Structure Reports

Online
ISSN 1600-5368

cis-Tetrachloridobis(1 H -imidazole- $\kappa \mathrm{N}^{3}$)platinum(IV)

Nadezhda A. Bokach, ${ }^{\text {a }}$ Vadim Yu. Kukushkin, ${ }^{\text {a }}$ Yulia A. Izotova, ${ }^{\text {a }}$ Natalia I. Usenko ${ }^{\text {b* }}$ and Matti Haukka ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Saint-Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, ${ }^{\text {b }}$ Department of Chemistry, Taras Shevchenko National University, 01601 Kiev, Ukraine, and ${ }^{\text {c }}$ Department of Chemistry, University of Eastern Finland, PO Box 111, FI-80101 Joensuu, Finland Correspondence e-mail: nusenko@univ.kiev.ua
Received 11 March 2012; accepted 27 March 2012
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.019 ; w R$ factor $=0.037$; data-to-parameter ratio $=19.5$.

In the title complex, cis-[$\left.\mathrm{PtCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]$, the $\mathrm{Pt}^{\mathrm{IV}}$ ion lies on a twofold rotation axis and is coordinated in a slightly distorted octahedral geometry. The dihedral angle between the imidazole rings is $69.9(2)^{\circ}$. In the crystal, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, forming a threedimensional network.

Related literature

For applications of platinum species bearing N -bonded heterocycles, see: Ravera et al. (2011); Esmaeilbeig et al. (2011); Al-Shuneigat et al. (2010); Wheate et al. (2007); van Zutphen et al. (2006); Fritsky et al. (2000); Krämer \& Fritsky (2000). For the synthesis of platinum complexes with N heterocyclic ligands, see: Bokach, Kuznetsov et al. (2011); Kritchenkov et al. (2011); Bokach, Balova et al. (2011); Tskhovrebov et al. (2009); Luzyanin et al. (2009); Bokach et al. (2009). For related structures, see: Khripun et al. $(2006,2007)$; Korte et al. (1981); Kuduk-Jaworska et al. (1988); Bayon et al. (1987); Yip et al. (1993); Chen et al. (2006); Gao et al. (2004); Garcia et al. (2000); Hao \& Yu (2007); Huo et al. (2004). For bond-length data, see: Orpen et al. (1989).

Experimental

Crystal data
 $\left[\mathrm{PtCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]$
 $M_{r}=473.05$
 Monoclinic, $C 2 / c$
 $a=7.7264$ (4) A
 $b=11.8757$ (6) \AA

$c=12.9471(5) \AA$
$\beta=93.332$ (3) ${ }^{\circ}$
$V=1185.97(10) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=12.70 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.193, T_{\text {max }}=0.411$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.037$
$S=1.05$
1362 reflections
$0.15 \times 0.13 \times 0.07 \mathrm{~mm}$

7759 measured reflections
1362 independent reflections 1275 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.037$

70 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.68 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\min }=-0.73 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Pt} 1-\mathrm{N} 1$	$2.046(3)$	$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.3193(8)$
$\mathrm{Pt} 1-\mathrm{Cl} 2$	$2.3141(8)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.98	2.66	$3.355(3)$	128
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.98	2.70	$3.320(3)$	122
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.98	2.82	$3.368(3)$	116

Symmetry codes: (ii) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (iii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.
Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.

This work was supported by the Russian Fund for Basic Research (grant 11-03-90417) and the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041). Financial support from the Visby Program through the Swedish Institute is gratefully acknowledged. Anatoly V. Khripun is thanked for experimental assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5433).

References

Al-Shuneigat, J., Yu, J. Q., Beale, P., Fisher, K. \& Huq, F. (2010). Med. Chem. 6, 321-328.
Bayon, J. C., Kolowich, J. B. \& Rasmussen, P. G. (1987). Polyhedron, 6, 341343.

Bokach, N. A., Balova, I. A., Haukka, M. \& Kukushkin, V. Yu. (2011). Organometallics, 30, 595-602.
Bokach, N. A., Kuznetsov, M. L., Haukka, M., Ovcharenko, V. I., Tretyakov, E. V. \& Kukushkin, V. Yu. (2009). Organometallics, 28, 1406-1413.

Bokach, N. A., Kuznetsov, M. L. \& Kukushkin, V. Yu. (2011). Coord. Chem. Rev. 255, 2946-2967.
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.

metal-organic compounds

Chen, Y., Zhang, H., Wang, X., Huang, Ch., Cao, Y. \& Sun, R. (2006). J. Solid State Chem. 179, 1674-1680
Esmaeilbeig, A., Samouei, H., Abedanzadeh, S. \& Amirghofran, Z. (2011). J. Organomet. Chem. 696, 3135-3142.
Fritsky, I. O., Ott, R. \& Krämer, R. (2000). Angew. Chem. Int. Ed. 39, 32553258.

