metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[diagua[μ_2 -3-carboxy-5-(pyridine-4-carboxamido)benzoato][μ_{4} -5-(pvridine-4-carboxamido)isophthalato]cerium(III)] monohydrate]

Yi-Fang Deng* and Xue Nie

Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China Correspondence e-mail: yifang7124@163.com

Received 16 March 2012; accepted 28 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 12.0.

In the title compound, $\{[Ce(C_{14}H_9N_2O_5)(C_{14}H_8N_2O_5) (H_2O)_2$]· H_2O _n, three carboxyl groups of two independent isophthalate anions are deprotonated and they bridge the Ce^{III} cations, forming a two-dimensional polymeric structure parallel to (001); another carboxyl group is not deprotonated and links with the adjacent pyridine ring via an $O-H\cdots N$ hydrogen bond. The Ce^{III} cation is coordinated by six O atoms from carboxyl groups and two O atoms from coordinated water molecules in a distorted square-antiprismatic arrangement. Extensive $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonding occurs in the crystal structure.

Related literature

For applications of lanthanide complexes with carboxyl ligands, see: Chin et al. (1994); Singh et al. (2002). For related complexes, see: Chen et al. (2011); Deng (2011); Qiu et al. (2007); Gubina et al. (2000); Wang et al. (2003).

Experimental

Crystal data

[Ce(C14H9N2O5)(C14H8N2O5)- $(H_2O)_2] \cdot H_2O$ $M_{\rm r} = 763.62$ Triclinic, $P\overline{1}$ a = 9.6742 (8) Å b = 10.6187 (8) Å c = 15.8542 (12) Å $\alpha = 81.443 (1)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2001) $T_{\min} = 0.754, T_{\max} = 0.878$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.086$ S = 1.044972 reflections

Table 1

Hydrogen-bond geometry (Å, °).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$	
$O1W-H1WA\cdots N2^{i}$	0.85	2.21	2.756 (5)	122	
$O2W - H2WB \cdots O1W^{ii}$	0.85	2.53	3.297 (5)	150	
$O2W$ $H2WA$ $O2W^{iii}$	0.95	2.07	2 728 (6)	122	

Summation and an (i) at 1		(;;)		(:::)	
$D3-H3\cdots N4^{vi}$	0.82	1.81	2.583 (5)	156	
$O3W - H3WB \cdot \cdot \cdot O5^{v}$	0.85	1.92	2.742 (6)	161	
$O3W-H3WA\cdots O10^{iv}$	0.85	2.06	2.856 (8)	157	
520 -112011 050	0.05	2.07	2.720 (0)	155	

 $\beta = 78.753 \ (2)^{\circ}$

 $\gamma = 64.166 \ (2)^{\circ}$ V = 1433.98 (19) Å³

Mo $K\alpha$ radiation

 $0.18 \times 0.14 \times 0.08 \; \rm mm$

7189 measured reflections

4972 independent reflections

4669 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

22

 $\mu = 1.67 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.071$

416 parameters

 $\Delta \rho_{\rm max} = 1.26 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -1.23 \text{ e} \text{ Å}^{-3}$

Z = 2

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 2, -y + 2, -z + 1; (iii) x, y + 1, z; (iv) x - 1, y, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 3, -y + 2, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Hengyang Bureau of Science & Technology, China (grant No. 2009 K J28).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5485).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Chen, M.-S., Fan, J., Okamura, T., Lv, G.-C. & Sun, W.-Y. (2011). Inorg. Chim. Acta. 366, 268-274.
- Chin, K. O. A., Morrow, J. R., Lake, C. H. & Churchill, M. L. (1994). Inorg. Chem. 33, 656-664.
- Deng, Y.-F. (2011). Acta Cryst. E67, m1298.
- Gubina, K. E., Shatrava, J. A., Ocvchynnikov, V. A. & Amirkhanov, V. M. (2000). Polyhedron, 19, 2203-2209.
- Qiu, Y., Liu, H., Ling, Y., Deng, H., Zeng, R., Zhou, G. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399-1403.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, U. P., Tyagi, S., Sharma, C. L., Gorner, H. & Weyhermuller, T. (2002). J. Chem. Soc. Dalton Trans. pp. 4464-4470.
- Wang, R.-F., Wang, S.-P. & Zhang, J.-J. (2003). J. Mol. Struct. 648, 151-158.

supporting information

Acta Cryst. (2012). E68, m530 [doi:10.1107/S1600536812013402]

Poly[[diaqua[μ_2 -3-carboxy-5-(pyridine-4-carboxamido)benzoato] [μ_4 -5-(pyridine-4-carboxamido)isophthalato]cerium(III)] monohydrate]

Yi-Fang Deng and Xue Nie

S1. Comment

Recently, lanthanide-carboxylic acid complexes have been widely studied and applied in many fields due to their excellent luminescent properties (Chin *et al.*, 1994; Singh *et al.*, 2002). Distinct structure features with various lanthanides (Qiu *et al.*, 2007; Gubina *et al.*, 2000) or ligands (Wang *et al.*, 2003) have been reported.

