metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[tetraaquacopper(II)]- μ -4,4'-bipyridyl- $\kappa^2 N:N'$] tetrafluoridosuccinate tetrahydrate]

Guo-Jun Yu, Lan-Ping Xu, Lan Qin and Lei Han*

Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China Correspondence e-mail: hanlei@nbu.edu.cn

Received 22 March 2012; accepted 5 April 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.085; data-to-parameter ratio = 16.6.

In the title compound, $\{[Cu(C_{10}H_8N_2)(H_2O)_4](C_4F_4O_4).4H_2O\}_n$, the Cu^{II} atom adopts an elongated octahedral geometry because of the Jahn–Teller effect. Both cation and anion have crystallographic twofold rotation symmetry with the twofold axes passing through the Cu and N atoms and through the midpoint of the central C–C bond. The 4,4′-bipyridyl ligand links the Cu^{II} atoms into a linear chain along the *b* axis. O–H···O hydrogen-bonding interactions between the cationic chains and the tetrafluoridosuccinate anions and the free water molecules generate a three-dimensional supramolecular network.

Related literature

For background to metal-organic framework structures, see: Allendorf *et al.* (2009). For the construction of hybrid frameworks with perfluorinated ligands, see: Yang *et al.* (2007); Hulvey *et al.* (2009).

Crystal data

 $[Cu(C_{10}H_8N_2)(H_2O)_4](C_4F_4O_4)-4H_2O$ $M_r = 551.89$ Monoclinic, C2/c a = 17.112 (3) Å b = 11.135 (2) Å c = 12.126 (2) Å

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.650, T_{max} = 0.900$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ wR(F²) = 0.085 S = 1.28 2546 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O6-H11···O4 ⁱ	0.82	2.01	2.826 (3)	172
$O6-H12 \cdot \cdot \cdot O3^{ii}$	0.82	2.07	2.879 (3)	168
$O5-H10 \cdot \cdot \cdot O6$	0.82	2.02	2.830 (3)	168
$O5-H9\cdots O6^{i}$	0.82	2.11	2.871 (3)	155
$O4-H8 \cdot \cdot \cdot O3^{i}$	0.82	1.90	2.725 (3)	176
O4−H7···O2 ⁱⁱⁱ	0.82	2.01	2.824 (3)	170
$O1 - H4 \cdots O2^i$	0.82	1.81	2.630 (2)	172
O1−H3···O5	0.82	1.88	2.697 (3)	174

 $\beta = 104.85 \ (3)^{\circ}$

Z = 4

V = 2233.3 (7) Å³

Mo $K\alpha$ radiation

 $0.44 \times 0.22 \times 0.10 \text{ mm}$

10662 measured reflections

2546 independent reflections

2115 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.07 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.026$

153 parameters

 $\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.78$ e Å⁻³

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (21071087) and the K. C. Wong Magna Fund in Ningbo University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2062).

References

- Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330–1352.
- Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hulvey, Z., Ayala, E., Furman, J. D., Forster, P. M. & Cheetham, A. K. (2009). Cryst. Growth Des. 9, 4759–4765.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, C., Wang, X.-P. & Omary, M. A. (2007). J. Am. Chem. Soc. 129, 15454– 15455.

supporting information

Acta Cryst. (2012). E68, m598 [doi:10.1107/S1600536812014948]

catena-Poly[[[tetraaquacopper(II)]- μ -4,4'-bipyridyl- $\kappa^2 N:N'$] tetrafluoridosuccinate tetrahydrate]

Guo-Jun Yu, Lan-Ping Xu, Lan Qin and Lei Han

S1. Comment

Metal-organic frameworks have been widely studied over the past few decades owing to their important applications in gas storage, catalysis, sensing, nonlinear optics, magnetism, luminescence and ferroelectricity (Allendorf *et al.*, 2009). Recently, the construction of hybrid framework materials using perfluorinated ligands has attracted much attention based on reports of interesting gas storage properties for such materials containing porous surfaces with exposed fluorine atoms (Yang *et al.*, 2007). Tetrafluorosuccinic acid, as a perfluorinated dicarboxylate ligand, is an excellent candidate for the construction of hybrid frameworks with diverse structures (Hulvey *et al.*, 2009) and with which the title compound, $Cu(C_{10}H_8N_2)(H_2O)_4.C_4F_4O_4.4H_2O$, was hydrothermally prepared from $Cu(NO_3)_2.3H_2O$ and 4,4'-bipyridyl as coligand.