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m1329-m1330.
Garcia, R., Paulo, A., Domingos, A., Santos, I., Ortner, K. \& Alberto, R. (2000). J. Am. Chem. Soc. 122, 11240-11241.

Hao, L.-J. \& Yu, T.-L. (2007). Acta Cryst. E63, m2555.
Huo, L.-H., Gao, S., Zhao, H. \& Ng, S. W. (2004). Acta Cryst. E60, m1747m1749.
Khripun, A. V., Haukka, M. \& Kukushkin, V. Yu. (2006). Russ. Chem. Bull. pp. 247-255.
Khripun, A. V., Kukushkin, V. Yu., Koldobskii, G. I. \& Haukka, M. (2007). Inorg. Chem. Commun. 10, 250-254.
Korte, H.-J., Krebs, B., van Kralingen, C. G., Marcelis, A. T. M. \& Reedijk, J. (1981). Inorg. Chim. Acta, 52, 61-67.

Krämer, R. \& Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.
Kritchenkov, A. S., Bokach, N. A., Haukka, M. \& Kukushkin, V. Yu. (2011). Dalton Trans. 40, 4175-4182.

Kuduk-Jaworska, J., Kubiak, M. \& Głowiak, T. (1988). Acta Cryst. C44, 437439.

Luzyanin, K. V., Tshovrebov, A. G., Guedes da Silva, M. F. C., Haukka, M., Pombeiro, A. J. L. \& Kukushkin, V. Yu. (2009). Chem. Eur. J. 15, 5969-5978.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Ravera, M., Gabano, E., Sardi, M., Ermondi, G., Caron, G., McGlinchey, M. J., Müller-Bunz, H., Monti, E., Gariboldi, M. B. \& Osella, D. (2011). J. Inorg. Biochem. 105, 400-409.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tskhovrebov, A. G., Bokach, N. A., Haukka, M. \& Kukushkin, V. Yu. (2009). Inorg. Chem. 48, 8678-8688.
Wheate, N. J., Taleb, R. I., Krause-Heuer, A. M., Cook, R. L., Wang, S., Higgins, V. J. \& Aldrich-Wright, J. R. (2007). Dalton Trans. pp. 5055-5064.
Yip, H.-K., Che, Ch.-M. \& Peng, Sh.-M. (1993). J. Chem. Soc. Dalton Trans. pp. 179-187.
Zutphen, S. van, Pantoja, E., Soriano, R., Soro, C., Tooke, D. M., Spek, A. L. den Dulk, H., Brouwer, J. \& Reedijk, J. (2006). Dalton Trans. pp. 1020-1023.

supporting information

Acta Cryst. (2012). E68, m547-m548 [doi:10.1107/S1600536812013323]

cis-Tetrachloridobis(1 H -imidazole- $\kappa \mathrm{N}^{3}$) platinum(IV)

Nadezhda A. Bokach, Vadim Yu. Kukushkin, Yulia A. Izotova, Natalia I. Usenko and Matti Haukka

S1. Comment

Platinum species, bearing N-bonded heterocycles (including, in particular, imidazoles) have drawn attention as efficient antitumor agents (Ravera et al., 2011; Esmaeilbeig et al., 2011; Al-Shuneigat et al., 2010; Wheate et al., 2007; van Zutphen et al., 2006). Within the framework of our projects the focus is on the synthesis of platinum complexes with N heterocyclic ligands (Bokach, Kuznetsov et al., 2011; Kritchenkov et al., 2011; Bokach, Balova et al., 2011; Tskhovrebov et al., 2009; Luzyanin et al., 2009; Bokach et al., 2009; Krämer et al., 2000; Fritsky et al., 2000), the title compound (I) was synthesized and characterized by single-crystal X-ray diffraction.
In (I) the $\mathrm{Pt}^{\mathrm{IV}}$ ion is in a slightly distorted octahedral coordination geometry formed by two N and four Cl atoms. Two imidazole ligands are in a cis orientation. The $\mathrm{Pt}-\mathrm{Cl}$ bond distances are similar, within 3σ, to other $\mathrm{Pt}-\mathrm{Cl}$ bond lengths [2.323 (38) \AA] in platinum(IV) complexes (Orpen et al., 1989). The $\mathrm{Pt}-\mathrm{N}$ distances are usual for platinum complexes bearing two cis-coordinated N-bonded heterocycles, e.g. 2.044 (3)-2.055 (5) \AA in platinum(IV) complexes (Khripun et al., 2007; Khripun et al., 2006).
The title compound (1) represents the first example of the structurally characterized platinum complex having the neutral unsubstituted imidazole ligand and the second example of an imidazole $\operatorname{Pt}(\mathrm{IV})$ complex (Kuduk-Jaworska et al., 1988). The dihedral angle between the imidazole rings is $69.9(2)^{\circ}$. The bond distances and angles in the heterocyclic ligands are in good agreement with those previously observed for imidazole ligands at platinum (Korte et al., 1981; Kuduk-Jaworska et al., 1988; Bayon et al., 1987; Yip et al., 1993) and other transition metal centers (for recent examples see Huo et al., 2004; Chen et al., 2006; Garcia et al., 2000; Hao et al., 2007; Gao et al., 2004). In the crystal, molecules are linked bt $\mathrm{N}-\mathrm{H} \cdots . \mathrm{Cl}$ hydrogen bonds to form a three-dimensional network (Table 2).