The title compound, (I) was synthesized and its structure was determined by X-ray diffraction. Similar crystal structure with 5-isonicotinamidoisophthalic acid as ligand has been reported recently (Chen *et al.*, 2011; Deng, 2011).

In the title compound, the central Ce^{III} ion is eight-coordinated by two O atoms from two water molecules, two carboxylate O atoms from two partial-deprotonated HL⁻ ligands and four other O atoms from four different L^{2-} ligands, which forming a distorted square-antiprismatic geometry (Fig. 1). Moreover, the HL⁻ anions adopt $\mu_2-\eta^1:\eta^1$ bridging coordination mode, while two carboxylate groups of each L^{2-} ligand have different coordination modes, one is $\mu_2-\eta^1:\eta^1$ bridging and the other one acts as $\mu_2-\eta^2:\eta^1$ -bridging coordination mode, whereas the pyridyl group is free of coordination. Such a coordination mode makes (I) into an infinite two-dimensional network (Fig. 2). The pyridyl groups are free. Adjacent molecules are linked through O—H…N and O—H…O hydrogen bonds into a three-dimensional network.

S2. Experimental

A mixture of $0.05 \text{ mmol Ce}(NO_3)_3.6H_2O$ (21.2 mg. 0.05 mmol), 5-isonicotinamidoisophthalic acid (28.7 mg, 0.1 mmol), NaOH (6.0 mg, 0.15 mmol), MeOH (5 ml) and water (5 ml) was heated in a 16 ml capacity Teflon-lined reaction vessel at 453 K for 3 d, the reaction mixture then was cooled to room temperature over a period of 40 h. The product was collected by filtration.

S3. Refinement

Amide H atoms were located in a difference Fourier map and refined as riding in as found relative positions, other H atoms were placed geometrically with O—H = 0.86 (water), 0.82 (carboxyl) and C—H = 0.93 Å), and refined in riding mode, $U_{iso}(H) = 1.2U_{eq}(N,O,C)$.

Figure 1

The *ORTEP* drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level. [Symmetry codes: (i) 1 - x, 2 - y, 1 - z (ii) 2 - x, 2 - y, 1 - z (iii) -1 + x, 1 + y, z (iv) 2 - x, 1 - y, 1 - z.]

Figure 2

Projection showing the two-dimensional structure of the compound, all pyridyl groups are omitted for clarity.

Z = 2

F(000) = 762 $D_x = 1.769 \text{ Mg m}^{-3}$

 $\theta = 2.1-25.0^{\circ}$ $\mu = 1.67 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.18 \times 0.14 \times 0.08 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 4972 reflections

Poly[[diaqua[μ_2 -3-carboxy-5-(pyridine-4-carboxamido)benzoato][μ_4 - 5-(pyridine-4-carboxamido)isophthalato]cerium(III)] monohydrate]

Crystal data
$[Ce(C_{14}H_9N_2O_5)(C_{14}H_8N_2O_5)(H_2O)_2]\cdot H_2O$
$M_r = 763.62$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 9.6742 (8) Å
b = 10.6187 (8) Å
c = 15.8542 (12) Å
$\alpha = 81.443 \ (1)^{\circ}$
$\beta = 78.753 \ (2)^{\circ}$
$\gamma = 64.166 \ (2)^{\circ}$
V = 1433.98 (19) Å ³

