

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A triclinic polymorph of dichlorido(2-{[2-(isopropylammonio)ethyl]iminomethyl- κN }-5-methoxyphenolato- κO^{1})zinc

Ai-Tian Pei

Zibo Vocational Institute, Zibo 255314, People's Republic of China Correspondence e-mail: aitianpei@126.com

Received 29 March 2012; accepted 3 April 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.055; wR factor = 0.181; data-to-parameter ratio = 15.7.

The title compound, $[ZnCl_2(C_{13}H_{20}N_2O_2)]$, was first reported in the monoclinic space group $P2_1/n$ [Han et al. (2010). Acta Cryst. E66, m469]. This investigation reveals a triclinic polymorph in the space group $P\overline{1}$ with an asymmetric unit that contains two independent molecules of the mononuclear zinc(II) complex. In each molecule, the Zn^{II} atoms are coordinated in a bidentate fashion by the phenolate O and imine N atoms of the Schiff base ligand. Two Cl⁻ anions complete the tetrahedral coordination in each case. The most obvious difference between the two forms is that the Zn-L(L = O, N, Cl) bond lengths in both unique molecules are longer than those found in the monoclinic polymorph, or indeed in other similar complexes. In the crystal, molecules are linked through N-H···O and N-H···Cl hydrogen bonds, forming chains along the b axis.

Related literature

For the structures of zinc complexes with Schiff base ligands, see: Munro et al. (2009); Granifo et al. (2006). For a monoclinic polymorph of the title compound in the space group $P2_1/n$, see: Han et al. (2010). For bond lengths in related zinc complexes, see: Ali et al. (2008); Zhu (2008); Wang (2007).

Experimental

Crystal data $[ZnCl_2(C_{13}H_{20}N_2O_2)]$ $M_{\star} = 372.58$

Triclinic, P1 a = 6.491 (3) Å

	•		
metal	-organic	compounds	ò
		e o mp o amas	

Mo $K\alpha$ radiation

 $0.13 \times 0.10 \times 0.08 \ \text{mm}$

 $\mu = 1.65 \text{ mm}^{-1}$

T = 298 K

Z = 4

b = 12.351 (2) Å
c = 22.803 (3) Å
$\alpha = 90.707 \ (2)^{\circ}$
$\beta = 96.201 \ (2)^{\circ}$
$\gamma = 90.660 \ (2)^{\circ}$
$V = 1817.1 (9) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector	8230 measured reflections
diffractometer	5775 independent reflections
Absorption correction: multi-scan	4093 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2004)	$R_{\rm int} = 0.027$
$T_{\min} = 0.814, \ T_{\max} = 0.880$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	367 parameters
$wR(F^2) = 0.181$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
5775 reflections	$\Delta \rho_{\rm min} = -0.57 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Zn1-O1	1.995 (4)	Zn2-O3	1.994 (4)
Zn1-N1	2.061 (4)	Zn2-N3	2.095 (5)
Zn1-Cl2	2.3252 (18)	Zn2-Cl3	2.2994 (16)
Zn1-Cl1	2.3628 (17)	Zn2-Cl4	2.3575 (16)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4B\cdotsO1^{i}$	0.90	2.03	2.904 (6)	163
$N4-H4A\cdots Cl2^{i}$	0.90	2.73	3.466 (5)	140
$N2 - H2B \cdot \cdot \cdot Cl3$	0.90	2.74	3.484 (5)	140
$N2-H2A\cdots O3$	0.90	2.03	2.892 (6)	161

Symmetry code: (i) x, y - 1, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5230).

