metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -iodido-bis[(dimethyl 2,2'biquinoline-4,4'-dicarboxylate- $\kappa^2 N, N'$)copper(I)]

Radosław Starosta,* Urszula K. Komarnicka, Justyna Nagaj, Kamila Stokowa-Sołtys and Aleksandra Bykowska

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland

Correspondence e-mail: radoslaw.starosta@chem.uni.wroc.pl

Received 12 April 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.027; wR factor = 0.065; data-to-parameter ratio = 20.0.

In the centrosymmetric dinuclear title complex, $[Cu_2I_2-(C_{22}H_{16}N_2O_4)_2]$, the Cu^I atom is coordinated in a distorted tetrahedral geometry by an *N*,*N'*-bidentate dimethyl 2,2'-biquinoline-4,4'-dicarboxylate ligand and two symmetry-related I atoms, which act as bridges to a symmetry-related Cu^I atom. The distance between the Cu^I atoms within the dinuclear unit is 2.6723 (11) Å.

Related literature

Copper(I) complexes are a subject of high interest and have been extensively studied during the past two decades because of their diversified photo-physical properties (Lavie-Cambot et al., 2008; Vorontsov et al., 2009; Hashimoto et al., 2011). The title complex is similar to other copper(I) complexes with halides and aromatic diimines: $[Cu_2I_2(1,10-phenanthroline)_2]$ and $Cu_2X_2(2,9-dimethyl-1,10-phenanthroline)_2]$, where X = I, Br, Cl (Healy et al., 1985); $[Cu_2X_2(1,10\text{-phenanthroline})_2]$, where X = Cl and I (Yu *et al.*, 2004); $[\text{Cu}_2 X_2(\text{NN})_2]$, where X = Br, I and NN = bidentate imino nitroxides (Oshio *et al.*, 1996); $[Cu_2Cl_2(dihexsyl-2,2'-biquinoline-4,4'-dicarboxylate)_2]$ [Cu₂Cl₂(2,2'-biquinoline-4,4'-dicarboxylic acid)₂] (Vatsadze et al., 2010). For the preparation of the dimethyl-2,2'-biquinoline-4,4'-dicarboxylate ligand, see: Pucci et al. (2011) and of the $P(CH_2N(CH_2CH_2)_2O)_3$ phosphane ligand, see: Starosta et al. (2010).

 $\gamma = 103.51 \ (3)^{\circ}$

Z = 1

 $V = 968.2 (5) \text{ Å}^3$

Mo $K\alpha$ radiation

Reid (1995)]

 $R_{\rm int} = 0.028$

 $0.15 \times 0.10 \times 0.10$ mm

 $T_{\min} = 0.466, T_{\max} = 0.912$

15308 measured reflections

5471 independent reflections

4606 reflections with $I > 2\sigma(I)$

 $\mu = 2.76 \text{ mm}^{-1}$

T = 100 K

Experimental

Crystal data $\begin{bmatrix} Cu_2I_2(C_{22}H_{16}N_2O_4)_2 \end{bmatrix}$ $M_r = 1125.62$ Triclinic, $P\overline{1}$ a = 8.792 (3) Å b = 9.157 (3) Å c = 12.865 (4) Å $\alpha = 96.59$ (3)° $\beta = 102.49$ (3)°

Data collection

Kuma KM-4-CCD κ-geometry diffractometer Absorption correction: analytical [*CrysAlis RED* (Oxford Diffraction, 2006), based on expressions derived by Clark &

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	273 parameters
$wR(F^2) = 0.065$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.89 \text{ e} \text{ Å}^{-3}$
5471 reflections	$\Delta \rho_{\rm min} = -1.16 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Cu1-N1A	2.088 (2)	Cu1-I1	2.5473 (10)
Cu1-N1B	2.092 (2)	$Cu1-I1^i$	2.6996 (9)
Summature and as (i)			

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to Dr Miłosz Siczek for the crystal measurements and help with the preparation of this manuscript.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2406).