Both cation and anion have crystallographic 2-fold rotation symmetry with the 2-fold axes passing through Cu1, N1 and N2 and through the midpoint of the central C—C bond. The metal adopts a tetragonally elongated octahedral geometry because of the Jahn-Teller effect. The O4 atom occupies the elongated vertex with a Cu1—O4 distance of 2.462 (2) Å. The O1, N1 and N2 atoms occupy the equatorial plane with a Cu1—O1 distance of 1.976 (2) Å and Cu1—N1 and Cu1—N2 distances of 2.019 (3) and 2.027 (3) Å respectively (Figure 1). Adjacent Cu^{II} centers are bridged by 4,4'-bipy ligands to generate a one-dimensional linear chain structure parallel to the *b* axis. As shown in Figure 2 and Table 1, O—H…O hydrogen-bonding interactions between the cationic one-dimensional chains and the tetrafluorosuccinate anions and the free water molecules generate a three-dimensional supramolecular network.

S2. Experimental

A mixture of tetrafluorosuccinic acid (18.7 mg), 4,4'-bipyridyl (24.7 mg) and $Cu(NO_3)_2.3H_2O$ (15.2 mg) was dissolved in water (8 ml) and stirred for 0.5 h at room temperature. It was then sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for 48 h. Blue crystals suitable for X-ray analysis were obtained after cooling the solution to room temperature. The yield is *ca* 70% based on Cu^{2+} .

S3. Refinement

H atoms on O were located in difference maps and the O—H distances adjusted to 0.82 Å while H atoms on C were positioned geometrically with C—H = 0.93 Å. All were allowed to ride on their respective parent atoms with $U_{iso}(H) = 1.2 Ueq(C \text{ or } O)$.

Figure 1

ORTEP drawing showing the coordination sphere of the Cu²⁺ center in the title compound with 50% probability displacement ellipsoids. Symmetry codes i: 1-x,y,1.5-z; ii: x,1+y,z; iii: x,1-y,z; iv: 0.5-z,0.5-y,1-z.

Figure 2

View down the c axis of the three-dimensional hydrogen bonding supramolecular network of the title compound.

catena-Poly[[[tetraaquacopper(II)]- μ -4,4'bipyridyl- $\kappa^2 N:N'$] tetrafluoridosuccinate tetrahydrate]

Crystal data	
$[Cu(C_{10}H_8N_2)(H_2O)_4](C_4F_4O_4)\cdot 4H_2O$	F(000) = 1132
$M_r = 551.89$	$D_{\rm x} = 1.641 { m Mg m^{-3}}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 8384 reflections
a = 17.112 (3) Å	$\theta = 3.0-27.4^{\circ}$
b = 11.135 (2) Å	$\mu = 1.07 \mathrm{~mm^{-1}}$
c = 12.126 (2) Å	T = 298 K
$\beta = 104.85 \ (3)^{\circ}$	Block, blue
V = 2233.3 (7) Å ³	$0.44 \times 0.22 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX diffractometer	10662 measured reflections
Radiation source: fine-focus sealed tube	2115 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
Detector resolution: 28 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ωscans	$h = -22 \rightarrow 21$
Absorption correction: multi-scan	$k = -14 \rightarrow 14$
(SADABS; Bruker, 2005)	$l = -15 \rightarrow 15$
$T_{\min} = 0.650, \ T_{\max} = 0.900$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0175P)^2 + 4.9756P]$
S = 1.28	where $P = (F_o^2 + 2F_c^2)/3$
2546 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
153 parameters	$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta ho_{ m min} = -0.78 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0077 (3)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.5000	0.87438 (3)	0.7500	0.02173 (14)	
F1	0.33513 (10)	0.31057 (16)	0.46607 (16)	0.0488 (5)	
F2	0.29291 (11)	0.33959 (16)	0.61875 (14)	0.0457 (4)	
01	0.43960 (11)	0.87146 (15)	0.58758 (13)	0.0277 (4)	
H3	0.4154	0.8089	0.5664	0.033*	
H4	0.4087	0.9285	0.5680	0.033*	
O2	0.16201 (13)	0.45430 (18)	0.49626 (16)	0.0426 (5)	
03	0.20898 (16)	0.4317 (2)	0.34192 (18)	0.0559 (7)	
O4	0.36711 (11)	0.88591 (16)	0.79355 (15)	0.0307 (4)	
H7	0.3579	0.8968	0.8561	0.037*	
H8	0.3448	0.9399	0.7503	0.037*	
05	0.35115 (14)	0.6752 (2)	0.5062 (2)	0.0533 (6)	
H9	0.3262	0.6610	0.5542	0.064*	
H10	0.3197	0.7005	0.4479	0.064*	