References

Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Granifo, J., Garland, M. T. & Baggio, R. (2006). Acta Cryst. C62, m56-m59.
- Han, Z.-Q., Wang, Y. & Han, S. (2010). Acta Cryst. E66, m469.
- Munro, O. Q., Gillham, K. & Akerman, M. P. (2009). Acta Cryst. C65, m317m320.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, S.-X. (2007). Acta Cryst. E63, m706-m707.
- Zhu, X.-W. (2008). Acta Cryst. E64, m1456-m1457.

supporting information

Acta Cryst. (2012). E68, m587 [doi:10.1107/S1600536812014341]

A triclinic polymorph of dichlorido(2-{[2-(isopropylammonio)ethyl]iminomethyl- κN }-5-methoxyphenolato- κO^1)zinc

Ai-Tian Pei

S1. Comment

The structures of zinc complexes with Schiff bases have received a great deal of attention (Munro *et al.*, 2009; Granifo *et al.*, 2006). The title compound was first reported in the monoclinic space group P2₁/n (Han *et al.*, 2010). The author reports here a triclinic modification, I, in the space group P -1 with an asymmetric unit that contains two independent mononuclear zinc complex molecules (Fig. 1). In each molecule the Zn atoms are coordinated in a bidentate fashion by phenolate O and imine N atoms of the Schiff base ligand. Two Cl⁻ anions complete the tetrahedral coordination sphere in each case. The Zn1–O1, 1.995 (4)Å, Zn2–O3, 1.994 (4) Å, Zn1–N1, 2.061 (3)Å, Zn2–N3, 2.095 (3)Å, Zn1–Cl1, 2.3268, Zn1–Cl2, 2.3252 (18), Zn2–Cl3 2.2994 (16) and Zn2 Cl4 2.3575 (16) bond distances in the two independent molecules are comparable to one another but are generally longer than those observed in the monoclinic polymorph. This has Zn–O, 1.9425 (19) Å, Zn–N, 1.997 (2) Zn–Cl1 2.2554 (10) and Zn–Cl2, 2.2290 (9)Å. The bond lengths in I are also longer than those reported in other zinc Schiff base complexes (Ali *et al.*, 2008; Zhu, 2008; Wang, 2007). These differences may be due to packing effects. In the crystal, molecules are linked through N—H···O and N—H···Cl hydrogen bonds (Table 2), to form chains along the *b* axis (Fig. 2).

S2. Experimental

4-Methoxysalicylaldehyde (0.1 mmol, 15.2 mg), *N*-isopropylethane-1,2-diamine (0.1 mmol, 10.2 mg), and zinc chloride (0.1 mmol, 13.7 mg) were dissolved in methanol (15 ml). The mixture was stirred at reflux for 30 min and cooled to room temperature. Small and colorless block-like single crystals were obtained by slow evaporation of the solution in air.

S3. Refinement

Hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å, N—H = 0.90 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

The molecular packing of the title compound, viewed down the *a* axis. Hydrogen bonds are drawn as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

dichlorido(2-{[2-(isopropylammonio)ethyl]iminomethyl- *kN*}-5-methoxyphenolato-*kO*¹)zinc

Crystal data	
$[ZnCl_2(C_{13}H_{20}N_2O_2)]$	Z = 4
$M_r = 372.58$	F(000) = 768
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.362 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.491 (3) Å	Cell parameters from 3080 reflections
b = 12.351 (2) Å	$\theta = 2.5 - 24.5^{\circ}$
c = 22.803 (3) Å	$\mu = 1.65 \text{ mm}^{-1}$
$\alpha = 90.707 \ (2)^{\circ}$	T = 298 K
$\beta = 96.201 \ (2)^{\circ}$	Block, colorless
$\gamma = 90.660 \ (2)^{\circ}$	$0.13 \times 0.10 \times 0.08 \text{ mm}$
V = 1817.1 (9) Å ³	