References

- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Hashimoto, M., Igawa, S., Yashima, M., Kawata, I., Hoshino, M. & Osawa, M. (2011). J. Am. Chem. Soc. 133, 10348-10351.
- Healy, P. C., Pakawatchai, Ch. & White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2531-2539.
- Lavie-Cambot, A., Cantuel, M., Leydet, Y., Jonusauskas, G., Bassani, D. M. & McClenaghan, N. D. (2008). Coord. Chem. Rev. 252, 2572-2588.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472-479.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

- Pucci, D., Crispini, A., Ghedini, M., Szerb, E. I. & La Deda, M. (2011). Dalton Trans. 40, 4614-4622.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Starosta, R., Florek, M., Król, J., Puchalska, M. & Kochel, A. (2010). New J. Chem. 34, 1441-1449.
- Vatsadze, S. Z., Dolganov, A. V., Yakimanskii, A. V., Goikhman, M. Ya., Podeshvo, I. V., Lyssenko, K. A., Maksimov, A. L. & Magdesieva, T. V. (2010). Russ. Chem. Bull. Int. Ed. 59, 724-732.
- Vorontsov, I. I., Graber, T., Kovalevsky, A. Yu., Novozhilova, I. V., Gembicky, M., Chen, Y.-S. & Coppens, P. (2009). J. Am. Chem. Soc. 131, 6566-6573. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yu, J.-H., Lü, Z.-L., Xu, J.-Q., Bie, H.-Y., Lu, J. & Zhang, X. (2004). New J. Chem. 28, 940-945.

supporting information

Acta Cryst. (2012). E68, m756-m757 [doi:10.1107/S1600536812020843]

Di- μ -iodido-bis[(dimethyl 2,2'-biquinoline-4,4'-dicarboxylate- $\kappa^2 N, N'$)copper(I)]

Radosław Starosta, Urszula K. Komarnicka, Justyna Nagaj, Kamila Stokowa-Sołtys and Aleksandra Bykowska

S1. Comment

The asymmetric unit of the studied bis((μ -iodo)-(dimethyl-2,2'-biquinoline-4,4'-dicarboxylate))-di-copper(I) complex consist of the [(dimethyl-2,2'-biquinoline-4,4'-dicarboxylate)Cu(I)] moiety (Fig. 1, Table 1). Cu^I atoms are bridged by two iodide ions forming the planar rhombic Cu₂(μ -I)₂ core. Additionally coordinated by the imine nitrogen atoms of the dimethyl-2,2'-biquinoline-4,4'-dicarboxylate ligand, each Cu^I atom reveals a distorted tetrahedral geometry. Connected quinoline rings of the coordinated molecule of dimethyl-2,2'-biquinoline-4,4'-dicarboxylate are not coplanar, the angle between their planes is 5.40 (7)°.

S2. Experimental

Crystals of the title complex were grown in the mixture of dichloromethane and acetone in an attempt to obtain crystals of $[Cu(I)(dimethyl-2,2'-biquinoline-4,4'-dicarboxylate) P(CH_2N(CH_2CH_2)_2O)_3]$ complex. Cu^I was purchased from Aldrich. Dimethyl-2,2'-biquinoline-4,4'- dicarboxylate ligand was prepared from 2,2'-biquinoline-4,4'-dicarboxylic acid (Aldrich) according to the literature method (Pucci *et al.*, 2011). P(CH_2N(CH_2CH_2)_2O)_3 phosphane ligand was synthesized as described previously (Starosta *et al.*, 2010).

S3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Figure 1

The molecular structure of the complex showing the atom-labelling scheme and displacement ellipsoids at the 50% probability (symmetry code used: -x + 1, -y, -z + 1).