Data collection

Bruker APEXII CCD	7189 measured reflections
diffractometer	4972 independent reflections
Radiation source: fine-focus sealed tube	4669 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.071$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2001)	$k = -10 \rightarrow 12$
$T_{\min} = 0.754, \ T_{\max} = 0.878$	$l = -16 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.04	H-atom parameters constrained
4972 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0565P)^2]$
416 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.26 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -1.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	Z	$U_{iso}*/U_{ea}$	
Cel	0.731679 (19)	0.960889 (17)	0.503370 (11)	0.01875 (9)	
C7	0.5111 (4)	1.0993 (4)	0.3253 (2)	0.0249 (7)	
C3	0.5318 (4)	1.1620 (4)	0.2339 (2)	0.0259 (7)	
C2	0.4389(4)	1.1697 (4)	0.1751(2)	0.0288 (8)	
H2	0.3671	1.1309	0.1903	0.035*	
C1	0.4534 (4)	1.2359 (4)	0.0934 (2)	0.0299 (8)	
C6	0.5503 (5)	1.3043 (4)	0.0741 (2)	0.0353 (9)	
H6	0.5531	1.3560	0.0215	0.042*	
C5	0.6427 (5)	1.2962 (4)	0.1326 (2)	0.0323 (8)	
C4	0.6388 (4)	1.2197 (4)	0.2109 (2)	0.0299 (8)	
H4	0.7079	1.2070	0.2481	0.036*	
C9	0.3250 (5)	1.1435 (5)	0.0155 (3)	0.0385 (9)	
C10	0.2671 (5)	1.1588 (4)	-0.0677 (2)	0.0364 (9)	
C14	0.1640 (6)	1.1015 (5)	-0.0707 (3)	0.0480 (11)	
H14	0.1281	1.0590	-0.0213	0.058*	
C13	0.1153 (6)	1.1087 (6)	-0.1486 (3)	0.0575 (13)	
H13	0.0458	1.0705	-0.1502	0.069*	
C12	0.2624 (7)	1.2209 (6)	-0.2179 (3)	0.0562 (13)	
H12	0.2969	1.2615	-0.2687	0.067*	
C11	0.3175 (6)	1.2199 (5)	-0.1436 (3)	0.0496 (11)	
H11	0.3869	1.2593	-0.1445	0.059*	
C8	0.7431 (5)	1.3750 (5)	0.1128 (3)	0.0398 (10)	
C21	1.1064 (4)	0.7882 (3)	0.5569 (2)	0.0212 (7)	
C17	1.2354 (4)	0.6476 (3)	0.5727 (2)	0.0210 (7)	
C16	1.3614 (4)	0.6391 (4)	0.6063 (2)	0.0254 (7)	
H16	1.3649	0.7207	0.6183	0.031*	
C15	1.4816 (4)	0.5108 (4)	0.6220(2)	0.0267 (7)	
C20	1.4817 (4)	0.3891 (4)	0.6011 (2)	0.0267 (8)	
H20	1.5633	0.3028	0.6113	0.032*	
C19	1.3580 (4)	0.3973 (4)	0.5645 (2)	0.0230 (7)	
C18	1.2335 (4)	0.5254 (3)	0.5521 (2)	0.0223 (7)	
H18	1.1491	0.5296	0.5301	0.027*	
C23	1.6591 (5)	0.4429 (4)	0.7281 (3)	0.0389 (9)	
C24	1.7777 (4)	0.4767 (4)	0.7573 (3)	0.0337 (9)	
C28	1.8537 (5)	0.5516 (5)	0.7061 (3)	0.0429 (10)	
H28	1.8401	0.5784	0.6487	0.052*	
C27	1.9499 (5)	0.5854 (5)	0.7425 (3)	0.0487 (12)	
H27	1.9997	0.6369	0.7083	0.058*	
C26	1.9051 (5)	0.4746 (5)	0.8713 (3)	0.0410 (10)	
H26	1.9236	0.4468	0.9280	0.049*	
C25	1.8059 (5)	0.4367 (5)	0.8415 (3)	0.0388 (10)	
H25	1.7583	0.3848	0.8773	0.047*	
C22	1.3639 (4)	0.2695 (4)	0.5316 (2)	0.0266 (7)	
N1	0.3669 (4)	1.2433 (4)	0.0286 (2)	0.0359 (8)	