S2. Experimental

Complex (1) was synthesized by the reaction of cis-[$\left.\mathrm{PtCl}_{4}(\mathrm{EtCN})_{2}\right]$ with 2 equivs of imidazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at room temperature. The crystals suitable for X-ray crystallography were obtained from an acetone/toluene solution by a slow evaporation of the solvent at room temperature.

S3. Refinement

The NH hydrogen was initially located in difference Fourier maps but was included in a calculated position as riding with $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{N})$. Other H atoms were positioned geometrically and also allowed to ride on their parent atoms, with C $\mathrm{H}=0.95 \AA$, and $U_{\mathrm{iso}}=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The highest peak is located $0.85 \AA$ from atom Pt1 and the deepest hole is located 0.89 \AA from atom Pt 1 .

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. Unlabled atoms are related by the symmetry operator $(-\mathrm{x}, \mathrm{y},-\mathrm{z}+1 / 2)$.

cis-Tetrachloridobis(1 H -imidazole- $\kappa \mathrm{N}^{3}$) platinum(IV)

Crystal data

$\left[\mathrm{PtCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=473.05$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=7.7264$ (4) \AA
$b=11.8757$ (6) \AA
$c=12.9471$ (5) \AA
$\beta=93.332(3)^{\circ}$
$V=1185.97(10) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1}
φ scans and ω scans with κ offset
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski \& Minor, 1997)
$F(000)=872$
$D_{\mathrm{x}}=2.649 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4469 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=12.70 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Plate, yellow
$0.15 \times 0.13 \times 0.07 \mathrm{~mm}$
$T_{\min }=0.193, T_{\text {max }}=0.411$
7759 measured reflections
1362 independent reflections
1275 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-9 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.037$
$S=1.05$
1362 reflections
70 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: mixed
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0108 P)^{2}+3.3813 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\text {max }}=0.68$ e \AA^{-3}
> $\Delta \rho_{\text {min }}=-0.73$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iss}} * / U_{\mathrm{eq}}$
Pt1	0.0000	$0.132240(14)$	0.2500	$0.01672(7)$
C11	$0.07166(12)$	$-0.00761(7)$	$0.37001(7)$	$0.02527(19)$
C12	$-0.28465(11)$	$0.13451(7)$	$0.29654(7)$	$0.02696(19)$
N1	$0.0594(4)$	$0.2545(2)$	$0.3576(2)$	$0.0184(6)$
N2	$0.1812(4)$	$0.3987(3)$	$0.4316(2)$	$0.0292(7)$
H2N	0.2549	0.4662	0.4359	0.044^{*}
C1	$0.1675(5)$	$0.3389(3)$	$0.3449(3)$	$0.0265(8)$
H1	0.2259	0.3543	0.2838	0.032^{*}
C2	$0.0790(5)$	$0.3503(3)$	$0.5026(3)$	$0.0274(8)$
H2	0.0644	0.3754	0.5712	0.033^{*}
C3	$0.0036(5)$	$0.2603(3)$	$0.4555(3)$	$0.0266(8)$
H3	-0.0747	0.2097	0.4852	0.032^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	$0.01632(10)$	$0.01756(10)$	$0.01655(10)$	0.000	$0.00311(7)$	0.000
C11	$0.0301(5)$	$0.0228(4)$	$0.0226(4)$	$-0.0022(3)$	$-0.0010(4)$	$0.0041(3)$
C12	$0.0199(4)$	$0.0313(5)$	$0.0303(5)$	$-0.0019(3)$	$0.0074(3)$	$0.0022(4)$
N1	$0.0200(15)$	$0.0182(14)$	$0.0168(14)$	$-0.0014(11)$	$0.0002(11)$	$-0.0001(11)$
N2	$0.0340(18)$	$0.0251(15)$	$0.0287(17)$	$-0.0063(13)$	$0.0030(14)$	$-0.0034(13)$
C1	$0.028(2)$	$0.0261(18)$	$0.025(2)$	$-0.0052(15)$	$0.0041(16)$	$-0.0030(14)$
C2	$0.030(2)$	$0.0280(19)$	$0.0248(19)$	$0.0004(15)$	$0.0060(16)$	$-0.0032(15)$
C3	$0.028(2)$	$0.0293(19)$	$0.0236(19)$	$0.0000(15)$	$0.0072(15)$	$-0.0002(15)$

