Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[[bis[3-(1H-tetrazol-1-yl)propanoic acid- $\left.\kappa N^{4}\right]$ cadmium $]$-di- μ-thiocyanato$\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]$

Jian-Guo Wang, ${ }^{\text {a }}$ Yuan Zhang, ${ }^{\text {b }}$ Zhong-Xing Su ${ }^{\text {a }}$ and Xiang Liu* ${ }^{\text {a }}$

${ }^{\text {a }}$ State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohot 047100, People's Republic of China
Correspondence e-mail: liuxiang@Izu.edu.cn

Received 23 March 2012; accepted 4 April 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.021 ; w R$ factor $=0.052$; data-to-parameter ratio $=13.2$.

In the title compound, $\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\right]_{n}$, the $\mathrm{Cd}^{\mathrm{II}}$ cation is located on an inversion center and is coordinated by two N and two S atoms from four SCN^{-}anions and two N atoms from two 3 -(1 H -tetrazol-1-yl)propanoic acid (Htzp) ligands in a distorted octahedral geometry. The SCN^{-}anions bridge the $\mathrm{Cd}^{\mathrm{II}}$ cations into a layer structure parallel to (100). A weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction occurs. The layers are further assembled into a three-dimensional supramolecular structure via classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Related literature

For general background to carboxylate-tetrazole complexes, see: Yang et al. (2009); He et al. (2005); Yu et al. (2008); Dong et al. (2008); Zhang et al. (2009); Li et al. (2008, 2010); Xie et al. (2010); Bai et al. (2008); Voitekhovich et al. (2010).

Experimental

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=512.81$
Monoclinic, $P 2_{1} / c$
$a=12.7402$ (19) \AA
$b=6.9555$ (11) \AA
$c=10.7549(16) \AA$
$\beta=106.809$ (1) ${ }^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.729, T_{\text {max }}=0.758$

$$
V=912.3(2) \AA^{3}
$$

$Z=2$
Mo $K \alpha$ radiation
$\mu=1.47 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.23 \times 0.22 \times 0.20 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.052$
$S=1.07$
1695 reflections
128 parameters

5775 measured reflections 1695 independent reflections 1505 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 O \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.94(4)$	$1.70(4)$	$2.631(3)$	$170(4)$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 5^{\mathrm{ii}}$	0.93	2.62	$3.404(3)$	142

Symmetry codes: (i) $-x,-y+2,-z$; (ii) $-x+1,-y,-z+1$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Fundamental Research Funds for the Central Universities of China (grant 2010-43).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5497).

References

Bai, Y.-L., Tao, J., Huang, R.-B., Zheng, L.-S., Zheng, S.-L., Oshida, K. \& Einaga, Y. (2008). Chem. Commun. pp. 1753-1755.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsi, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsi, USA.
Dong, W.-W., Zhao, J. \& Xu, L. (2008). Cryst. Growth Des. 8, 2882-2886.
He, F., Tong, M.-L., Yu, X.-L. \& Chen, X.-M. (2005). Inorg. Chem. 44, 559-565.
Li, Q.-Y., Yang, G.-W., Tang, X.-Y., Ma, Y.-S., Yao, W., Zhou, F., Chen, J. \& Zhou, H. (2010). Cryst. Growth Des. 10, 165-170.
Li, Q.-Y., Yang, G.-W., Yuan, R.-X., Wang, J.-P. \& Cui, P.-F. (2008). Acta Cryst. C64, m26-m29.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Voitekhovich, S. V., Serebryanskaya, T. V., Gaponik, P. N., Ivashkevich, L. S., Lyakhov, A. S. \& Ivashkevich, O. A. (2010). Inorg. Chem. Commun. 13, 949951.