O6	0.23890 (14)	0.7923 (2)	0.32616 (18)	0.0540 (6)	
H12	0.2530	0.8407	0.2843	0.065*	
H11	0.2113	0.7397	0.2874	0.065*	
N1	0.5000	0.6931 (2)	0.7500	0.0212 (6)	
N2	0.5000	0.0563 (2)	0.7500	0.0231 (6)	
C1	0.45882 (16)	0.6311 (2)	0.8111 (2)	0.0296 (5)	
H1	0.4301	0.6731	0.8541	0.035*	
C2	0.45722 (17)	0.5067 (2)	0.8129 (2)	0.0315 (6)	
H2	0.4276	0.4668	0.8561	0.038*	
C3	0.5000	0.4417 (3)	0.7500	0.0244 (7)	
C4	0.5000	0.3076 (3)	0.7500	0.0246 (7)	
C5	0.48432 (17)	0.2427 (2)	0.8399 (2)	0.0298 (6)	
Н5	0.4737	0.2827	0.9019	0.036*	
C6	0.48451 (16)	0.1187 (2)	0.8369 (2)	0.0277 (5)	
H6	0.4735	0.0766	0.8975	0.033*	
C7	0.26765 (16)	0.3133 (2)	0.5056 (2)	0.0339 (6)	
C8	0.20728 (18)	0.4103 (2)	0.4409 (2)	0.0363 (6)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0336 (3)	0.01019 (19)	0.0216 (2)	0.000	0.00738 (16)	0.000
F1	0.0408 (10)	0.0482 (10)	0.0676 (12)	0.0108 (8)	0.0323 (9)	0.0130 (9)
F2	0.0502 (10)	0.0491 (10)	0.0327 (8)	0.0104 (8)	0.0014 (7)	0.0004 (7)
O1	0.0379 (10)	0.0199 (8)	0.0241 (8)	0.0054 (7)	0.0058 (7)	0.0010 (7)
O2	0.0532 (13)	0.0414 (11)	0.0369 (10)	0.0262 (10)	0.0185 (9)	0.0090 (9)
O3	0.0837 (17)	0.0539 (14)	0.0366 (11)	0.0379 (13)	0.0276 (11)	0.0198 (10)
O4	0.0366 (10)	0.0288 (9)	0.0296 (9)	0.0033 (8)	0.0135 (7)	0.0058 (7)
O5	0.0492 (13)	0.0590 (14)	0.0498 (13)	-0.0107 (11)	0.0090 (10)	-0.0077 (11)
O6	0.0659 (15)	0.0598 (14)	0.0361 (11)	-0.0240 (12)	0.0125 (10)	-0.0009 (10)
N1	0.0260 (14)	0.0129 (12)	0.0245 (13)	0.000	0.0063 (11)	0.000
N2	0.0333 (16)	0.0125 (12)	0.0273 (14)	0.000	0.0145 (12)	0.000
C1	0.0395 (14)	0.0167 (11)	0.0392 (13)	0.0029 (10)	0.0224 (11)	-0.0002 (10)
C2	0.0433 (16)	0.0166 (11)	0.0427 (14)	-0.0001 (10)	0.0260 (12)	0.0033 (10)
C3	0.0317 (18)	0.0126 (14)	0.0307 (17)	0.000	0.0115 (14)	0.000
C4	0.0319 (18)	0.0121 (14)	0.0325 (17)	0.000	0.0130 (14)	0.000
C5	0.0484 (16)	0.0163 (11)	0.0303 (13)	-0.0009 (10)	0.0206 (11)	-0.0027 (9)
C6	0.0429 (15)	0.0178 (11)	0.0282 (12)	0.0002 (10)	0.0194 (11)	0.0016 (9)
C7	0.0338 (14)	0.0386 (15)	0.0323 (13)	0.0102 (12)	0.0140 (11)	0.0063 (11)
C8	0.0484 (17)	0.0291 (13)	0.0312 (13)	0.0147 (12)	0.0101 (12)	0.0082 (11)

Geometric parameters (Å, °)