Data collection

Bruker SMART CCD area-detector	8230 measured reflections
diffractometer	5775 independent reflections
Radiation source: fine-focus sealed tube	4093 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.027$
ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(<i>SADABS</i> ; Sheldrick, 2004)	$k = -14 \rightarrow 14$
$T_{\min} = 0.814, T_{\max} = 0.880$	$l = -27 \rightarrow 24$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.181$	neighbouring sites
S = 1.08	H-atom parameters constrained
5775 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0975P)^2 + 0.557P]$
367 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.63$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.57$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.74321 (12)	0.83418 (5)	0.23642 (3)	0.0441 (2)	
C11	0.9409 (3)	0.81988 (11)	0.32920 (7)	0.0474 (4)	
C12	0.4987 (2)	0.97077 (12)	0.22753 (8)	0.0521 (4)	
01	0.9277 (7)	0.8554 (3)	0.17284 (19)	0.0498 (11)	
O2	1.4088 (9)	0.7419 (4)	0.0412 (2)	0.0766 (16)	
N1	0.6280 (7)	0.6838 (4)	0.2085 (2)	0.0397 (12)	
N2	0.5954 (8)	0.5896 (3)	0.3369 (2)	0.0392 (11)	
H2A	0.5568	0.5194	0.3339	0.047*	
H2B	0.7167	0.5959	0.3214	0.047*	
C1	0.8974 (9)	0.6630 (4)	0.1382 (3)	0.0423 (14)	
C2	0.9929 (9)	0.7736 (4)	0.1399 (2)	0.0396 (14)	
C3	1.1644 (10)	0.7914 (5)	0.1059 (3)	0.0481 (16)	
Н3	1.2275	0.8595	0.1070	0.058*	
C4	1.2390 (11)	0.7097 (5)	0.0713 (3)	0.0508 (16)	
C5	1.1530 (13)	0.6025 (6)	0.0688 (3)	0.065 (2)	
Н5	1.2054	0.5479	0.0465	0.078*	

C6	0.9840 (12)	0.5833 (5)	0.1021 (3)	0.063 (2)
H6	0.9252	0.5142	0.1003	0.076*
C7	0.7202 (10)	0.6298 (5)	0.1696 (3)	0.0448 (15)
H7	0.6669	0.5608	0.1604	0.054*
C8	0.4381 (10)	0.6345 (5)	0.2314 (3)	0.0523 (17)
H8A	0.4358	0.5571	0.2238	0.063*
H8B	0.3149	0.6645	0.2101	0.063*
С9	0.4320 (10)	0.6553 (5)	0.2982 (3)	0.0443 (15)
H9A	0.2951	0.6364	0.3086	0.053*
H9B	0.4555	0.7318	0.3067	0.053*
C10	0.6342 (12)	0.6199 (6)	0.4030 (3)	0.0606 (19)
H10	0.6890	0.6942	0.4057	0.073*
C11	0.8045 (14)	0.5466 (7)	0.4341 (4)	0.088 (3)
H11A	0.7653	0.4720	0.4274	0.131*
H11B	0.8198	0.5621	0.4758	0.131*
H11C	0.9336	0.5606	0.4185	0.131*
C12	0.4325 (15)	0.6195 (8)	0.4329 (4)	0.095 (3)
H12A	0.3364	0.6690	0.4131	0.142*
H12B	0.4624	0.6413	0.4735	0.142*
H12C	0.3728	0.5478	0.4306	0.142*
C13	1.4981 (15)	0.6614 (8)	0.0035 (4)	0.097 (3)
H13A	1.5361	0.5983	0.0262	0.146*
H13B	1.6189	0.6918	-0.0112	0.146*
H13C	1.3977	0.6416	-0.0290	0.146*
Zn2	0.75666 (12)	0.33416 (5)	0.26356(3)	0.0443 (2)
C13	1.0020 (2)	0.47085 (11)	0.27261 (8)	0.0523 (4)
Cl4	0.5584 (2)	0.31981 (11)	0.17081 (7)	0.0475 (4)
03	0.5732 (7)	0.3560 (3)	0.32735 (19)	0.0482 (11)
O4	0.0905 (9)	0.2412 (4)	0.4588 (2)	0.0797 (17)
N3	0.8731 (7)	0.1838 (3)	0.2917 (2)	0.0390 (12)
N4	0.9042 (8)	0.0893 (4)	0.1632 (2)	0.0422 (12)
H4A	0.7834	0.0954	0.1789	0.051*
H4B	0.9398	0.0191	0.1652	0.051*
C14	0.6016 (10)	0.1639 (5)	0.3615 (3)	0.0453 (15)
C15	0.5066 (9)	0.2740 (4)	0.3594 (3)	0.0415 (15)
C16	0.3387 (10)	0.2910 (5)	0.3940 (3)	0.0495 (16)
H16	0.2789	0.3591	0.3939	0.059*
C17	0.2592 (11)	0.2094 (5)	0.4285 (3)	0.0544 (18)
C18	0.3474 (12)	0.1040 (6)	0.4310 (3)	0.061 (2)
H18	0.2961	0.0503	0.4539	0.074*
C19	0.5152 (12)	0.0830 (5)	0.3975 (3)	0.063 (2)
H19	0.5722	0.0142	0.3989	0.075*
C20	0.7798 (10)	0.1295 (5)	0.3312 (3)	0.0454 (16)
H20	0.8328	0.0616	0.3409	0.054*
C21	1.0593 (10)	0.1347 (5)	0.2682 (3)	0.0521 (17)
H21A	1.0568	0.0572	0.2745	0.063*
H21B	1.1838	0.1641	0.2904	0.063*
C22	1.0700 (10)	0.1552 (5)	0.2021 (3)	0.0443 (15)