Xie, Y.-F., Yu, Y., Fan, Z.-J., Ma, L., Mi, N. \& Tang, L.-F. (2010). Appl. Organomet. Chem. 24, 1-7.

metal-organic compounds

Yang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. \& Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049-4056.
Yu, Q., Zhang, X.-Q., Bian, H.-D., Liang, H., Zhao, B., Yan, S.-P. \& Liao, D.-Z. (2008). Cryst. Growth Des. 8, 1140-1146.

Zhang, X.-Q., Yu, Q., Bian, H.-D., Bao, X.-G. \& Liang, H. (2009). J. Coord. Chem. 62, 2108-2117.

supporting information

Acta Cryst. (2012). E68, m593-m594 [doi:10.1107/S1600536812014730]

Poly[[bis[3-(1H-tetrazol-1-yl)propanoic acid- $\left.\kappa N^{4}\right]$ cadmium]-di- μ-thiocyanato$\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]$

Jian-Guo Wang, Yuan Zhang, Zhong-Xing Su and Xiang Liu

S1. Comment

Recently, the design and synthesis of carboxylate-tetrazole coordination compounds have been of an attractive area of research due to their intriguing topological structures as well as their novel physical properties such as anion exchange, photoluminescence, magnetism behavior and biological activities etc. (Yang et al., 2009; Yu et al., 2008; Li et al., 2010; He et al., 2005; Li et al., 2008; Dong et al., 2008; Xie et al., 2010; Bai et al., 2008; Voitekhovich et al., 2010). Herein, we report the structure of the title coordination polymer based on a flexible ligand tetrazole-1-propanoic acid (Htzp).
The title coordination polymer crystallizes in the monoclinic space group $P 2_{1} / c$ and the asymmetric unit contains half of the $\left[\mathrm{Cd}(\mathrm{Htzp})_{2}(\mathrm{SCN})_{2}\right]$ molecule (Fig. 1). Each Cd^{2+} ion lies on the inversion center of an octahedral environment and is coordinated by two N atoms from two Htzp, two N and two O atoms from four different SCN^{-}ions. Each Cd^{2+} center is linked to four adjacent Cd^{2+} centers by four SCN^{-}ions, resulting in a two-dimensional layer structure with $\mathrm{Cd} \cdots \mathrm{Cd}$ distance of $6.404 \AA$ (Fig. 2). The adjacent two-dimensional layers are further linked through intermolecular hydrogenbonding interaction between two not coordinated carboxylate group ($\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 1=2.631 \AA$) to afford a threedimensional supramolecular structure (Fig. 3). In addition, weak intramolecular hydrogen bonds (C1-H1 $\mathrm{N} 5=3.404$ \AA) are present in the crystal structure.

S2. Experimental

The Htzp $(0.0284 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{SCN}(0.0152 \mathrm{~g}, 0.2 \mathrm{mmol})$ were mixed in distilled water (5 ml) and ethanol (3 $\mathrm{ml})$. Then, $\mathrm{CdCl}_{2}(0.0367 \mathrm{~g}, 0.2 \mathrm{mmol})$ dissolved in distilled water $(5 \mathrm{ml})$ was added slowly to the mixture. The mixture was allowed to slowly concentrate by evaporation at room temperature. Several days later, colorless block crystals suitable for X-ray diffraction were obtained with yield 63% on the basis of Htzp.

S3. Refinement

Carboxyl H atom was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and treated in a riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) and $0.97 \AA\left(\mathrm{CH}_{2}\right)$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
coordination environments of cadmium atoms in the title coordination polymer. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Figure 2
The two-dimensional layer structure of the title coordination polymer along the $b c$ plane. H atoms have been omitted for clarity.

Figure 3
The three-dimensional supramolecular structure of the title coordination polymer. Hydrogen bonds are shown as dashed lines.