H2A	0.4223	1.2574	-0.0215	0.043*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N2	0.1632 (5)	1.1672 (5)	-0.2205 (3)	0.0572 (11)
N3	1.6082 (4)	0.5117 (3)	0.6555 (2)	0.0326 (7)
H3A	1.6550	0.5606	0.6263	0.039*
N4	1.9759 (4)	0.5488 (4)	0.8236 (2)	0.0443 (9)
01	0.3837 (3)	1.0938 (3)	0.35242 (16)	0.0368 (6)
O2	0.6201 (3)	1.0635 (3)	0.36808 (16)	0.0342 (6)
03	0.8519 (5)	1.3290 (5)	0.1605 (3)	0.0757 (13)
H3	0.8914	1.3846	0.1553	0.114*
O4	0.7212 (4)	1.4718 (4)	0.0589 (2)	0.0537 (9)
05	0.3353 (5)	1.0419 (4)	0.0661 (2)	0.0589 (10)
O6	0.9822 (3)	0.7910 (2)	0.54280 (17)	0.0303 (6)
O7	1.1291 (3)	0.8947 (2)	0.56132 (17)	0.0300 (6)
08	1.4778 (3)	0.1545 (3)	0.53961 (18)	0.0381 (6)
09	1.2553 (4)	0.2827 (3)	0.4946 (3)	0.0585 (10)
O10	1.6089 (5)	0.3622 (5)	0.7707 (2)	0.0748 (13)
O1W	0.9238 (4)	0.8370 (3)	0.37514 (18)	0.0537 (8)
H1WB	0.8907	0.7774	0.3687	0.064*
H1WA	0.9094	0.8880	0.3282	0.064*
O2W	0.7983 (3)	1.0672 (3)	0.61536 (17)	0.0369 (6)
H2WB	0.8768	1.0855	0.5974	0.044*
H2WA	0.8080	1.0189	0.6634	0.044*
O3W	0.7921 (9)	0.0666 (7)	0.7882 (3)	0.141 (3)
H3WA	0.7410	0.1497	0.7680	0.169*
H3WB	0.7469	0.0249	0.8251	0.169*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ce1	0.01952 (13)	0.01527 (12)	0.02393 (13)	-0.00835 (9)	-0.00774 (8)	0.00066 (8)
C7	0.0299 (19)	0.0230 (18)	0.0252 (17)	-0.0131 (15)	-0.0082 (14)	0.0005 (14)
C3	0.0283 (19)	0.0244 (18)	0.0276 (18)	-0.0127 (15)	-0.0074 (14)	0.0006 (14)
C2	0.032 (2)	0.032 (2)	0.0277 (18)	-0.0182 (17)	-0.0085 (15)	0.0009 (15)
C1	0.036 (2)	0.032 (2)	0.0289 (18)	-0.0183 (17)	-0.0137 (16)	0.0009 (15)
C6	0.044 (2)	0.040 (2)	0.0303 (19)	-0.026 (2)	-0.0115 (17)	0.0070 (17)
C5	0.038 (2)	0.037 (2)	0.0312 (19)	-0.0241 (18)	-0.0091 (16)	0.0024 (16)
C4	0.034 (2)	0.032 (2)	0.0304 (19)	-0.0181 (17)	-0.0119 (16)	0.0007 (15)
C9	0.047 (2)	0.044 (2)	0.036 (2)	-0.028 (2)	-0.0153 (18)	0.0044 (19)
C10	0.046 (2)	0.038 (2)	0.032 (2)	-0.0217 (19)	-0.0141 (17)	0.0011 (17)
C14	0.058 (3)	0.059 (3)	0.042 (2)	-0.035 (3)	-0.018 (2)	0.000 (2)
C13	0.062 (3)	0.064 (3)	0.058 (3)	-0.027 (3)	-0.026 (3)	-0.016 (3)
C12	0.070 (3)	0.068 (3)	0.032 (2)	-0.027 (3)	-0.016 (2)	-0.001 (2)
C11	0.062 (3)	0.056 (3)	0.040 (2)	-0.034 (3)	-0.012 (2)	0.001 (2)
C8	0.051 (3)	0.051 (3)	0.035 (2)	-0.037 (2)	-0.0121 (19)	0.0044 (19)
C21	0.0236 (17)	0.0231 (17)	0.0196 (16)	-0.0112 (14)	-0.0054 (13)	-0.0020 (13)
C17	0.0207 (17)	0.0190 (17)	0.0262 (17)	-0.0101 (14)	-0.0072 (13)	0.0006 (13)
C16	0.0284 (19)	0.0244 (18)	0.0305 (18)	-0.0159 (15)	-0.0086 (14)	-0.0013 (14)
C15	0.0250 (18)	0.0271 (19)	0.0315 (18)	-0.0121 (15)	-0.0116 (15)	0.0016 (15)
C20	0.0250 (18)	0.0212 (18)	0.0341 (19)	-0.0086 (15)	-0.0094 (15)	0.0008 (14)