H22A	1.0505	0.2317	0.1945	0.053*	
H22B	1.2062	0.1360	0.1919	0.053*	
C23	0.8673 (12)	0.1201 (5)	0.0974 (3)	0.0581 (18)	
H23	0.8154	0.1943	0.0958	0.070*	
C24	0.6975 (15)	0.0471 (7)	0.0662 (4)	0.088 (3)	
H24A	0.7425	-0.0267	0.0676	0.132*	
H24B	0.6691	0.0685	0.0259	0.132*	
H24C	0.5740	0.0535	0.0856	0.132*	
C25	1.0646 (15)	0.1192 (8)	0.0672 (4)	0.092 (3)	
H25A	1.1609	0.1720	0.0858	0.138*	
H25B	1.0327	0.1364	0.0263	0.138*	
H25C	1.1251	0.0487	0.0705	0.138*	
C26	0.0028 (15)	0.1620 (7)	0.4963 (4)	0.093 (3)	
H26A	-0.0352	0.0973	0.4738	0.140*	
H26B	-0.1179	0.1915	0.5112	0.140*	
H26C	0.1036	0.1450	0.5288	0.140*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0476 (5)	0.0345 (4)	0.0517 (5)	-0.0044 (3)	0.0124 (4)	-0.0003 (3)
Cl1	0.0494 (10)	0.0459 (8)	0.0460 (9)	-0.0042 (7)	0.0015 (7)	0.0037 (6)
Cl2	0.0399 (10)	0.0434 (8)	0.0735 (11)	0.0052 (7)	0.0088 (8)	-0.0091 (7)
01	0.055 (3)	0.036 (2)	0.062 (3)	-0.0052 (19)	0.025 (2)	-0.0056 (19)
O2	0.091 (4)	0.074 (3)	0.073 (4)	0.014 (3)	0.045 (3)	0.006 (3)
N1	0.035 (3)	0.040 (3)	0.044 (3)	-0.003(2)	0.001 (2)	0.006 (2)
N2	0.041 (3)	0.037 (2)	0.040 (3)	-0.001 (2)	0.005 (2)	0.001 (2)
C1	0.038 (4)	0.042 (3)	0.046 (3)	0.000 (3)	0.000 (3)	0.000 (3)
C2	0.046 (4)	0.035 (3)	0.037 (3)	0.006 (3)	0.000 (3)	0.006 (2)
C3	0.048 (4)	0.046 (3)	0.052 (4)	0.002 (3)	0.011 (3)	0.008 (3)
C4	0.057 (5)	0.060 (4)	0.039 (4)	0.019 (3)	0.015 (3)	0.009 (3)
C5	0.079 (6)	0.055 (4)	0.066 (5)	0.008 (4)	0.028 (4)	-0.010 (3)
C6	0.075 (5)	0.044 (4)	0.071 (5)	-0.005 (3)	0.012 (4)	-0.013 (3)
C7	0.048 (4)	0.036 (3)	0.050 (4)	-0.007 (3)	0.004 (3)	-0.005 (3)
C8	0.050 (4)	0.057 (4)	0.049 (4)	-0.016 (3)	0.003 (3)	0.004 (3)
C9	0.035 (4)	0.042 (3)	0.057 (4)	0.001 (3)	0.010 (3)	0.007 (3)
C10	0.070 (5)	0.059 (4)	0.053 (4)	-0.011 (4)	0.011 (4)	-0.009 (3)
C11	0.092 (7)	0.110 (7)	0.058 (5)	0.004 (5)	-0.005 (5)	0.001 (5)
C12	0.092 (7)	0.123 (8)	0.073 (6)	-0.013 (6)	0.033 (5)	-0.025 (5)
C13	0.105 (8)	0.115 (7)	0.082 (7)	0.027 (6)	0.052 (6)	0.003 (5)
Zn2	0.0480 (5)	0.0349 (4)	0.0518 (5)	-0.0010 (3)	0.0141 (4)	-0.0034 (3)
C13	0.0424 (10)	0.0413 (8)	0.0741 (11)	-0.0101 (7)	0.0106 (8)	0.0054 (7)
Cl4	0.0507 (10)	0.0458 (8)	0.0448 (9)	0.0017 (7)	0.0011 (7)	-0.0079 (6)
O3	0.054 (3)	0.034 (2)	0.060 (3)	-0.0038 (19)	0.024 (2)	-0.0033 (19)
O4	0.092 (4)	0.076 (3)	0.079 (4)	-0.016 (3)	0.049 (3)	-0.009 (3)
N3	0.034 (3)	0.036 (2)	0.045 (3)	0.005 (2)	0.000(2)	-0.006 (2)
N4	0.051 (3)	0.037 (2)	0.040 (3)	-0.004 (2)	0.010(2)	-0.004 (2)
C14	0.043 (4)	0.047 (3)	0.046 (4)	-0.004 (3)	0.007 (3)	-0.004 (3)