Poly[[bis[3-(1 H-tetrazol-1-yl)propanoic acid- $\left.\kappa N^{4}\right]$ cadmium]-di- μ-thiocyanato- $\left.\kappa^{2} N: S ; \kappa^{2} S: N\right]$

Crystal data

$\left[\mathrm{Cd}(\mathrm{NCS})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right)_{2}\right]$
$M_{r}=512.81$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.7402$ (19) \AA
$b=6.9555(11) \AA$
$c=10.7549(16) \AA$
$\beta=106.809(1)^{\circ}$
$V=912.3(2) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.729, T_{\text {max }}=0.758$

$$
\begin{aligned}
& F(000)=508 \\
& D_{\mathrm{x}}=1.863 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4116 \text { reflections } \\
& \theta=3.3-28.3^{\circ} \\
& \mu=1.47 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Block, blue } \\
& 0.23 \times 0.22 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.052$
$S=1.07$
1695 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0245 P)^{2}+0.480 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.59 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.30765(19)$	$0.2887(4)$	$0.3041(2)$	$0.0348(5)$
H1	0.3447	0.2929	0.2412	$0.042 *$
C2	$0.1466(2)$	$0.4991(3)$	$0.1939(2)$	$0.0370(6)$

H2A	0.0708	0.4582	0.1737	0.044^{*}
H2B	0.1698	0.4853	0.1160	0.044^{*}
C3	$0.1555(2)$	$0.7069(3)$	$0.2350(2)$	$0.0342(5)$
H3A	0.1298	0.7213	0.3110	0.041^{*}
H3B	0.2318	0.7463	0.2584	0.041^{*}
C4	$0.08935(19)$	$0.8341(3)$	$0.1283(2)$	$0.0314(5)$
C5	$0.42494(19)$	$-0.3428(4)$	$0.6880(2)$	$0.0337(5)$
Cd1	0.5000	0.0000	0.5000	$0.02720(9)$
N1	$0.33986(16)$	$0.1944(3)$	$0.41393(17)$	$0.0345(5)$
N2	$0.26241(18)$	$0.2267(3)$	$0.4749(2)$	$0.0426(5)$
N3	$0.18639(17)$	$0.3363(3)$	$0.4049(2)$	$0.0419(5)$
N4	$0.21474(15)$	$0.3766(3)$	$0.29673(17)$	$0.0289(4)$
N5	$0.46640(18)$	$-0.3889(3)$	$0.79258(19)$	$0.0447(6)$
O1	$0.04537(15)$	$0.7745(3)$	$0.01892(15)$	$0.0402(4)$
O2	$0.08335(18)$	$1.0111(3)$	$0.16420(19)$	$0.0493(5)$
S1	$0.36445(7)$	$-0.27644(12)$	$0.53866(6)$	$0.0594(2)$
H1O	$0.042(3)$	$1.083(6)$	$0.093(4)$	$0.080(11)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0356(13)$	$0.0419(15)$	$0.0290(11)$	$0.0104(11)$	$0.0129(10)$	$0.0079(10)$
C2	$0.0396(13)$	$0.0343(14)$	$0.0302(12)$	$0.0123(11)$	$-0.0007(10)$	$0.0047(10)$
C3	$0.0360(13)$	$0.0327(14)$	$0.0299(11)$	$0.0036(11)$	$0.0032(10)$	$0.0038(10)$
C4	$0.0322(12)$	$0.0298(14)$	$0.0303(11)$	$0.0015(10)$	$0.0061(10)$	$0.0033(10)$
C5	$0.0348(12)$	$0.0343(14)$	$0.0324(13)$	$-0.0070(11)$	$0.0101(10)$	$0.0043(10)$
Cd1	$0.03311(14)$	$0.02849(15)$	$0.01786(12)$	$0.00767(10)$	$0.00396(9)$	$0.00081(9)$
N1	$0.0377(11)$	$0.0369(12)$	$0.0300(9)$	$0.0113(9)$	$0.0113(8)$	$0.0079(9)$
N2	$0.0506(13)$	$0.0425(13)$	$0.0407(11)$	$0.0153(11)$	$0.0227(10)$	$0.0164(10)$
N3	$0.0435(12)$	$0.0452(14)$	$0.0424(12)$	$0.0132(10)$	$0.0209(10)$	$0.0129(10)$
N4	$0.0304(10)$	$0.0281(11)$	$0.0271(9)$	$0.0063(8)$	$0.0064(8)$	$0.0041(8)$
N5	$0.0533(13)$	$0.0522(15)$	$0.0279(11)$	$-0.0044(11)$	$0.0105(10)$	$0.0109(10)$
O1	$0.0462(10)$	$0.0340(10)$	$0.0322(8)$	$0.0089(8)$	$-0.0018(7)$	$0.0016(7)$
O2	$0.0655(13)$	$0.0303(11)$	$0.0379(10)$	$0.0106(9)$	$-0.0076(9)$	$-0.0006(8)$
S1	$0.0620(5)$	$0.0644(5)$	$0.0352(3)$	$-0.0248(4)$	$-0.0121(3)$	$0.0207(3)$