supporting information

C19	0.0227 (17)	0.0216 (17)	0.0273 (17)	-0.0114 (14)	-0.0059 (14)	0.0006 (14)
C18	0.0204 (17)	0.0209 (17)	0.0302 (18)	-0.0115 (14)	-0.0069 (14)	-0.0018 (14)
C23	0.040 (2)	0.040 (2)	0.046 (2)	-0.023 (2)	-0.0188 (19)	0.0057 (19)
C24	0.029 (2)	0.034 (2)	0.042 (2)	-0.0148 (17)	-0.0149 (17)	0.0018 (17)
C28	0.043 (2)	0.060 (3)	0.037 (2)	-0.030(2)	-0.0140 (18)	0.006 (2)
C27	0.046 (3)	0.071 (3)	0.046 (2)	-0.041 (3)	-0.015 (2)	0.008 (2)
C26	0.039 (2)	0.053 (3)	0.036 (2)	-0.023 (2)	-0.0123 (18)	0.0020 (19)
C25	0.038 (2)	0.045 (2)	0.041 (2)	-0.024 (2)	-0.0171 (18)	0.0103 (19)
C22	0.0270 (19)	0.0203 (18)	0.0343 (19)	-0.0124 (15)	-0.0035 (15)	-0.0009 (14)
N1	0.049 (2)	0.045 (2)	0.0279 (16)	-0.0308 (17)	-0.0168 (15)	0.0070 (14)
N2	0.068 (3)	0.060 (3)	0.042 (2)	-0.014 (2)	-0.026 (2)	-0.0129 (19)
N3	0.0294 (17)	0.0320 (17)	0.0443 (18)	-0.0168 (14)	-0.0195 (14)	0.0048 (14)
N4	0.043 (2)	0.064 (2)	0.0414 (19)	-0.035 (2)	-0.0151 (16)	0.0026 (17)
01	0.0304 (15)	0.0464 (17)	0.0334 (14)	-0.0189 (13)	-0.0077 (11)	0.0105 (12)
O2	0.0380 (15)	0.0454 (16)	0.0303 (13)	-0.0250 (13)	-0.0175 (12)	0.0055 (12)
03	0.088 (3)	0.102 (3)	0.083 (3)	-0.080 (3)	-0.057 (2)	0.047 (2)
O4	0.074 (2)	0.061 (2)	0.0481 (18)	-0.0527 (19)	-0.0203 (16)	0.0207 (16)
05	0.099 (3)	0.059 (2)	0.0472 (18)	-0.057 (2)	-0.0355 (19)	0.0185 (16)
O6	0.0256 (13)	0.0224 (13)	0.0483 (15)	-0.0106 (11)	-0.0172 (12)	-0.0009 (11)
O7	0.0316 (14)	0.0194 (12)	0.0454 (15)	-0.0148 (11)	-0.0152 (12)	0.0045 (11)
08	0.0426 (17)	0.0220 (14)	0.0433 (16)	-0.0051 (12)	-0.0116 (13)	-0.0035 (11)
09	0.051 (2)	0.0288 (16)	0.111 (3)	-0.0155 (14)	-0.041 (2)	-0.0168 (17)
O10	0.089 (3)	0.099 (3)	0.076 (2)	-0.076 (3)	-0.051 (2)	0.042 (2)
O1W	0.069 (2)	0.0480 (19)	0.0349 (16)	-0.0105 (17)	-0.0130 (15)	-0.0133 (14)
O2W	0.0388 (16)	0.0416 (16)	0.0379 (15)	-0.0226 (13)	-0.0083 (12)	-0.0033 (12)
O3W	0.230 (8)	0.154 (6)	0.076 (3)	-0.129 (6)	-0.007 (4)	0.011 (4)

Geometric parameters (Å, °)

Cel—Ol ⁱ	2.446 (2)	C17—C16	1.385 (5)
Ce1—O2	2.477 (2)	C17—C18	1.393 (5)
Ce1—O6	2.442 (2)	C16—C15	1.379 (5)
Ce1—O7 ⁱⁱ	2.452 (2)	C16—H16	0.9300
Ce1—O8 ⁱⁱⁱ	2.447 (3)	C15—C20	1.381 (5)
Ce1—O9 ^{iv}	2.530 (3)	C15—N3	1.431 (4)
Ce1—O1W	2.552 (3)	C20—C19	1.394 (5)
Ce1—O2W	2.553 (3)	C20—H20	0.9300
C7—O1	1.248 (4)	C19—C18	1.387 (5)
С7—О2	1.252 (4)	C19—C22	1.498 (5)
С7—С3	1.517 (5)	C18—H18	0.9300
C3—C4	1.385 (5)	C23—O10	1.220 (5)
C3—C2	1.386 (5)	C23—N3	1.326 (5)
C2—C1	1.392 (5)	C23—C24	1.508 (5)
С2—Н2	0.9300	C24—C25	1.382 (5)
C1—C6	1.385 (5)	C24—C28	1.384 (6)
C1—N1	1.419 (4)	C28—C27	1.374 (6)
C6—C5	1.377 (5)	C28—H28	0.9300
С6—Н6	0.9300	C27—N4	1.326 (6)