Di- μ -iodido-bis[(dimethyl 2,2'-biquinoline-4,4'-dicarboxylate- $\kappa^2 N, N'$)copper(I)]

Crystal data

 $[Cu_2I_2(C_{22}H_{16}N_2O_4)_2]$ $M_r = 1125.62$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.792 (3) Å b = 9.157 (3) Å c = 12.865 (4) Å a = 96.59 (3)° $\beta = 102.49$ (3)° $\gamma = 103.51$ (3)° V = 968.2 (5) Å³

Data collection

Kuma KM-4-CCD κ -geometry $T_{\rm nr}$ diffractometer15Radiation source: fine-focus sealed tube54Graphite monochromator46 ω scans $R_{\rm ir}$ Absorption correction: analytical $\theta_{\rm m}$ [CrysAlis RED (Oxford Diffraction, 2006), $h^{=}$ based on expressions derived by Clark & Reidk =(1995)]l =

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.065$ S = 1.025471 reflections Z = 1 F(000) = 552 $D_x = 1.930 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 11359 reflections $\theta = 2.9-36.8^{\circ}$ $\mu = 2.76 \text{ mm}^{-1}$ T = 100 KPlate, orange $0.15 \times 0.10 \times 0.10 \text{ mm}$ $T_{\min} = 0.466, T_{\max} = 0.912$

 $T_{\min} = 0.400$, $T_{\max} = 0.912$ 15308 measured reflections 5471 independent reflections 4606 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 30.0^{\circ}$, $\theta_{min} = 2.9^{\circ}$ $h = -10 \rightarrow 12$ $k = -12 \rightarrow 11$ $l = -17 \rightarrow 17$

273 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.040P)^2]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.89 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.16 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Absorption correction: CrysAlis RED, (Oxford Diffraction, 2006). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S., 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.34262 (3)	-0.02511 (3)	0.49564 (2)	0.01649 (7)
I1	0.495174 (17)	0.240323 (17)	0.478225 (12)	0.01826 (5)
N1A	0.1380 (2)	-0.1629 (2)	0.38141 (15)	0.0142 (3)
C2A	0.0293 (3)	-0.2436 (3)	0.42433 (18)	0.0153 (4)
C3A	-0.0976 (3)	-0.3688 (3)	0.36264 (18)	0.0172 (4)
H3A	-0.1715	-0.4265	0.3963	0.021*
C4A	-0.1132 (3)	-0.4064 (3)	0.25341 (18)	0.0165 (4)
C5A	-0.0028 (3)	-0.3491 (3)	0.09277 (18)	0.0191 (4)
H5A	-0.0859	-0.4295	0.0451	0.023*
C6A	0.1133 (3)	-0.2621 (3)	0.05366 (19)	0.0204 (5)
H6A	0.1111	-0.2840	-0.0207	0.024*
C7A	0.2367 (3)	-0.1399 (3)	0.12198 (19)	0.0200 (5)
H7A	0.3155	-0.0795	0.0932	0.024*
C8A	0.2426 (3)	-0.1086 (3)	0.22991 (19)	0.0178 (4)
H8A	0.3256	-0.0265	0.2759	0.021*
C9A	0.1252 (3)	-0.1986 (2)	0.27237 (18)	0.0150 (4)
C10A	-0.0005 (3)	-0.3205 (3)	0.20414 (18)	0.0158 (4)
C11A	-0.2508 (3)	-0.5363 (3)	0.18690 (19)	0.0190 (4)
011A	-0.3182 (2)	-0.5417 (2)	0.09388 (14)	0.0281 (4)
O12A	-0.28999 (19)	-0.64555 (19)	0.24393 (14)	0.0212 (3)
C12A	-0.4228 (3)	-0.7757 (3)	0.1849 (2)	0.0245 (5)
H12D	-0.5155	-0.7399	0.1519	0.037*
H12E	-0.4536	-0.8435	0.2349	0.037*
H12F	-0.3887	-0.8313	0.1283	0.037*
N1B	0.1763 (2)	-0.0732 (2)	0.58953 (15)	0.0144 (3)
C2B	0.0491 (2)	-0.1915 (3)	0.54192 (17)	0.0140 (4)
C3B	-0.0588 (3)	-0.2629 (3)	0.59879 (18)	0.0154 (4)
H3B	-0.1447	-0.3501	0.5632	0.019*