Geometric parameters ($A,{ }^{\circ}$)

C1-N1	1.310 (3)	C5-S1	1.634 (2)
C1-N4	1.314 (3)	Cd1-N5 ${ }^{\text {i }}$	2.281 (2)
C1-H1	0.9300	$\mathrm{Cd} 1-\mathrm{N} 5{ }^{\text {ii }}$	2.281 (2)
C2-N4	1.466 (3)	$\mathrm{Cd} 1-\mathrm{N} 1{ }^{\text {iii }}$	2.3989 (19)
C2-C3	1.506 (3)	$\mathrm{Cd} 1-\mathrm{N} 1$	2.3990 (19)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	$\mathrm{Cd} 1-\mathrm{S} 1{ }^{\text {iii }}$	2.6958 (8)
C2-H2B	0.9700	Cd1-S1	2.6958 (8)
$\mathrm{C} 3-\mathrm{C} 4$	1.500 (3)	N1-N2	1.352 (3)
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700	N2-N3	1.290 (3)
C3-H3B	0.9700	N3-N4	1.343 (3)

C4-O1	1.220 (3)	N5-Cd1 ${ }^{\text {iv }}$	2.281 (2)
C4-O2	1.299 (3)	$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O}$	0.94 (4)
C5-N5	1.142 (3)		
N1-C1-N4	109.2 (2)	$\mathrm{N} 5{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1$	94.85 (7)
N1-C1-H1	125.4	N1ii- ${ }^{\text {iii }} \mathrm{Cd} 1-\mathrm{N} 1$	180.0
N4- $\mathrm{C} 1-\mathrm{H} 1$	125.4	N 5 - $\mathrm{Cd} 1-\mathrm{S} 1^{\text {iii }}$	92.19 (6)
N4-C2-C3	111.01 (19)	$\mathrm{N} 5{ }^{\text {ii }}$ - $\mathrm{Cd} 1-\mathrm{Sl}{ }^{\text {iii }}$	87.81 (6)
N4-C2-H2A	109.4	N1 ${ }^{\text {iii- }}$ - $\mathrm{Cd} 1-\mathrm{S} 1^{\text {iii }}$	87.15 (5)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4	N1-Cd1-S1 ${ }^{\text {iii }}$	92.85 (5)
N4-C2-H2B	109.4	N5- ${ }^{\text {i }}$ Cd1-S1	87.81 (6)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4	$\mathrm{N} 5{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{S} 1$	92.19 (6)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0	N1 ${ }^{\text {iii- }}$ Cd1-S 1	92.85 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	111.32 (19)	N1-Cd1-S1	87.15 (5)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.4	S1 ${ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{S} 1$	180.0
C2-C3-H3A	109.4	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	105.79 (19)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4	C1-N1-Cd1	129.80 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.4	N2-N1-Cd1	124.41 (14)
H3A-C3-H3B	108.0	N3-N2-N1	110.18 (18)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	123.9 (2)	N2-N3-N4	106.52 (18)
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	122.5 (2)	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{N} 3$	108.31 (18)
O2-C4-C3	113.6 (2)	$\mathrm{C} 1-\mathrm{N} 4-\mathrm{C} 2$	130.0 (2)
N5-C5-S1	179.4 (2)	N3-N4-C2	121.74 (19)
$\mathrm{N} 5-\mathrm{Cd} 1-\mathrm{N} 5^{\text {ii }}$	180.0	C5-N5-Cd1 ${ }^{\text {iv }}$	164.0 (2)
