917	0.3436	0.3756	0.055*	
H32	0.4956	0.3734	0.4389	0.055*	

03	0.4994 (2)	0.66501 (11)	0.45410 (7)	0.0270 (3)	
04	0.9218 (3)	0.67519 (12)	0.48533 (8)	0.0327 (3)	
05	0.7143 (3)	0.76531 (13)	0.36808 (8)	0.0345 (3)	
N1	0.5974 (3)	0.53828 (15)	0.27352 (9)	0.0280 (3)	
H1	0.7251	0.5697	0.2999	0.034*	
H2	0.6344	0.4702	0.2548	0.034*	
C1	0.2931 (3)	0.68561 (16)	0.23169 (10)	0.0236 (3)	
C2	0.4970 (3)	0.61731 (17)	0.21047 (11)	0.0279 (4)	
H2A	0.4444	0.5714	0.1643	0.033*	
H2B	0.6160	0.6719	0.1996	0.033*	
C3	0.6918 (3)	0.86710 (14)	0.49908 (9)	0.0200 (3)	
C4	0.8728 (3)	0.89338 (16)	0.55662 (10)	0.0258 (4)	
H4	0.9958	0.8404	0.5691	0.031*	
C5	0.8744 (4)	1.00050 (17)	0.59723 (12)	0.0275 (4)	
H5	0.9982	1.0174	0.6366	0.033*	
C6	0.6966 (3)	1.07958 (16)	0.57946 (10)	0.0239 (3)	
H6	0.7024	1.1507	0.6060	0.029*	
C7	0.5021 (3)	1.05448 (14)	0.52074 (9)	0.0186 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.02546 (13)	0.02263 (14)	0.02478 (14)	0.00560 (8)	0.01067 (9)	0.00671 (8)
S 1	0.0305 (2)	0.01428 (19)	0.0221 (2)	0.00179 (15)	0.01062 (16)	-0.00129 (14)
01	0.0311 (6)	0.0273 (7)	0.0307 (7)	0.0076 (5)	0.0134 (5)	0.0098 (5)
O2	0.0379 (7)	0.0294 (7)	0.0378 (8)	0.0054 (6)	0.0131 (6)	0.0152 (6)
O1w	0.0462 (9)	0.0409 (9)	0.0350 (8)	-0.0102 (7)	0.0153 (7)	-0.0150 (7)
O2w	0.0324 (7)	0.0199 (6)	0.0310 (7)	0.0022 (5)	0.0162 (6)	0.0001 (5)
O3w	0.0491 (8)	0.0386 (8)	0.0266 (7)	0.0221 (7)	0.0162 (6)	0.0093 (6)
O3	0.0362 (7)	0.0196 (6)	0.0270 (6)	-0.0049 (5)	0.0107 (5)	-0.0012 (5)
O4	0.0352 (7)	0.0224 (6)	0.0420 (8)	0.0107 (6)	0.0106 (6)	-0.0027 (6)
05	0.0529 (9)	0.0306 (7)	0.0241 (6)	-0.0039 (6)	0.0187 (6)	-0.0018 (5)
N1	0.0273 (8)	0.0283 (8)	0.0302 (8)	0.0054 (6)	0.0103 (6)	0.0031 (6)
C1	0.0254 (8)	0.0210 (8)	0.0246 (8)	-0.0019 (7)	0.0046 (7)	0.0005 (6)
C2	0.0325 (9)	0.0286 (9)	0.0247 (8)	0.0019 (7)	0.0113 (7)	0.0021 (7)
C3	0.0266 (8)	0.0145 (7)	0.0202 (7)	0.0013 (6)	0.0076 (6)	-0.0006 (6)
C4	0.0259 (8)	0.0224 (8)	0.0282 (9)	0.0057 (7)	0.0021 (7)	0.0003 (7)
C5	0.0274 (9)	0.0269 (9)	0.0255 (9)	-0.0008 (7)	-0.0033 (7)	-0.0042 (7)
C6	0.0288 (8)	0.0194 (8)	0.0226 (8)	-0.0018 (7)	0.0023 (7)	-0.0037 (6)
C7	0.0239 (8)	0.0142 (7)	0.0183 (7)	0.0001 (6)	0.0051 (6)	0.0000 (6)

Geometric parameters (Å, °)

Cu1—O1	1.9485 (15)	O3w—H32	0.8400	
Cu1—O3w	1.9566 (15)	N1—C2	1.468 (2)	
Cu1—O2w	1.9783 (16)	N1—H1	0.8800	
Cu1—N1	1.9988 (18)	N1—H2	0.8800	
Cu1—O1w	2.3081 (17)	C1—C2	1.513 (3)	

