

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[aqua(μ_3 -5-azaniumylisophthalato)-(μ -oxalato)neodymium(III)]

Xia Yin, Tian-Tian Xiao, Jun Fan,* Sheng-Run Zheng and Wei-Guang Zhang

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: fanj@scnu.edu.cn

Received 27 March 2012; accepted 28 March 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.024; wR factor = 0.056; data-to-parameter ratio = 11.0.

The title compound, $[Nd(C_8H_6NO_4)(C_2O_4)(H_2O)]_n$, is a layerlike coordination polymer. The Nd^{III} ion is coordinated by four carboxylate O atoms from three bridging 5-azaniumylisophthalate (Haip) ligands, four carboxylate O atoms from two oxalate (ox) anions and one ligated water molecule in a tricapped trigonal-prismatic geometry. The Haip anion acts as a μ_3 -bridge, connecting three Nd^{III} ions through two carboxylate groups; the ox anion adopts a bis-bidentatebridging mode, linking two Nd^{III} ions. The layer framework is further extended to a three-dimensional supramolecular structure through N-H···O and O-H···O hydrogen bonds.

Related literature

For isotypic complexes, see: Liu et al. (2008); Yan et al. (2009).

V = 2325.0 (9) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.22 \times 0.15 \text{ mm}$

5839 measured reflections

2104 independent reflections

1792 reflections with $I > 2\sigma(I)$

 $\mu = 4.52 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.033$

Z = 8

Experimental

Crystal data

 $[Nd(C_8H_6NO_4)(C_2O_4)(H_2O)]$ $M_r = 430.41$ Monoclinic, C2/c a = 20.047 (4) Å b = 9.592 (2) Å c = 13.670 (3) Å $\beta = 117.810$ (2)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\rm min} = 0.364, T_{\rm max} = 0.551$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	191 parameters
$wR(F^2) = 0.056$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.71 \text{ e } \text{\AA}^{-3}$
2104 reflections	$\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

			0	
Hydrog	en-bond	geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdot \cdot \cdot O5^{i}$	0.89	1.91	2.795 (5)	172
$N1 - H1C \cdots O8^{ii}$	0.89	2.05	2.872 (5)	154
$O1W - H1W \cdot \cdot \cdot O3^{iii}$	0.82	2.06	2.812 (4)	153
$O1W - H2W \cdots O1^{iv}$	0.82	1.97	2.750 (4)	159

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x, y + 1, -z + \frac{1}{2}$; (iii) $-x, y - 1, -z + \frac{1}{2}$; (iv) $-x, y, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the National Natural Science Foundation of China (grant Nos. 21171059 and 21003053) and Guangdong Science and Technology Department (grant Nos. 2010B090300031 and 2011B010400023).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5259).

References

Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Liu, C. B., Wen, H. L., Tan, S. S. & Yi, X. G. (2008). J. Mol. Struct. 879, 25–29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yan, L.-S., Huang, D.-H. & Liu, C.-B. (2009). Acta Cryst. E65, m750.

supporting information

Acta Cryst. (2012). E68, m537 [doi:10.1107/S1600536812013554]

Poly[aqua(μ_3 -5-azaniumylisophthalato)(μ -oxalato)neodymium(III)]

Xia Yin, Tian-Tian Xiao, Jun Fan, Sheng-Run Zheng and Wei-Guang Zhang

S1. Comment

The 5-aminoisophthalate (aip) anion adopts various coordination modes in lanthanide complexes. In this work, we present the synthesis and structure of a new neodymium coordination polymer with 5-aminoisophthalate and oxalate, $[Nd(Haip)(ox)(H_2O)]$, which is isostructural with those reported previously (Liu *et al.*, 2008; Yan *et al.*, 2009).