C15	0.036 (4)	0.045 (3)	0.043 (3)	-0.007 (3)	0.003 (3)	-0.014 (3)
C16	0.050 (4)	0.046 (3)	0.053 (4)	-0.001 (3)	0.007 (3)	-0.010 (3)
C17	0.065 (5)	0.052 (4)	0.048 (4)	-0.017 (3)	0.012 (3)	-0.007 (3)
C18	0.070 (5)	0.063 (4)	0.055 (4)	-0.016 (4)	0.023 (4)	0.006 (3)
C19	0.073 (5)	0.046 (4)	0.070 (5)	-0.004(3)	0.008 (4)	0.010 (3)
C20	0.051 (4)	0.038 (3)	0.046 (4)	0.001 (3)	0.000 (3)	-0.004 (3)
C21	0.043 (4)	0.058 (4)	0.053 (4)	-0.002 (3)	0.001 (3)	-0.019 (3)
C22	0.037 (4)	0.040 (3)	0.058 (4)	0.000 (3)	0.013 (3)	-0.004(3)
C23	0.073 (5)	0.047 (4)	0.054 (4)	0.003 (3)	0.003 (4)	0.005 (3)
C24	0.103 (7)	0.101 (6)	0.057 (5)	-0.015 (5)	-0.006(5)	-0.009(4)
C25	0.096 (7)	0.123 (8)	0.061 (5)	0.000 (6)	0.025 (5)	0.012 (5)
C26	0.096 (8)	0.101 (7)	0.088 (7)	-0.029 (6)	0.044 (6)	0.000 (5)

Geometric parameters (Å, °)