Geometric parameters (A, ${ }^{\circ}$)

Pt1- $\mathrm{N}^{1}{ }^{\text {i }}$	2.046 (3)	N2-C1	1.327 (5)
$\mathrm{Pt1}-\mathrm{N} 1$	2.046 (3)	N2-C2	1.372 (5)
$\mathrm{Pt1}-\mathrm{Cl} 2^{\text {i }}$	2.3141 (8)	N2-H2N	0.9830
$\mathrm{Pt1}-\mathrm{Cl} 2$	2.3141 (8)	C1-H1	0.9500
Pt1-Cl1	2.3193 (8)	C2-C3	1.347 (5)
Ptl-Cl1 ${ }^{\text {i }}$	2.3193 (8)	C2-H2	0.9500
N1-C1	1.321 (4)	C3-H3	0.9500
N1-C3	1.364 (4)		
$\mathrm{N1}{ }^{\text {i }}$ - $\mathrm{Pt1}-\mathrm{N} 1$	89.55 (15)	C1-N1-C3	108.3 (3)
$\mathrm{N} 1^{\text {i }}-\mathrm{Pt1}-\mathrm{Cl}^{\text {2 }}$	89.63 (8)	C1-N1-Pt1	124.9 (2)
N1-Pt1-Cl2 ${ }^{\text {i }}$	89.43 (8)	C3-N1-Pt1	126.7 (2)
$\mathrm{N1}{ }^{\text {i }}-\mathrm{Pt1}-\mathrm{Cl} 2$	89.43 (8)	C1-N2-C2	108.8 (3)
N1-Pt1-Cl2	89.63 (8)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	120.1
$\mathrm{Cl}_{2}{ }^{-}-\mathrm{Pt} 1-\mathrm{Cl} 2$	178.67 (4)	C2-N2-H2N	131.1
$\mathrm{N1}$ - $\mathrm{Pt1}-\mathrm{Cl1}$	178.88 (8)	N1-C1-N2	108.7 (3)
N1-Pt1-Cl1	90.97 (8)	N1-C1-H1	125.7
Cl2-Prl-Cl1	89.38 (3)	N2-C1-H1	125.7
$\mathrm{Cl2-Pt1-Cl1}$	91.57 (3)	C3-C2-N2	106.3 (3)
$\mathrm{N} 1^{\text {i }}-\mathrm{Pt1}-\mathrm{Cl}^{\text {i }}$	90.97 (8)	C3-C2-H2	126.9
$\mathrm{N} 1-\mathrm{Pt1}-\mathrm{Cl}^{1}$	178.88 (8)	N2-C2-H2	126.9
$\mathrm{Cl2}-\mathrm{Pt1}-\mathrm{Cl}^{\text {i }}$	91.57 (3)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	108.0 (3)
$\mathrm{Cl2}-\mathrm{Pt1}-\mathrm{Cl}^{1}{ }^{\text {i }}$	89.38 (3)	C2-C3-H3	126.0
Cl1-Pt1- $\mathrm{Cl1}^{\text {i }}$	88.54 (4)	N1-C3-H3	126.0

Symmetry code: (i) $-x, y,-z+1 / 2$.
Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl1}{ }^{\mathrm{ii}}$	0.98	2.66	$3.355(3)$	128
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.98	2.70	$3.320(3)$	122
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.98	2.82	$3.368(3)$	116

Symmetry codes: (ii) $x+1 / 2, y+1 / 2, z$; (iii) $-x+1 / 2,-y+1 / 2,-z+1$.