In the title compound, the asymmetric unit comprises one Nd^{III} ion, one Haip ligand, one oxalate anion and one ligated water molecule (Fig. 1). The neodymium ion is nine-coordinated by four carboxylate O atoms [O1, O2, O3ⁱ, and O4ⁱⁱ, symmetry codes: (i) -*x*, 1 - *y*, -*z*; (ii) *x*, -1 + y, *z*] from three Haip ligands, four carboxylate O atoms [O5, O6, O7ⁱⁱⁱ, and O8ⁱⁱⁱ, symmetry codes: (iii) 1/2 - x, 1/2 + y, 1/2 - z] from two oxalate ions and one coordinated water molecule. The geometry is a tricapped trigonal prism configuration (Fig. 2). The Nd—O bond distances are in the range of 2.417 (3)–2.603 (3) Å.

The Haip anion acts as μ_3 -bridge to connect three Nd^{III} ions through two carboxylate groups and the amino group exists as an $-NH_3^+$ unit. The oxalate anion adopts a bis-bidenatate-bridging mode to link two Nd^{III} ions with a Nd···Nd separation of 6.3821 (10) Å. The coordination of the metal ions and organic ligands (Haip and ox) results in the formation of a layer-like framework in the *ab* plane (Fig. 3).

In addition, there are O–H···O [O···O distances, 2.750 (4) and 2.812 (4) Å] and N–H···O hydrogen bonds (Table 1). The layers are further linked *via* these hydrogen bonds to form a three-dimensional supramolecular architecture (Fig. 4).

S2. Experimental

A mixture of 5-aminoisophthalic acid (0.50 mmol, 90.6 mg), Nd(NO₃)₃.6H₂O (0.30 mmol, 131.5 mg,) oxalic acid (0.50 mmol, 45.0 mg) and 10 ml H₂O was sealed in a 15 ml Teflon-lined stainless steel reactor and heated at 423 K under autogenous pressure for 72 h. After the sample had been slowly cooled to room temperature at a rate of 5 K/h, block-shaped pale-purple crystals were isolated (yield 52%). IR (KBr pellet, $v \text{ cm}^{-1}$): 3423 (*m*), 1631 (*s*), 1570 (*s*), 1466 (*m*), 1394 (*s*), 1326 (*m*), 1116 (*m*), 914 (*w*), 769 (*s*), 596 (*m*).

S3. Refinement

The H atoms of water molecule were located in a difference Fourier maps and the others were placed in calculated positions and refined as riding atoms with isotropic thermal factors [C–H = 0.93 (aromatic C–H) Å; N–H = 0.89 Å; O–H = 0.83 Å; $U_{iso}(H) = 1.2 U_{eq}(C)$, $U_{iso}(H) = 1.5U_{eq}(N)$, and $U_{iso}(H) = 1.5U_{eq}(O)$].

Figure 1

A fragment of the polymeric structure, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -*x*, 1 - *y*, -*z*; (ii) *x*, -1 + *y*, *z*; (iii) 1/2 - x, 1/2 + y, 1/2 - z].

Figure 2

Geometry of the nine-coordinated Nd^{III} ion in the title compound.

Figure 3

A packing diagram of the title compound, showing a layer-like structure in the *ab* plane.

Figure 4

A packing diagram, showing a three-dimensional supramolecular network driven by hydrogen bonds (dashed lines).

Poly[aqua(μ_3 -5-azaniumylisophthalato)(μ -oxalato)neodymium(III)]