C4B	-0.0395 (3)	-0.2061 (3)	0.70607 (18)	0.0155 (4)	
C5B	0.1212 (3)	-0.0045 (3)	0.86815 (18)	0.0169 (4)	
H5B	0.0512	-0.0429	0.9113	0.020*	
C6B	0.2517 (3)	0.1184 (3)	0.91204 (18)	0.0193 (4)	
H6B	0.2709	0.1642	0.9854	0.023*	
C7B	0.3583 (3)	0.1782 (3)	0.85011 (19)	0.0188 (4)	
H7B	0.4489	0.2630	0.8821	0.023*	
C8B	0.3309 (3)	0.1139 (3)	0.74412 (18)	0.0176 (4)	
H8B	0.4023	0.1548	0.7025	0.021*	
C9B	0.1967 (3)	-0.0135 (3)	0.69604 (18)	0.0153 (4)	
C10B	0.0894 (3)	-0.0752 (2)	0.75828 (17)	0.0145 (4)	
C11B	-0.1583 (3)	-0.2831 (3)	0.76375 (18)	0.0163 (4)	
O11B	-0.1970 (2)	-0.2197 (2)	0.83756 (14)	0.0220 (4)	
O12B	-0.2166 (2)	-0.43175 (19)	0.72286 (14)	0.0210 (3)	
C12B	-0.3430 (3)	-0.5141 (3)	0.7667 (2)	0.0241 (5)	
H12A	-0.3126	-0.4851	0.8456	0.036*	
H12B	-0.3575	-0.6240	0.7470	0.036*	
H12C	-0.4443	-0.4890	0.7371	0.036*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.01350 (13)	0.01802 (14)	0.01445 (13)	-0.00091 (10)	0.00308 (10)	0.00031 (10)
I1	0.01682 (7)	0.01604 (7)	0.01965 (8)	0.00169 (5)	0.00320 (5)	0.00222 (5)
N1A	0.0140 (8)	0.0151 (9)	0.0116 (8)	0.0030 (7)	0.0011 (7)	0.0007 (7)
C2A	0.0139 (9)	0.0167 (10)	0.0136 (10)	0.0032 (8)	0.0028 (8)	-0.0001 (8)
C3A	0.0139 (10)	0.0188 (11)	0.0161 (10)	0.0003 (8)	0.0029 (8)	0.0020 (8)
C4A	0.0170 (10)	0.0145 (10)	0.0150 (10)	0.0019 (8)	0.0020 (8)	-0.0011 (8)
C5A	0.0216 (11)	0.0190 (11)	0.0140 (10)	0.0038 (9)	0.0028 (8)	-0.0011 (8)