Zn1—O1	1.995 (4)	Zn2—O3	1.994 (4)
Zn1—N1	2.061 (4)	Zn2—N3	2.095 (5)
Zn1—Cl2	2.3252 (18)	Zn2—Cl3	2.2994 (16)
Zn1—Cl1	2.3628 (17)	Zn2—Cl4	2.3575 (16)
O1—C2	1.351 (6)	O3—C15	1.350 (7)
O2—C4	1.416 (8)	O4—C17	1.414 (8)
O2—C13	1.471 (9)	O4—C26	1.458 (8)
N1—C7	1.304 (7)	N3—C20	1.323 (7)
N1—C8	1.514 (7)	N3—C21	1.505 (8)
N2-C10	1.543 (8)	N4—C22	1.537 (7)
N2—C9	1.547 (7)	N4—C23	1.548 (8)
N2—H2A	0.9000	N4—H4A	0.9000
N2—H2B	0.8999	N4—H4B	0.9000
C1—C6	1.433 (9)	C14—C19	1.448 (9)
C1—C7	1.475 (8)	C14—C20	1.474 (9)
C1-C2	1.492 (7)	C14—C15	1.498 (8)
С2—С3	1.440 (8)	C15—C16	1.430 (8)
C3—C4	1.395 (8)	C16—C17	1.412 (9)
С3—Н3	0.9300	C16—H16	0.9300
C4—C5	1.429 (9)	C17—C18	1.428 (10)
C5—C6	1.419 (10)	C18—C19	1.420 (10)
С5—Н5	0.9300	C18—H18	0.9300
С6—Н6	0.9300	C19—H19	0.9300
С7—Н7	0.9300	C20—H20	0.9300
С8—С9	1.546 (9)	C21—C22	1.540 (9)
C8—H8A	0.9700	C21—H21A	0.9700
C8—H8B	0.9700	C21—H21B	0.9700
С9—Н9А	0.9700	C22—H22A	0.9700
С9—Н9В	0.9700	C22—H22B	0.9700
C10-C12	1.539 (11)	C23—C25	1.518 (11)
C10-C11	1.553 (11)	C23—C24	1.524 (10)
С10—Н10	0.9800	С23—Н23	0.9800
C11—H11A	0.9600	C24—H24A	0.9600

0.9600	C24—H24B	0.9600
0.9600	C24—H24C	0.9600
0.9600	С25—Н25А	0.9600
0.9600	С25—Н25В	0.9600
0.9600	С25—Н25С	0.9600
0.9600	C26—H26A	0.9600
0.9600	С26—Н26В	0.9600
0.9600	C26—H26C	0.9600
96.96 (18)	O3—Zn2—N3	96.87 (18)
107.23 (13)	O3—Zn2—Cl3	107.48 (12)
114.06 (15)	N3—Zn2—Cl3	113.43 (14)
110.63 (14)	O3—Zn2—Cl4	110.55 (14)
109.73 (14)	N3—Zn2—Cl4	111.53 (13)
116.43 (6)	Cl3—Zn2—Cl4	115.33 (6)
123.6 (3)	C15—O3—Zn2	123.1 (3)
118.2 (6)	C17—O4—C26	118.0 (6)
118.9 (5)	C20—N3—C21	118.6 (5)
119.1 (4)	C20—N3—Zn2	119.2 (4)
122.0 (4)	C_{21} N_{3} Z_{n2}	122.2 (4)
117.6 (5)	C22 - N4 - C23	116.8 (4)
107.9	C22—N4—H4A	108.1
107.8	C23—N4—H4A	108.2
107.9	C_{22} N4—H4B	108.1
107.9	C23—N4—H4B	108.1
107.2	H4A—N4—H4B	107.3
117.8 (5)	C19—C14—C20	115.8 (6)
116.7 (6)	C19—C14—C15	117.8 (6)
125.5 (5)	C20—C14—C15	126.3 (5)
119.7 (5)	O3—C15—C16	119.6 (5)
122.5 (5)	03-C15-C14	123.4 (5)
117.8 (5)	C16—C15—C14	117.0 (5)
122.1 (6)	C17—C16—C15	123.2 (6)
118.9	C17—C16—H16	118.4
118.9	C15—C16—H16	118.4
114.2 (6)	C16—C17—O4	114.8 (6)
121.9 (6)	C16—C17—C18	120.7 (6)
123.9 (6)	O4—C17—C18	124.5 (6)
116.9 (6)	C19—C18—C17	118.4 (6)
121.6	C19—C18—H18	120.8
121.6	C17—C18—H18	120.8
124.6 (6)	C18—C19—C14	122.9 (6)
117.7	С18—С19—Н19	118.5
117.7	С14—С19—Н19	118.5
129.1 (5)	N3—C20—C14	127.6 (6)
115.5	N3—C20—H20	116.2
115.5	С14—С20—Н20	116.2
112.8 (5)	N3—C21—C22	113.5 (5)
	0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 96.96 (18) 107.23 (13) 114.06 (15) 110.63 (14) 109.73 (14) 116.43 (6) 123.6 (3) 118.2 (6) 118.9 (5) 119.1 (4) 122.0 (4) 117.6 (5) 107.9 107.8 107.9 107.2 117.8 (5) 116.7 (6) 125.5 (5) 119.7 (5) 122.5 (5) 117.8 (5) 122.1 (6) 118.9 118.9 114.2 (6) 122.1 (6) 118.9 114.2 (6) 123.9 (6) 123.9 (6) 121.6 121.6 124.6 (6) 117.7 117.7 129.1 (5) 115.5 112.8 (5)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