N 5 - $\mathrm{Cd} 1-\mathrm{N} 1^{\text {iii }}$	94.85 (7)	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{H} 1 \mathrm{O}$	109 (2)
$\mathrm{N} 5{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1^{\text {iii }}$	85.15 (7)	C5-S1-Cd1	102.24 (9)
N5- $\mathrm{Cd} 1-\mathrm{N} 1$	85.15 (7)		
N4-C2-C3-C4	177.9 (2)	Cd1-N1-N2-N3	-179.93 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 1$	-7.7 (3)	N1-N2-N3-N4	-0.2 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	171.9 (2)	N1-C1-N4-N3	-0.4 (3)
$\mathrm{N} 4-\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	0.2 (3)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 4-\mathrm{C} 2$	180.0 (2)
N4- $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cd} 1$	-179.88 (15)	N2-N3-N4-C1	0.3 (3)
N5- ${ }^{\text {i }}$ d1- 1 1-C1	-40.8 (2)	N2-N3-N4-C2	-180.0 (2)
$\mathrm{N} 5{ }^{\text {ii- }} \mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	139.2 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 4-\mathrm{C} 1$	-106.9 (3)
$\mathrm{N} 1{ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-19 (32)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 4-\mathrm{N} 3$	73.4 (3)
S1 ${ }^{\text {iii- }} \mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	51.2 (2)	S1-C5-N5-Cd1 ${ }^{\text {iv }}$	23 (27)
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{C} 1$	-128.8 (2)	N5-C5-S1-Cd1	128 (26)
N 5 - $\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{N} 2$	139.1 (2)	$\mathrm{N} 5-\mathrm{Cd} 1-\mathrm{S} 1-\mathrm{C} 5$	142.55 (11)
$\mathrm{N} 5{ }^{\text {ii- }} \mathrm{Cd} 1-\mathrm{N} 1-\mathrm{N} 2$	-40.9 (2)	N5 ${ }^{\text {iii }} \mathrm{Cd} 1-\mathrm{S} 1-\mathrm{C} 5$	-37.45 (11)
$\mathrm{N} 1{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{N} 1-\mathrm{N} 2$	161 (32)	N1iii-Cd1-S1-C5	47.80 (11)
S1 ${ }^{\text {iii- }} \mathrm{Cd} 1-\mathrm{N} 1-\mathrm{N} 2$	-128.94 (19)	N1-Cd1-S1-C5	-132.20 (11)
S1-Cd1-N1-N2	51.05 (19)	S1 ${ }^{\text {iii }}$ - $\mathrm{Cd} 1-\mathrm{S} 1-\mathrm{C} 5$	-57 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	0.0 (3)		

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 O \cdots \mathrm{O}^{v}$	$0.94(4)$	$1.70(4)$	$2.631(3)$	$170(4)$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots 5^{\text {iii }}$	0.93	2.62	$3.404(3)$	142

Symmetry codes: (iii) $-x+1,-y,-z+1$; (v) $-x,-y+2,-z$.

[^0]: Symmetry codes: (i) $x,-y-1 / 2, z-1 / 2$; (ii) $-x+1, y+1 / 2,-z+3 / 2$; (iii) $-x+1,-y,-z+1$; (iv) $-x+1, y-1 / 2,-z+3 / 2$.