C6A	0.0274 (12)	0.0200 (11)	0.0122 (10)	0.0059 (9)	0.0039 (9)	-0.0006 (8)
C7A	0.0227 (11)	0.0205 (11)	0.0170 (10)	0.0040 (9)	0.0063 (9)	0.0051 (9)
C8A	0.0173 (10)	0.0180 (11)	0.0160 (10)	0.0026 (8)	0.0023 (8)	0.0027 (8)
C9A	0.0145 (9)	0.0146 (10)	0.0142 (10)	0.0028 (8)	0.0018 (8)	0.0016 (8)
C10A	0.0150 (10)	0.0160 (10)	0.0140 (10)	0.0031 (8)	0.0009 (8)	-0.0001 (8)
C11A	0.0157 (10)	0.0198 (11)	0.0186 (11)	0.0011 (8)	0.0053 (8)	-0.0024 (9)
O11A	0.0260 (9)	0.0315 (10)	0.0161 (8)	-0.0037 (8)	-0.0016 (7)	-0.0013 (7)
O12A	0.0164 (8)	0.0178 (8)	0.0224 (8)	-0.0030 (6)	0.0000 (6)	0.0000 (7)
C12A	0.0162 (11)	0.0184 (11)	0.0312 (13)	-0.0030 (9)	0.0012 (10)	-0.0017 (10)
N1B	0.0129 (8)	0.0160 (9)	0.0123 (8)	0.0013 (7)	0.0024 (7)	0.0008 (7)
C2B	0.0121 (9)	0.0148 (10)	0.0124 (9)	0.0012 (7)	0.0013 (7)	0.0002 (8)
C3B	0.0118 (9)	0.0170 (10)	0.0151 (10)	0.0016 (8)	0.0012 (8)	0.0016 (8)
C4B	0.0129 (9)	0.0173 (10)	0.0158 (10)	0.0034 (8)	0.0039 (8)	0.0021 (8)
C5B	0.0176 (10)	0.0192 (11)	0.0138 (10)	0.0056 (8)	0.0036 (8)	0.0022 (8)
C6B	0.0220 (11)	0.0211 (11)	0.0124 (10)	0.0053 (9)	0.0024 (8)	-0.0020 (8)
C7B	0.0175 (10)	0.0162 (10)	0.0180 (10)	0.0004 (8)	0.0018 (8)	-0.0021 (8)
C8B	0.0167 (10)	0.0181 (11)	0.0157 (10)	0.0007 (8)	0.0047 (8)	0.0005 (8)
C9B	0.0141 (9)	0.0168 (10)	0.0142 (10)	0.0042 (8)	0.0023 (8)	0.0011 (8)
C10B	0.0142 (9)	0.0157 (10)	0.0135 (10)	0.0042 (8)	0.0030 (8)	0.0021 (8)