Cu1—O1 ⁱ	1.9760 (17)	N1—C1	1.338 (3)	
Cu1—O1	1.9761 (17)	N2—C6	1.344 (3)	
Cu1—N1	2.018 (3)	N2C6 ⁱ	1.344 (3)	
Cu1—N2 ⁱⁱ	2.025 (3)	N2—Cu1 ⁱⁱⁱ	2.025 (3)	
F1—C7	1.360 (3)	C1—C2	1.386 (3)	

F2—C7	1.360 (3)	C1—H1	0.9300
O1—H3	0.8180	C2—C3	1.388 (3)
O1—H4	0.8212	C2—H2	0.9300
O2—C8	1.248 (3)	C3—C2 ⁱ	1.388 (3)
O3—C8	1.232 (3)	C3—C4	1.494 (4)
O4—H7	0.8224	C4—C5	1.390 (3)
O4—H8	0.8241	C4—C5 ⁱ	1.390 (3)
О5—Н9	0.8196	C5—C6	1.382 (3)
O5—H10	0.8200	С5—Н5	0.9300
O6—H12	0.8182	С6—Н6	0.9300
O6—H11	0.8207	C7—C7 ^{iv}	1.525 (6)
N1—C1 ⁱ	1.338 (3)	C7—C8	1.560 (4)
O1 ⁱ —Cu1—O1	178.11 (10)	C3—C2—H2	120.1
O1 ⁱ —Cu1—N1	89.06 (5)	$C2-C3-C2^{i}$	117.2 (3)
O1—Cu1—N1	89.06 (5)	C2—C3—C4	121.38 (15)
O1 ⁱ —Cu1—N2 ⁱⁱ	90.94 (5)	$C2^{i}$ — $C3$ — $C4$	121.38 (15)
O1—Cu1—N2 ⁱⁱ	90.94 (5)	C5-C4-C5 ⁱ	117.4 (3)
N1—Cu1—N2 ⁱⁱ	180.000 (1)	C5—C4—C3	121.31 (15)
Cu1—O1—H3	114.9	C5 ⁱ —C4—C3	121.30 (15)
Cu1—O1—H4	114.1	C6—C5—C4	119.8 (2)
H3—O1—H4	109.3	С6—С5—Н5	120.1
H7—O4—H8	108.2	C4—C5—H5	120.1
H9—O5—H10	109.4	N2—C6—C5	122.6 (2)
H12—O6—H11	109.5	N2—C6—H6	118.7
C1 ⁱ —N1—C1	117.8 (3)	С5—С6—Н6	118.7
C1 ⁱ —N1—Cu1	121.09 (14)	F1—C7—F2	106.3 (2)
C1—N1—Cu1	121.09 (14)	F1	107.5 (3)
$C6-N2-C6^{i}$	117.8 (3)	F2-C7-C7 ^{iv}	107.8 (3)
C6—N2—Cu1 ⁱⁱⁱ	121.12 (14)	F1—C7—C8	110.5 (2)
C6 ⁱ —N2—Cu1 ⁱⁱⁱ	121.12 (14)	F2—C7—C8	110.9 (2)
N1—C1—C2	122.7 (2)	C7 ^{iv} —C7—C8	113.5 (3)
N1—C1—H1	118.7	O3—C8—O2	128.4 (3)
C2—C1—H1	118.7	O3—C8—C7	116.5 (2)
C1—C2—C3	119.8 (2)	O2—C8—C7	115.1 (2)
C1—C2—H2	120.1		

Symmetry codes: (i) -*x*+1, *y*, -*z*+3/2; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) -*x*+1/2, -*y*+1/2, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
06—H11…O4 ^v	0.82	2.01	2.826 (3)	172
O6—H12···O3 ^{vi}	0.82	2.07	2.879 (3)	168
O5—H10…O6	0.82	2.02	2.830 (3)	168
O5—H9…O6 ^v	0.82	2.11	2.871 (3)	155
O4—H8…O3 ^v	0.82	1.90	2.725 (3)	176
O4—H7···O2 ^{vii}	0.82	2.01	2.824 (3)	170

			supporting information		
01—H4···O2 ^v	0.82	1.81	2.630 (2)	172	
01—H3···O5	0.82	1.88	2.697 (3)	174	

Symmetry codes: (v) -x+1/2, -y+3/2, -z+1; (vi) -x+1/2, y+1/2, -z+1/2; (vii) -x+1/2, y+1/2, -z+3/2.