C5—C4	1.383 (5)	С27—Н27	0.9300
C5—C8	1.501 (5)	C26—N4	1.324 (6)
C4—H4	0.9300	C26—C25	1.369 (6)
С9—О5	1.224 (5)	С26—Н26	0.9300
C9—N1	1.344 (5)	С25—Н25	0.9300
C9—C10	1.492 (5)	С22—О9	1.247 (4)
C10—C11	1.386 (6)	C22—O8	1.248 (4)
C10—C14	1.387 (6)	N1—H2A	0.8998
C14—C13	1.386 (6)	N3—H3A	0.8600
C14—H14	0.9300	01—Ce1 ⁱ	2.446 (2)
C13—N2	1 316 (7)	03—H3	0.8200
C13—H13	0.9300	07—Cel ⁱⁱ	2452(2)
C12 N2	1 322 (7)	$08-Ce^{1^{\vee}}$	2.132(2) 2.447(3)
C12 - C12	1.322 (7)	09—Cel ^{iv}	2.530(3)
C_{12} H_{12}	0.0300	OlW HIWB	0.8400
C11 H11	0.9300		0.8499
	1 205 (5)		0.0495
C^{8}_{0}	1.203(3)		0.8300
$C_{0} = 0.5$	1.291 (3)	$O_2 W - H_2 W A$	0.8495
C21—06	1.252 (4)	O3W—H3WA	0.8496
C21—07	1.256 (4)	O3W—H3WB	0.8500
C21—C17	1.496 (5)		
06 Cal 01 ⁱ	87.00 (0)	04 68 03	124 6 (4)
06 Col O ³	37.00(9)	04 - 03 - 05	124.0(4)
00 - CeI - 08	130.29(9)	04 - 06 - 05	122.7(4)
$O(-C_{2}1 - O_{3}^{ii})$	71.37 (9) 95.09 (9)	05 - 03 - 03	112.8 (4)
00 - CeI - 0/"	85.08 (8)	06-021-07	124.9 (3)
	137.06 (9)	06-021-017	117.5 (3)
08^{m} Cel $0/^{n}$	96.89 (9)	0/-C21-C17	117.6 (3)
06—Cel—02	136.56 (9)	C16—C17—C18	119.4 (3)
$O1^1$ —Ce1—O2	131.89 (9)	C16—C17—C21	119.3 (3)
O8 ⁱⁿ —Ce1—O2	72.04 (9)	C18—C17—C21	121.3 (3)
$O7^{ii}$ —Ce1—O2	77.34 (8)	C15—C16—C17	120.6 (3)
$O6$ — $Ce1$ — $O9^{iv}$	71.67 (9)	C15—C16—H16	119.7
$O1^{i}$ —Ce1—O9 ^{iv}	72.84 (12)	C17—C16—H16	119.7
$O8^{iii}$ —Ce1—O9 ^{iv}	118.35 (10)	C16—C15—C20	120.5 (3)
$O7^{ii}$ —Ce1—O9 ^{iv}	141.86 (11)	C16—C15—N3	117.0 (3)
$O2$ — $Ce1$ — $O9^{iv}$	98.94 (10)	C20—C15—N3	122.4 (3)
O6—Ce1—O1W	66.88 (9)	C15—C20—C19	119.2 (3)
Ol ⁱ —Cel—OlW	140.12 (10)	C15—C20—H20	120.4
O8 ⁱⁱⁱ —Ce1—O1W	141.96 (9)	С19—С20—Н20	120.4
O7 ⁱⁱ —Ce1—O1W	72.58 (10)	C18—C19—C20	120.4 (3)
O2—Ce1—O1W	70.00 (10)	C18—C19—C22	119.1 (3)
O9 ^{iv} —Ce1—O1W	70.61 (12)	C20—C19—C22	120.3 (3)
O6—Ce1—O2W	72.59 (9)	C19—C18—C17	119.8 (3)
O1 ⁱ —Ce1—O2W	70.31 (9)	C19—C18—H18	120.1
O8 ⁱⁱⁱ —Ce1—O2W	80.89 (9)	C17—C18—H18	120.1
O7 ⁱⁱ —Ce1—O2W	67.04 (9)	O10—C23—N3	122.6 (4)
O2—Ce1—O2W	131.79 (9)	O10—C23—C24	121.9 (4)