F(000) = 1656
$D_{\rm x} = 2.459 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2699 reflections
$\theta = 2.3 - 28.1^{\circ}$
$\mu = 4.52 \text{ mm}^{-1}$
T = 298 K
Block, pale-purple
$0.28 \times 0.22 \times 0.15 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2002) $T_{\min} = 0.364, T_{\max} = 0.551$ Refinement	5839 measured reflections 2104 independent reflections 1792 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.3^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -24 \rightarrow 23$ $k = -6 \rightarrow 11$ $l = -16 \rightarrow 15$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.056$	neighbouring sites
S = 1.03	H-atom parameters constrained
2104 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0254P)^2]$
191 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.71 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.53 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* sat to go for estimating *E*². The threshold current of $F^2 > \tau(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.0410 (3)	0.3120 (5)	0.1508 (3)	0.0193 (10)	
C2	-0.0121 (3)	0.4328 (4)	0.1225 (4)	0.0191 (10)	
C3	-0.0873 (3)	0.4068 (5)	0.0894 (3)	0.0202 (10)	
H3	-0.1043	0.3155	0.0846	0.024*	
C4	-0.1372 (2)	0.5164 (4)	0.0632 (3)	0.0172 (10)	
C5	-0.1136 (2)	0.6520 (4)	0.0653 (3)	0.0184 (10)	
Н5	-0.1480	0.7249	0.0465	0.022*	
C6	-0.0386 (2)	0.6794 (4)	0.0956 (3)	0.0154 (9)	
C7	0.0131 (2)	0.5702 (4)	0.1271 (3)	0.0181 (10)	
H7	0.0639	0.5882	0.1511	0.022*	
C8	-0.0168 (3)	0.8255 (5)	0.0841 (4)	0.0200 (10)	
C9	0.2271 (2)	-0.2176 (5)	0.1774 (4)	0.0180 (10)	
C10	0.2346 (2)	-0.2223 (5)	0.2950 (4)	0.0191 (10)	
N1	-0.2164 (2)	0.4895 (4)	0.0294 (3)	0.0238 (9)	
H1A	-0.2248	0.3981	0.0228	0.036*	
H1B	-0.2448	0.5306	-0.0353	0.036*	

H1C	-0.2282	0.5235	0.0800	0.036*
Nd1	0.131834 (12)	0.06274 (2)	0.184227 (18)	0.01456 (9)
O1	0.01407 (17)	0.1908 (3)	0.1433 (3)	0.0254 (7)
O2	0.10891 (17)	0.3304 (3)	0.1781 (2)	0.0278 (8)