supporting information

C11B	0.0145 (9)	0.0182 (10)	0.0149 (10)	0.0035 (8)	0.0017 (8)	0.0036 (8)
O11B	0.0212 (8)	0.0233 (9)	0.0191 (8)	0.0007 (7)	0.0085 (7)	-0.0016 (7)
O12B	0.0214 (8)	0.0167 (8)	0.0250 (9)	0.0013 (6)	0.0110 (7)	0.0025 (7)
C12B	0.0244 (12)	0.0179 (11)	0.0299 (13)	0.0001 (9)	0.0132 (10)	0.0042 (10)

Geometric parameters (Å, °)

Cu1—N1A	2.088 (2)	C12A—H12D	0.9800	
Cu1—N1B	2.092 (2)	C12A—H12E	0.9800	
Cu1—I1	2.5473 (10)	C12A—H12F	0.9800	
Cu1—I1 ⁱ	2.6996 (9)	N1B—C2B	1.336 (3)	
Cu1—Cu1 ⁱ	2.6723 (11)	N1B—C9B	1.373 (3)	
I1—Cu1 ⁱ	2.6997 (9)	C2B—C3B	1.408 (3)	
N1A—C2A	1.325 (3)	C3B—C4B	1.377 (3)	
N1A—C9A	1.377 (3)	СЗВ—НЗВ	0.9500	
C2A—C3A	1.414 (3)	C4B—C10B	1.422 (3)	
C2A—C2B	1.493 (3)	C4B—C11B	1.500 (3)	
C3A—C4A	1.377 (3)	C5B—C6B	1.368 (3)	
СЗА—НЗА	0.9500	C5B—C10B	1.425 (3)	
C4A—C10A	1.423 (3)	C5B—H5B	0.9500	
C4A—C11A	1.502 (3)	C6B—C7B	1.413 (3)	
C5A—C6A	1.366 (3)	C6B—H6B	0.9500	
C5A-C10A	1.421 (3)	C7B—C8B	1.368 (3)	
C5A—H5A	0.9500	C7B—H7B	0.9500	
C6A—C7A	1.412 (3)	C8B—C9B	1.419 (3)	
C6A—H6A	0.9500	C8B—H8B	0.9500	
C7A—C8A	1.372 (3)	C9B—C10B	1.426 (3)	
C7A—H7A	0.9500	C11B—O11B	1.208 (3)	
C8A—C9A	1.412 (3)	C11B—O12B	1.336 (3)	
C8A—H8A	0.9500	O12B—C12B	1.448 (3)	
C9A—C10A	1.420 (3)	C12B—H12A	0.9800	
C11A—O11A	1.205 (3)	C12B—H12B	0.9800	
C11A—O12A	1.332 (3)	C12B—H12C	0.9800	
O12A—C12A	1.455 (3)			
N1A—Cu1—N1B	78.10 (8)	O12A—C12A—H12F	109.5	
N1A—Cu1—I1	124.55 (6)	H12D-C12A-H12F	109.5	
N1B—Cu1—I1	125.61 (6)	H12E—C12A—H12F	109.5	
N1A—Cu1—I1 ⁱ	96.95 (6)	C2B—N1B—C9B	118.65 (19)	
N1B—Cu1—I1 ⁱ	103.46 (6)	C2B—N1B—Cu1	113.28 (14)	
I1—Cu1—I1 ⁱ	118.85 (3)	C9B—N1B—Cu1	127.25 (15)	
Cu1—I1—Cu1 ⁱ	61.15 (3)	N1B—C2B—C3B	122.3 (2)	
C2A—N1A—C9A	119.28 (19)	N1B—C2B—C2A	115.52 (19)	
C2A—N1A—Cu1	113.75 (15)	C3B—C2B—C2A	122.14 (19)	
C9A—N1A—Cu1	125.41 (15)	C4B—C3B—C2B	119.9 (2)	
N1A—C2A—C3A	122.3 (2)	C4B—C3B—H3B	120.1	
N1A—C2A—C2B	115.21 (19)	C2B—C3B—H3B	120.1	
C3A—C2A—C2B	122.5 (2)	C3B—C4B—C10B	119.5 (2)	