O9 ^{iv} —Ce1—O2W	129.14 (10)	N3—C23—C24	115.5 (3)
O1W—Ce1—O2W	124.10 (10)	C25—C24—C28	118.2 (4)
O1—C7—O2	125.7 (3)	C25—C24—C23	117.8 (4)
O1—C7—C3	116.8 (3)	C28—C24—C23	123.9 (3)
O2—C7—C3	117.4 (3)	C27—C28—C24	118.2 (4)
C4—C3—C2	119.9 (3)	С27—С28—Н28	120.9
C4—C3—C7	119.1 (3)	C24—C28—H28	120.9
C2—C3—C7	120.8 (3)	N4—C27—C28	123.8 (4)
C3—C2—C1	119.7 (3)	N4—C27—H27	118.1
С3—С2—Н2	120.1	С28—С27—Н27	118.1
C1—C2—H2	120.1	N4—C26—C25	123.4 (4)
C6—C1—C2	119.6 (3)	N4—C26—H26	118.3
C6-C1-N1	117.3 (3)	C25—C26—H26	118.3
C2-C1-N1	123.1 (3)	C26—C25—C24	119.0 (4)
C5—C6—C1	120.2 (4)	С26—С25—Н25	120.5
С5—С6—Н6	119.9	C24—C25—H25	120.5
С1—С6—Н6	119.9	O9—C22—O8	121.8 (3)
C6—C5—C4	120.1 (3)	09-C22-C19	118.4 (3)
C6-C5-C8	120.1 (3)	08—C22—C19	119.8 (3)
C4—C5—C8	119.8 (3)	C9—N1—C1	125.9 (3)
C5—C4—C3	119.9 (3)	C9—N1—H2A	105.5
C5—C4—H4	120.0	C1—N1—H2A	105.1
C3—C4—H4	120.0	C13—N2—C12	118.3 (4)
05—C9—N1	124.0 (4)	C23—N3—C15	125.0 (3)
O5—C9—C10	119.6 (4)	C23—N3—H3A	117.5
N1—C9—C10	116.4 (3)	C15—N3—H3A	117.5
C11—C10—C14	118.0 (4)	C26—N4—C27	117.4 (4)
C11—C10—C9	123.6 (4)	C7—O1—Ce1 ⁱ	131.8 (2)
C14—C10—C9	118.3 (4)	C7—O2—Ce1	149.8 (2)
C13—C14—C10	118.9 (5)	С8—О3—Н3	109.5
C13—C14—H14	120.5	C21—O6—Ce1	139.3 (2)
C10—C14—H14	120.5	C21—O7—Ce1 ⁱⁱ	147.2 (2)
N2—C13—C14	122.8 (5)	C22—O8—Ce1 ^v	159.1 (3)
N2—C13—H13	118.6	C22—O9—Ce1 ^{iv}	106.3 (2)
C14—C13—H13	118.6	Ce1—O1W—H1WB	101.1
N2—C12—C11	123.5 (5)	Ce1—O1W—H1WA	112.4
N2—C12—H12	118.3	H1WB—O1W—H1WA	101.8
C11—C12—H12	118.3	Ce1—O2W—H2WB	113.4
C12—C11—C10	118.5 (5)	Ce1—O2W—H2WA	113.3
C12—C11—H11	120.8	H2WB—O2W—H2WA	110.7
C10—C11—H11	120.8	H3WA—O3W—H3WB	120.4
O1—C7—C3—C4	155.7 (4)	N3—C23—C24—C28	-12.3 (6)
O2—C7—C3—C4	-21.2 (5)	C25—C24—C28—C27	-1.7 (7)
O1—C7—C3—C2	-20.4 (5)	C23—C24—C28—C27	174.8 (4)
O2—C7—C3—C2	162.7 (3)	C24—C28—C27—N4	0.9 (8)
C4—C3—C2—C1	-0.2 (6)	N4—C26—C25—C24	0.3 (7)
C7—C3—C2—C1	175.9 (3)	C28—C24—C25—C26	1.2 (6)
	~ /		× /