Cu1—O3	2.636 (2)	C2—H2A	0.9700
\$1 <u>-0</u> 5	14486(15)	C2—H2B	0.9700
S1-03	1 4626 (15)	$C_3 - C_4$	1 363 (3)
\$1-03	1 4629 (15)	$C3-C7^{i}$	1.305(3) 1 430(2)
S1	1 7763 (18)	C4-C5	1.130(2) 1.409(3)
01	1 261 (2)	C4—H4	0.9300
02-C1	1.201(2) 1.248(2)	C5	1 362 (3)
O_{1} H11	0.8400	C5 H5	0.0300
O_{1w} H12	0.8400	C6_C7	1.424(2)
O_{1}^{2} H_{21}^{2}	0.8400	С6 Н6	1.424(2)
$O_{2w} = H_{21}$	0.8400	$C7$ $C3^{i}$	1.430(2)
O_{2} W_{12} H_{21}	0.8400	C7 - C3	1.430(2) 1.434(3)
05w—1151	0.0400	C/C/	1.434 (3)
O1—Cu1—O3w	170.20 (7)	Cu1—N1—H1	110.0
O1—Cu1—O2w	89.75 (6)	C2—N1—H2	110.0
O3w—Cu1—O2w	94.72 (7)	Cu1—N1—H2	110.0
01—Cu1—N1	84.86 (6)	H1—N1—H2	108.4
O3w-Cu1-N1	90.81 (7)	02—C1—O1	123.76 (17)
O2w—Cu1—N1	174.45 (6)	02-C1-C2	118.17 (16)
01-Cu1-O1w	95 31 (7)	01 - C1 - C2	118.03 (16)
O_{3w} Cu_1 O_{1w}	93.67 (8)	N1-C2-C1	110.61 (15)
02w—Cu1—O1w	86.50 (6)	N1—C2—H2A	109.5
N1-Cu1-O1w	92 67 (7)	C1 - C2 - H2A	109.5
05-81-04	113 29 (9)	N1—C2—H2B	109.5
05 - 1 - 03	111 43 (9)	C1 - C2 - H2B	109.5
04 - 100	111.76 (9)	$H^2A - C^2 - H^2B$	108.1
05-100	107.21(9)	$C4-C3-C7^{i}$	121.37(15)
04 - 1 - 03	107.21(9) 105.54(8)	C4-C3-S1	121.37(13) 117.72(13)
03 - 1 - 03	107.12 (8)	$C7^{i}$ C3 S1	120.89(13)
$C_1 = C_1 = C_1$	11477(12)	C_{3} C_{4} C_{5}	120.09 (15)
$Cu1 \longrightarrow O1w \longrightarrow H11$	109.5	$C_3 - C_4 - H_4$	110.0
$Cu1 \longrightarrow O1w \longrightarrow H12$	109.5	C_{5} C_{4} H_{4}	119.9
$H11 \longrightarrow 01$ w $H12$	109.5	C6-C5-C4	120.77(17)
Cu1 = O2w = H21	109.5	Сб-С5-Н5	119.6
Cu1 = 0.2w = H22	109.5	C4-C5-H5	119.6
$H_{21} = 0.2 \text{ w} = H_{22}$	109.5	$C_{5} - C_{6} - C_{7}$	119.0 120.72(17)
Cu1 - O3w - H31	109.5	C5-C6-H6	120.72 (17)
Cu1 = 0.5w = 1151 Cu1 = 0.3w = H32	109.5	C7 C6 H6	119.6
$H_{31} = 0.3 \text{ W} = H_{32}$	109.5	$C_{1} = C_{0} = H_{0}$	119.0
1131 - 05w - 1152	109.5	C_{0} C_{7} C_{7}	123.13(13) 110.03(10)
$C_2 = N_1 = C_{01}$	110.28 (12)	$C_{0} C_{1} C_{1} C_{1} C_{1}$	117.03(19) 117.83(18)
C2N1111	110.0	03-07-07	117.85 (18)
02w—Cu1—O1—C1	-174.25 (13)	O4—S1—C3—C4	4.06 (16)
N1—Cu1—O1—C1	4.42 (13)	O3—S1—C3—C4	123.29 (15)
Olw—Cul—Ol—Cl	-87.80 (14)	O5—S1—C3—C7 ⁱ	61.24 (16)
O1—Cu1—N1—C2	-13.65 (13)	O4—S1—C3—C7 ⁱ	-177.71 (14)
O3w—Cu1—N1—C2	175.17 (13)	O3—S1—C3—C7 ⁱ	-58.48 (16)
O1w—Cu1—N1—C2	81.45 (13)	C7 ⁱ —C3—C4—C5	-1.1 (3)

Cu1—O1—C1—O2	-175.95 (15)	S1—C3—C4—C5	177.09 (15)
Cu1—O1—C1—C2	6.4 (2)	C3—C4—C5—C6	-0.4 (3)
Cu1—N1—C2—C1	19.48 (19)	C4—C5—C6—C7	1.6 (3)
O2—C1—C2—N1	164.25 (17)	C5-C6-C7-C3 ⁱ	178.49 (18)
O1—C1—C2—N1	-18.0 (2)	C5-C6-C7-C7 ⁱ	-1.3 (3)
O5—S1—C3—C4	-116.99 (15)		

Symmetry code: (i) -x+1, -y+2, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A	
01w—H11…O2 ⁱⁱ	0.84	2.02	2.741 (2)	143	
O1 <i>w</i> —H12···O5 ⁱⁱⁱ	0.84	2.10	2.785 (2)	139	
O2w—H21···O4 ^{iv}	0.84	2.00	2.773 (2)	152	
O2w—H22···O4 ^v	0.84	2.02	2.823 (2)	158	
O3 <i>w</i> —H31···O2 ⁱⁱⁱ	0.84	1.91	2.676 (2)	151	
O3 <i>w</i> —H32···O3 ^v	0.84	1.93	2.691 (2)	150	
N1—H1…O5	0.88	2.53	3.079 (3)	121	
N1—H2…O2 ⁱⁱⁱ	0.88	2.50	3.194 (3)	137	

Symmetry codes: (ii) -x, y-1/2, -z+1/2; (iii) -x+1, y-1/2, -z+1/2; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.