C4A—C3A—C2A	119.4 (2)	C3B—C4B—C11B	118.5 (2)
С4А—С3А—НЗА	120.3	C10B—C4B—C11B	121.9 (2)
С2А—С3А—НЗА	120.3	C6B-C5B-C10B	120.6 (2)
C3A—C4A—C10A	119.8 (2)	C6B—C5B—H5B	119.7
C3A—C4A—C11A	119.7 (2)	C10B—C5B—H5B	119.7
C10A—C4A—C11A	120.5 (2)	C5B—C6B—C7B	121.1 (2)
C6A—C5A—C10A	120.6 (2)	С5В—С6В—Н6В	119.4
С6А—С5А—Н5А	119.7	С7В—С6В—Н6В	119.4
C10A - C5A - H5A	119.7	C8B-C7B-C6B	1199(2)
C5A - C6A - C7A	121 1 (2)	C8B-C7B-H7B	120.0
C5A - C6A - H6A	119 5	C6B-C7B-H7B	120.0
C7A - C6A - H6A	119.5	C7B-C8B-C9B	120.4(2)
C8A - C7A - C6A	1200(2)	C7B-C8B-H8B	119.8
C8A - C7A - H7A	120.0 (2)	C9B-C8B-H8B	119.8
C6A - C7A - H7A	120.0	N1B_C9B_C8B	117.5(2)
C7A C8A C9A	120.0 110.8(2)	NIB COP CIOP	117.5(2)
C7A C8A H8A	119.0 (2)	$\begin{array}{cccc} \text{NID} & \text{C9D} & \text{C10D} \\ \text{C9D} & \text{C0D} & \text{C10D} \\ \end{array}$	122.3(2)
C/A = CoA = HoA	120.1	$C_{AB} = C_{AB} = C_{AB} = C_{AB}$	120.0(2)
C9A - C8A - H8A	120.1	C4B = C10B = C3B	123.0(2)
NIA = COA = CIOA	117.3(2)	C4B - C10B - C9B	117.0(2)
NIA = C9A = C10A	122.1(2)	C3B—C10B—C9B	118.0 (2)
C8A - C9A - C10A	120.6 (2)	OIIB—CIIB—OI2B	124.0 (2)
C9A—C10A—C5A	117.9 (2)	OIIB—CIIB—C4B	124.8 (2)
C9A—C10A—C4A	117.1 (2)	O12B—C11B—C4B	111.19 (19)
C5A—C10A—C4A	125.0 (2)	C11B—O12B—C12B	115.55 (18)
O11A—C11A—O12A	123.9 (2)	O12B—C12B—H12A	109.5
O11A—C11A—C4A	124.7 (2)	O12B—C12B—H12B	109.5
O12A—C11A—C4A	111.4 (2)	H12A—C12B—H12B	109.5
C11A—O12A—C12A	114.73 (19)	O12B—C12B—H12C	109.5
O12A—C12A—H12D	109.5	H12A—C12B—H12C	109.5
O12A—C12A—H12E	109.5	H12B—C12B—H12C	109.5
H12D—C12A—H12E	109.5		
N1A—Cu1—I1—Cu1 ⁱ	-123.16(7)	I1—Cu1—N1B—C2B	140.88 (14)
N1B—Cu1—I1—Cu1 ⁱ	136.17 (7)	I1 ⁱ —Cu1—N1B—C2B	-77.71 (15)
I1 ⁱ —Cu1—I1—Cu1 ⁱ	0.0	N1A—Cu1—N1B—C9B	-173.9 (2)
N1B—Cu1—N1A—C2A	-17.89 (15)	I1—Cu1—N1B—C9B	-49.7 (2)
I1—Cu1—N1A—C2A	-143.16 (14)	I1 ⁱ —Cu1—N1B—C9B	91.69 (18)
I1 ⁱ —Cu1—N1A—C2A	84.46 (15)	C9B—N1B—C2B—C3B	-4.1 (3)
N1B—Cu1—N1A—C9A	176.59 (19)	Cu1—N1B—C2B—C3B	166.34 (17)
I1—Cu1—N1A—C9A	51.33 (19)	C9B—N1B—C2B—C2A	176.24 (19)
I1 ⁱ —Cu1—N1A—C9A	-81.05 (18)	Cu1—N1B—C2B—C2A	-13.4 (2)
C9A—N1A—C2A—C3A	1.9 (3)	N1A—C2A—C2B—N1B	-1.9 (3)
Cu1—N1A—C2A—C3A	-164.62 (17)	C3A—C2A—C2B—N1B	179.0 (2)
C9A—N1A—C2A—C2B	-177.27(19)	N1A—C2A—C2B—C3B	178.4 (2)
Cu1—N1A—C2A—C2B	16.2 (2)	C3A—C2A—C2B—C3B	-0.7(3)
NIA—C2A—C3A—C4A	-2.1(3)	N1B-C2B-C3B-C4B	3.3 (3)
C2B— $C2A$ — $C3A$ — $C4A$	177.0 (2)	C2A - C2B - C3B - C4B	-177.0(2)
C2A - C3A - C4A - C10A	0.9 (3)	C2B-C3B-C4B-C10B	0.2 (3)
	(-)		