C3—C2—C1—C6	-5.8 (6)	C23—C24—C25—C26	-175.5 (4)
C3—C2—C1—N1	177.5 (4)	C18—C19—C22—O9	-0.5 (5)
C2-C1-C6-C5	6.0 (6)	C20—C19—C22—O9	-175.7 (4)
N1—C1—C6—C5	-177.1 (4)	C18—C19—C22—O8	177.5 (3)
C1—C6—C5—C4	-0.1 (6)	C20-C19-C22-O8	2.3 (5)
C1—C6—C5—C8	-177.7 (4)	O5—C9—N1—C1	11.9 (7)
C6—C5—C4—C3	-5.9 (6)	C10-C9-N1-C1	-166.3 (4)
C8—C5—C4—C3	171.6 (4)	C6—C1—N1—C9	148.1 (4)
C2—C3—C4—C5	6.0 (6)	C2—C1—N1—C9	-35.2 (6)
C7—C3—C4—C5	-170.1 (3)	C14—C13—N2—C12	0.2 (8)
O5-C9-C10-C11	-147.1 (5)	C11—C12—N2—C13	-0.5 (8)
N1-C9-C10-C11	31.2 (7)	O10-C23-N3-C15	5.8 (7)
O5-C9-C10-C14	29.0 (7)	C24—C23—N3—C15	-171.2 (3)
N1-C9-C10-C14	-152.7 (4)	C16—C15—N3—C23	123.6 (4)
C11—C10—C14—C13	-0.4 (7)	C20-C15-N3-C23	-60.1 (5)
C9—C10—C14—C13	-176.8 (5)	C25—C26—N4—C27	-1.1 (7)
C10-C14-C13-N2	0.3 (8)	C28—C27—N4—C26	0.5 (8)
N2-C12-C11-C10	0.3 (8)	O2—C7—O1—Ce1 ⁱ	7.2 (6)
C14—C10—C11—C12	0.2 (7)	C3—C7—O1—Ce1 ⁱ	-169.5 (2)
C9—C10—C11—C12	176.3 (5)	O1C7Ce1	4.2 (8)
C6—C5—C8—O4	18.6 (7)	C3-C7-O2-Ce1	-179.1 (3)
C4—C5—C8—O4	-158.9 (4)	O6—Ce1—O2—C7	134.9 (5)
C6—C5—C8—O3	-162.3 (4)	O1 ⁱ —Ce1—O2—C7	-12.8 (5)
C4—C5—C8—O3	20.1 (6)	O8 ⁱⁱⁱ —Ce1—O2—C7	-54.9 (5)
O6—C21—C17—C16	-166.5 (3)	O7 ⁱⁱ —Ce1—O2—C7	-156.5 (5)
O7—C21—C17—C16	11.6 (5)	O9 ^{iv} —Ce1—O2—C7	62.2 (5)
O6—C21—C17—C18	15.4 (5)	O1W—Ce1—O2—C7	127.6 (5)
O7—C21—C17—C18	-166.6 (3)	O2W—Ce1—O2—C7	-114.0 (5)
C18—C17—C16—C15	-2.2 (5)	O7-C21-O6-Ce1	7.3 (6)
C21—C17—C16—C15	179.6 (3)	C17-C21-O6-Ce1	-174.9 (2)
C17—C16—C15—C20	2.8 (5)	O1 ⁱ —Ce1—O6—C21	-112.6 (4)
C17—C16—C15—N3	179.1 (3)	O8 ⁱⁱⁱ —Ce1—O6—C21	-70.1 (4)
C16—C15—C20—C19	-0.5 (5)	O7 ⁱⁱ —Ce1—O6—C21	25.2 (3)
N3—C15—C20—C19	-176.6 (3)	O2-Ce1-O6-C21	90.9 (4)
C15—C20—C19—C18	-2.4 (5)	O9 ^{iv} —Ce1—O6—C21	174.5 (4)
C15—C20—C19—C22	172.8 (3)	O1W-Ce1-O6-C21	98.3 (4)
C20-C19-C18-C17	3.0 (5)	O2W-Ce1-O6-C21	-42.3 (3)
C22-C19-C18-C17	-172.2 (3)	O6-C21-O7-Ce1 ⁱⁱ	-112.8 (4)
C16—C17—C18—C19	-0.7 (5)	C17—C21—O7—Ce1 ⁱⁱ	69.4 (5)
C21—C17—C18—C19	177.5 (3)	O9-C22-O8-Ce1 ^v	85.9 (8)
O10—C23—C24—C25	-12.8 (7)	C19—C22—O8—Ce1 ^v	-92.0 (8)
N3—C23—C24—C25	164.2 (4)	O8-C22-O9-Ce1 ^{iv}	20.5 (5)
O10—C23—C24—C28	170.6 (5)	C19—C22—O9—Ce1 ^{iv}	-161.5 (2)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x-1, y+1, z; (iv) -x+2, -y+1, -z+1; (v) x+1, y-1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A	
01 <i>W</i> —H1 <i>WA</i> ···N2 ^{vi}	0.85	2.21	2.756 (5)	122	
$O2W$ — $H2WB$ ···O $1W^{ii}$	0.85	2.53	3.297 (5)	150	
O2W—H2 WA ···O3 W ^{vii}	0.85	2.07	2.728 (6)	133	
O3 <i>W</i> —H3 <i>WA</i> ···O10 ^{viii}	0.85	2.06	2.856 (8)	157	
O3W— $H3WB$ ···O5 ^{ix}	0.85	1.92	2.742 (6)	161	
O3—H3…N4 ^x	0.82	1.81	2.583 (5)	156	

Symmetry codes: (ii) -x+2, -y+2, -z+1; (vi) -x+1, -y+2, -z; (vii) x, y+1, z; (viii) x-1, y, z; (ix) -x+1, -y+1, -z+1; (x) -x+3, -y+2, -z+1.