O3	-0.06874 (17)	0.9033 (3)	0.0145 (2)	0.0203 (7)
O4	0.05001 (17)	0.8623 (3)	0.1427 (3)	0.0258 (8)
O5	0.20791 (17)	-0.1221 (3)	0.3242 (2)	0.0232 (7)
O6	0.19047 (18)	-0.1178 (3)	0.1175 (2)	0.0240 (7)
07	0.25959 (17)	-0.3114 (3)	0.1530 (2)	0.0264 (8)
O8	0.26728 (17)	-0.3267 (3)	0.3532 (2)	0.0235 (7)
O1W	0.10490 (18)	0.0638 (3)	0.3446 (3)	0.0276 (8)
H1W	0.1092	0.0089	0.3930	0.041*
H2W	0.0717	0.1186	0.3396	0.041*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.026 (3)	0.018 (3)	0.015 (2)	0.004 (2)	0.011 (2)	0.0035 (19)
C2	0.023 (2)	0.017 (3)	0.019 (2)	0.008 (2)	0.010 (2)	0.0066 (19)
C3	0.025 (3)	0.018 (3)	0.018 (2)	-0.0024 (19)	0.011 (2)	0.0026 (19)
C4	0.019 (2)	0.015 (2)	0.016 (2)	-0.0019 (19)	0.0066 (19)	-0.0008 (19)
C5	0.018 (2)	0.014 (2)	0.022 (2)	0.0044 (18)	0.008 (2)	0.0010 (19)
C6	0.015 (2)	0.015 (2)	0.017 (2)	-0.0006 (18)	0.0076 (19)	0.0005 (19)
C7	0.014 (2)	0.021 (3)	0.018 (2)	0.0002 (19)	0.0065 (19)	-0.0005 (19)
C8	0.025 (3)	0.017 (3)	0.021 (2)	-0.002 (2)	0.014 (2)	-0.002 (2)
C9	0.010 (2)	0.018 (3)	0.023 (2)	-0.0036 (18)	0.007 (2)	-0.006(2)
C10	0.016 (2)	0.019 (3)	0.023 (2)	-0.0017 (19)	0.010 (2)	0.002 (2)
N1	0.023 (2)	0.018 (2)	0.028 (2)	-0.0009 (17)	0.0108 (18)	-0.0036 (17)
Nd1	0.01452 (14)	0.01069 (14)	0.01771 (14)	0.00055 (10)	0.00688 (10)	0.00072 (10)
01	0.0239 (18)	0.0142 (18)	0.040 (2)	0.0040 (14)	0.0170 (16)	0.0043 (15)
02	0.0174 (18)	0.0239 (19)	0.039 (2)	0.0046 (14)	0.0104 (15)	0.0028 (15)
03	0.0251 (18)	0.0131 (17)	0.0175 (16)	0.0024 (13)	0.0055 (14)	0.0022 (13)
04	0.0208 (18)	0.0158 (18)	0.0324 (18)	-0.0050 (14)	0.0054 (15)	0.0014 (14)
05	0.0280 (19)	0.0191 (17)	0.0234 (17)	0.0092 (14)	0.0128 (15)	-0.0022 (14)
O6	0.0337 (19)	0.0192 (18)	0.0240 (18)	0.0091 (15)	0.0175 (16)	0.0057 (14)
07	0.0238 (18)	0.027 (2)	0.0259 (17)	0.0093 (15)	0.0096 (15)	-0.0052 (15)
08	0.0238 (18)	0.0200 (19)	0.0296 (18)	0.0066 (14)	0.0149 (15)	0.0089 (14)
O1W	0.0317 (19)	0.028 (2)	0.0304 (19)	0.0082 (15)	0.0204 (16)	0.0084 (14)