-178.1 (2)	C2B—C3B—C4B—C11B	178.9 (2)
-1.2 (4)	C10B—C5B—C6B—C7B	-0.1 (4)
1.0 (4)	C5B—C6B—C7B—C8B	0.6 (4)
0.0 (3)	C6B—C7B—C8B—C9B	-0.5 (4)
179.3 (2)	C2B—N1B—C9B—C8B	-178.8 (2)
-15.9 (3)	Cu1—N1B—C9B—C8B	12.3 (3)
-0.5 (3)	C2B-N1B-C9B-C10B	1.5 (3)
164.31 (16)	Cu1—N1B—C9B—C10B	-167.44 (16)
179.4 (2)	C7B—C8B—C9B—N1B	-179.7 (2)
-0.8 (3)	C7B—C8B—C9B—C10B	0.0 (3)
-179.6 (2)	C3B—C4B—C10B—C5B	179.2 (2)
0.6 (3)	C11B—C4B—C10B—C5B	0.6 (3)
-0.6 (3)	C3B-C4B-C10B-C9B	-2.6 (3)
179.5 (2)	C11B—C4B—C10B—C9B	178.8 (2)
0.4 (3)	C6B-C5B-C10B-C4B	177.8 (2)
-178.5 (2)	C6B-C5B-C10B-C9B	-0.4 (3)
0.4 (3)	N1B-C9B-C10B-C4B	1.8 (3)
179.4 (2)	C8B—C9B—C10B—C4B	-177.9 (2)
179.3 (2)	N1B-C9B-C10B-C5B	-179.8 (2)
-1.7 (3)	C8B—C9B—C10B—C5B	0.4 (3)
146.9 (3)	C3B—C4B—C11B—O11B	-149.8 (2)
-32.1 (4)	C10B—C4B—C11B—O11B	28.8 (3)
-32.9 (3)	C3B—C4B—C11B—O12B	30.2 (3)
148.1 (2)	C10B—C4B—C11B—O12B	-151.2 (2)
0.2 (3)	O11B—C11B—O12B—C12B	5.1 (3)
179.96 (18)	C4B—C11B—O12B—C12B	-174.87 (19)
16.69 (15)		
	-178.1(2) -1.2(4) 1.0(4) 0.0(3) 179.3(2) -15.9(3) -0.5(3) 164.31(16) 179.4(2) -0.8(3) -179.6(2) 0.6(3) -0.6(3) 179.5(2) 0.4(3) -178.5(2) 0.4(3) 179.4(2) 179.4(2) 179.4(2) 179.3(2) -1.7(3) 146.9(3) -32.1(4) -32.9(3) 148.1(2) 0.2(3) 179.96(18) 16.9(3) 16.9(15)	-178.1 (2) $C2B-C3B-C4B-C11B$ $-1.2 (4)$ $C10B-C5B-C6B-C7B$ $1.0 (4)$ $C5B-C6B-C7B-C8B$ $0.0 (3)$ $C6B-C7B-C8B-C9B$ $179.3 (2)$ $C2B-N1B-C9B-C8B$ $-15.9 (3)$ $Cu1-N1B-C9B-C10B$ $164.31 (16)$ $Cu1-N1B-C9B-C10B$ $164.31 (16)$ $Cu1-N1B-C9B-C10B$ $179.4 (2)$ $C7B-C8B-C9B-N1B$ $-0.8 (3)$ $C7B-C8B-C9B-C10B$ $-179.6 (2)$ $C3B-C4B-C10B-C5B$ $0.6 (3)$ $C11B-C4B-C10B-C5B$ $-0.6 (3)$ $C3B-C4B-C10B-C9B$ $179.5 (2)$ $C11B-C4B-C10B-C9B$ $0.4 (3)$ $C6B-C5B-C10B-C4B$ $179.4 (2)$ $C8B-C9B-C10B-C4B$ $-178.5 (2)$ $C6B-C5B-C10B-C4B$ $179.4 (2)$ $C8B-C9B-C10B-C4B$ $179.4 (2)$ $C8B-C9B-C10B-C4B$ $179.3 (2)$ $N1B-C9B-C10B-C5B$ $-1.7 (3)$ $C8B-C9B-C10B-C5B$ $-1.7 (3)$ $C3B-C4B-C11B-011B$ $-32.1 (4)$ $C10B-C4B-C11B-012B$ $-32.9 (3)$ $C3B-C4B-C11B-012B$ $-32.9 (3)$ $C3B-C4B-C11B-012B$ $-32.9 (3)$ $C1B-C1B-O12B-C12B$ $179.96 (18)$ $C4B-C11B-012B-C12B$ $16.69 (15)$ $C4B-C11B-012B-C12B$

Symmetry code: (i) -x+1, -y, -z+1.