N1—C8—H8A	109.0	N3—C21—H21A	108.9
С9—С8—Н8А	109.0	C22—C21—H21A	108.9
N1—C8—H8B	109.0	N3—C21—H21B	108.9
C9—C8—H8B	109.0	C22—C21—H21B	108.9
H8A—C8—H8B	107.8	H21A—C21—H21B	107.7
C8—C9—N2	112.9 (5)	N4—C22—C21	111.8 (5)
С8—С9—Н9А	109.0	N4—C22—H22A	109.3
N2—C9—H9A	109.0	C21—C22—H22A	109.3
C8—C9—H9B	109.0	N4—C22—H22B	109.3
N2—C9—H9B	109.0	C21—C22—H22B	109.3
H9A—C9—H9B	107.8	H22A—C22—H22B	107.9
C12—C10—N2	112.0 (6)	C25—C23—C24	112.7 (6)
C12—C10—C11	113.4 (7)	C25—C23—N4	112.8 (6)
N2-C10-C11	110.1 (6)	C24—C23—N4	109.3 (6)
C12—C10—H10	107.0	С25—С23—Н23	107.3
N2-C10-H10	107.0	C24—C23—H23	107.3
C11—C10—H10	107.0	N4—C23—H23	107.3
C10-C11-H11A	109.5	C23—C24—H24A	109.5
C10—C11—H11B	109.5	C23—C24—H24B	109.5
H11A—C11—H11B	109.5	H24A—C24—H24B	109.5
C10-C11-H11C	109.5	C23—C24—H24C	109.5
H11A—C11—H11C	109.5	H24A—C24—H24C	109.5
H11B—C11—H11C	109.5	H24B—C24—H24C	109.5
C10-C12-H12A	109.5	С23—С25—Н25А	109.5
C10—C12—H12B	109.5	С23—С25—Н25В	109.5
H12A—C12—H12B	109.5	H25A—C25—H25B	109.5
C10-C12-H12C	109.5	С23—С25—Н25С	109.5
H12A—C12—H12C	109.5	H25A—C25—H25C	109.5
H12B—C12—H12C	109.5	H25B—C25—H25C	109.5
O2—C13—H13A	109.5	O4—C26—H26A	109.5
O2—C13—H13B	109.5	O4—C26—H26B	109.5
H13A—C13—H13B	109.5	H26A—C26—H26B	109.5
O2—C13—H13C	109.5	O4—C26—H26C	109.5
H13A—C13—H13C	109.5	H26A—C26—H26C	109.5
H13B—C13—H13C	109.5	H26B—C26—H26C	109.5

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N4—H4 <i>B</i> ···O1 ⁱ	0.90	2.03	2.904 (6)	163
N4—H4A····Cl2 ⁱ	0.90	2.73	3.466 (5)	140
N2—H2 <i>B</i> ···Cl3	0.90	2.74	3.484 (5)	140
N2—H2A···O3	0.90	2.03	2.892 (6)	161

Symmetry code: (i) x, y-1, z.