Geometric parameters (Å, °)

C1—O2	1.245 (5)	C9—C10	1.544 (6)
C101	1.265 (5)	C10—O5	1.253 (5)
C1—C2	1.498 (6)	C10—O8	1.256 (5)
C2—C3	1.379 (6)	N1—H1A	0.8900
C2—C7	1.402 (6)	N1—H1B	0.8900
C3—C4	1.379 (6)	N1—H1C	0.8900
С3—Н3	0.9300	Nd1—O4 ⁱ	2.417 (3)

C4—C5	1.380 (6)	Nd1—O3 ⁱⁱ	2.425 (3)
C4—N1	1.454 (5)	Nd1—O1	2.482 (3)
C5—C6	1.387 (6)	Nd1—O1W	2.491 (3)
С5—Н5	0.9300	Nd1—O6	2.492 (3)
C6—C7	1.392 (6)	Nd1—O5	2.532 (3)
C6—C8	1.497 (6)	Nd1—O8 ⁱⁱⁱ	2.538 (3)
С7—Н7	0.9300	Nd1—O7 ⁱⁱⁱ	2.575 (3)
C8—O4	1.248 (5)	Nd1—02	2.603 (3)
C8-03	1.274 (5)	O1W—H1W	0.8182
C9—O7	1.244 (5)	O1W—H2W	0.8249
C9	1 252 (5)		0.0219
6, 00	1.252 (5)		
O2—C1—O1	121.3 (4)	O4 ⁱ —Nd1—O6	75.26 (11)
O2—C1—C2	120.9 (4)	O3 ⁱⁱ —Nd1—O6	76.82 (10)
O1—C1—C2	117.7 (4)	O1—Nd1—O6	145.34 (10)
$C_{3}-C_{2}-C_{7}$	120.1 (4)	01W - Nd1 - 06	131.15 (10)
C_{3} C_{2} C_{1}	1187(4)	$O4^{i}$ Nd1 $O5$	73 98 (10)
C_{7} C_{2} C_{1}	121 2 (4)	03^{ii} Nd1 05	139 16 (10)
$C_4 - C_3 - C_2$	119 8 (4)	01—Nd1— 05	133.70(10)
$C_{4} = C_{3} = H_{3}$	120.1	01W Nd1 05	68 83 (10)
C2_C3_H3	120.1	06 Nd1 05	64 51 (9)
$C_{2} = C_{3} = C_{4} = C_{5}$	120.1 120.9(4)	04^{i} Nd1 03^{iii}	143.36(10)
$C_3 = C_4 = C_3$	120.9(4)	O_{3}^{ii} Nd1 O_{3}^{iii}	76.48(10)
$C_5 = C_4 = N_1$	120.0(4)	$01 \text{Nd} 03^{\text{iii}}$	120.75(10)
C_{3} C_{4} C_{5} C_{6}	119.1(4) 110.0(4)	$O1W$ Nd1 $O8^{iii}$	120.73(10) 134.10(10)
C4 = C5 = U5	119.9 (4)	Of Md1 = O8	134.10(10)
C4 - C5 - H5	120.0	00 Nd1 00	70.13(10)
C6-C3-H3	120.0	04 Null 07	100.92(10)
C_{2}	119.7 (4)	$04^{$	141.60 (10)
C_{3}	118.4 (4)	03^{-1} Nd1- 07^{-1}	133.95 (10)
C/C6C8	121.7 (4)		107.11 (10)
C6-C/-C2	119.5 (4)	Olw—Ndl—O/m	71.34 (10)
С6—С/—Н/	120.2	06—Ndl—O ⁷ ^m	106.82 (10)
С2—С/—Н7	120.2	05—Nd1—07 ^{mi}	72.95 (10)
04—C8—O3	124.9 (4)	08 ^m —Nd1—07 ^m	63.03 (10)
04—C8—C6	118.4 (4)	O4 ¹ —Nd1—O2	133.39 (10)
O3—C8—C6	116.7 (4)	O3 ⁿ —Nd1—O2	80.76 (9)
07—C9—O6	126.7 (4)	O1—Nd1—O2	50.92 (10)
O7—C9—C10	116.8 (4)	O1W—Nd1—O2	85.21 (10)
O6—C9—C10	116.5 (4)	O6—Nd1—O2	141.25 (10)
O5—C10—O8	125.7 (4)	O5—Nd1—O2	138.60 (9)
O5—C10—C9	117.5 (4)	O8 ⁱⁱⁱ —Nd1—O2	74.13 (10)
O8—C10—C9	116.8 (4)	O7 ⁱⁱⁱ —Nd1—O2	68.31 (10)
C4—N1—H1A	109.5	C1—O1—Nd1	96.4 (3)
C4—N1—H1B	109.5	C1—O2—Nd1	91.2 (3)
H1A—N1—H1B	109.5	C8—O3—Nd1 ⁱⁱ	137.1 (3)
C4—N1—H1C	109.5	$C8$ — $O4$ — $Nd1^{iv}$	141.5 (3)
H1A—N1—H1C	109.5	C10—O5—Nd1	119.5 (3)
H1B—N1—H1C	109.5	C9—O6—Nd1	121.7 (3)

O4 ⁱ —Nd1—O3 ⁱⁱ	84.35 (10)	C9—O7—Nd1 ^v	116.4 (3)
O4 ⁱ —Nd1—O1	82.57 (10)	C10-08-Nd1 ^v	115.8 (3)
O3 ⁱⁱ —Nd1—O1	74.75 (10)	Nd1—O1W—H1W	136.4
O4 ⁱ —Nd1—O1W	78.94 (10)	Nd1—O1W—H2W	115.3
O3 ⁱⁱ —Nd1—O1W	140.51 (11)	H1W—O1W—H2W	104.8
O1—Nd1—O1W	67.81 (10)		
O2—C1—C2—C3	178.0 (4)	O4 ⁱ —Nd1—O2—C1	2.9 (3)
O1—C1—C2—C3	-0.4 (6)	O3 ⁱⁱ —Nd1—O2—C1	76.0 (3)
O2—C1—C2—C7	-0.7 (7)	O1—Nd1—O2—C1	-1.9 (2)
O1—C1—C2—C7	-179.0 (4)	O1W—Nd1—O2—C1	-67.0 (3)
C7—C2—C3—C4	-1.5 (7)	O6—Nd1—O2—C1	131.1 (3)
C1—C2—C3—C4	179.8 (4)	O5—Nd1—O2—C1	-117.0 (3)
C2—C3—C4—C5	2.7 (7)	O8 ⁱⁱⁱ —Nd1—O2—C1	154.4 (3)
C2-C3-C4-N1	-179.3 (4)	O7 ⁱⁱⁱ —Nd1—O2—C1	-138.8 (3)
C3—C4—C5—C6	-1.0 (6)	O4—C8—O3—Nd1 ⁱⁱ	100.8 (5)
N1-C4-C5-C6	-178.9 (4)	C6—C8—O3—Nd1 ⁱⁱ	-79.5 (5)
C4—C5—C6—C7	-2.1 (6)	O3-C8-O4-Nd1 ^{iv}	2.2 (8)
C4—C5—C6—C8	172.9 (4)	C6-C8-O4-Nd1 ^{iv}	-177.5 (3)
C5—C6—C7—C2	3.3 (6)	O8—C10—O5—Nd1	-173.2 (3)
C8—C6—C7—C2	-171.5 (4)	C9-C10-O5-Nd1	7.0 (5)
C3—C2—C7—C6	-1.5 (7)	O4 ⁱ -Nd1-O5-C10	75.8 (3)
C1—C2—C7—C6	177.2 (4)	O3 ⁱⁱ —Nd1—O5—C10	15.1 (4)
C5—C6—C8—O4	156.3 (4)	O1—Nd1—O5—C10	138.4 (3)
C7—C6—C8—O4	-28.9 (6)	O1W-Nd1-O5-C10	159.9 (3)
C5—C6—C8—O3	-23.5 (6)	O6—Nd1—O5—C10	-5.2 (3)
C7—C6—C8—O3	151.4 (4)	O8 ⁱⁱⁱ —Nd1—O5—C10	-66.8 (3)
O7—C9—C10—O5	173.9 (4)	O7 ⁱⁱⁱ —Nd1—O5—C10	-124.0 (3)
O6—C9—C10—O5	-4.4 (6)	O2-Nd1-O5-C10	-145.2 (3)
O7—C9—C10—O8	-6.0 (6)	O7—C9—O6—Nd1	-178.6 (3)
O6—C9—C10—O8	175.8 (4)	C10-C9-O6-Nd1	-0.6 (5)
O2—C1—O1—Nd1	-3.5 (4)	O4 ⁱ —Nd1—O6—C9	-76.3 (3)
C2-C1-O1-Nd1	174.9 (3)	O3 ⁱⁱ —Nd1—O6—C9	-163.8 (3)
O4 ⁱ —Nd1—O1—C1	-174.7 (3)	O1—Nd1—O6—C9	-128.3 (3)
O3 ⁱⁱ —Nd1—O1—C1	-88.6 (3)	O1W—Nd1—O6—C9	-15.8 (4)
O1W—Nd1—O1—C1	104.3 (3)	O5—Nd1—O6—C9	2.7 (3)
O6—Nd1—O1—C1	-124.5 (3)	O8 ⁱⁱⁱ —Nd1—O6—C9	116.0 (3)
O5—Nd1—O1—C1	125.9 (2)	O7 ⁱⁱⁱ —Nd1—O6—C9	63.8 (3)
O8 ⁱⁱⁱ —Nd1—O1—C1	-24.9 (3)	O2—Nd1—O6—C9	139.9 (3)
O7 ⁱⁱⁱ —Nd1—O1—C1	43.4 (3)	O6—C9—O7—Nd1 ^v	156.9 (4)
O2—Nd1—O1—C1	1.8 (2)	C10—C9—O7—Nd1 ^v	-21.2 (5)
O1—C1—O2—Nd1	3.3 (4)	O5—C10—O8—Nd1 ^v	-149.6 (4)
C2-C1-O2-Nd1	-175.0 (4)	C9-C10-O8-Nd1 ^v	30.3 (5)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, -*y*+1, -*z*; (iii) -*x*+1/2, *y*+1/2, -*z*+1/2; (iv) *x*, *y*+1, *z*; (v) -*x*+1/2, *y*-1/2, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

-

Symmetry codes: (vi) x-1/2, -y+1/2, z-1/2; (vii) -x, y+1, -z+1/2; (viii) -x, y-1, -z+1/2; (ix) -x, y, -z+1/2.