Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetrakis[µ₃-4-nitro-*N*-(5-phenyl-1,3,4oxadiazol-2-yl)benzamidato]tetrakis-[methanolsodium(I)]

Guo-Jie Yin,* Qing Zhang and Dong Li

Department of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023 Luoyang, People's Republic of China Correspondence e-mail: yinguojie000000@yahoo.com.cn

Received 19 March 2012; accepted 4 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.106; data-to-parameter ratio = 14.3.

In the title compound, $[Na_4(C_{15}H_9N_4O_4)_4(CH_3OH)_4]$, the N_3O_3 environment around the Na^+ ion is distorted octahedral. In the unit cell, four Na^+ ions are bridged by four Schiff base anions, leading to a tetranuclear complex with $\overline{4}$ symmetry. $O-H \cdots N$ hydrogen bonds between the methanol molecule and the Schiff base anion stabilize the structural set-up.

Related literature

For the preparation of 2-amino-5-phenyl-1,3,4-oxadiazole, see: Gibson (1962) and of N-(5-phenyl-1,3,4-oxadiazol-2-yl)-p-nitrobenzamide, see: Zhang *et al.* (2009). Organic ligands based on oxadiazole or carboxylate groups have both good coordination ability and diverse coordination modes, see: Hu *et al.* (2008).

Crystal data

 $\begin{bmatrix} Na_4(C_{15}H_9N_4O_4)_4(CH_4O)_4 \end{bmatrix} \\ M_r = 1457.18 \\ Tetragonal, I4_1/a \\ a = 15.6635 (2) Å \\ c = 27.1833 (6) Å \\ V = 6669.29 (18) Å^3$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\min} = 0.934, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.106$	independent and constrained
S = 1.02	refinement
3413 reflections	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
2 restraints	

Z = 4

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.20$ mm

15582 measured reflections 3413 independent reflections

2653 reflections with $I > 2\sigma(I)$

 $\mu = 0.13 \text{ mm}^-$

T = 293 K

 $R_{\rm int}=0.027$

Table 1Selected bond lengths (Å).

Na1-O5	2.3413 (14)	Na1-O1 ⁱ	2.3972 (13)
Na1-N1	2.3828 (15)	Na1-N2 ⁱⁱ	2.4127 (15)
Na1-O1	2.3848 (13)	Na1-N1 ⁱⁱ	2.9859 (15)

Symmetry codes: (i) $y + \frac{3}{4}, -x + \frac{5}{4}, -z + \frac{1}{4}$; (ii) $-y + \frac{5}{4}, x - \frac{3}{4}, -z + \frac{1}{4}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by a start-up grant from Luoyang Institute of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HP2035).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gibson, M. S. (1962). Tetrahedron, 18, 1377–1380.
- Hu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. & Cao, R. (2008). *CrystEngComm*, **10**, 1037–1043.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, F. L., Hou, Y. H., Du, C. X. & Wu, Y. J. (2009). Dalton Trans. pp. 7359–7367.

supporting information

Acta Cryst. (2012). E68, m570 [doi:10.1107/S1600536812014791]

Tetrakis[μ_3 -4-nitro-*N*-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamidato]tetrakis-[methanolsodium(I)]

Guo-Jie Yin, Qing Zhang and Dong Li

S1. Comment

As we all know, the organic ligands based on oxadiazole or carboxylate groups which containing N and O donors have both good coordination ability and diverse coordination modes (Hu *et al.*, 2008). Therefore, the ligand *N*-(5-phenyl-1,3,4-oxadiazol-2-yl)-*p*-nitrobenzamide was chosen to create coordination architectures.

In the title compound, each Na^I atom is six-coordinated by one O atom from a methyl alcohol, two O atoms and three N atoms from the ligands, forming a distorted octahedral geometry. In the asymmetric unit, the four Na^I ions are bridged by four Schiff base anions, leading to a tetranuclear complex (Fig. 1 and Fig. 2), the coordination geometry of sodium ions can be described as distorted quadrilateral.

S2. Experimental

Reagents and solvents were of commercially available quality. The preparation of 2-Amino-5-phenyl-1,3,4-oxadiazole is based on a published method (Gibson, 1962). Bromine (0.66 ml) in glacial acetic acid (1.34 ml) was added to a stirred slurry of benzaldehyde semicarbazone (2.0 g) and powdered, anhydrous sodium acetate (4.0 g) in acetic acid (12 ml). The solids were dissolved giving a red solution, which suddenly grew warm and rapidly faded with white precipitate formed (sodium bromide). After 15 minutes, the mixture was poured into water (100 ml), and the precipitated solid (1.8 g) collected, washed and dried. Crystallization from ethanol gave stout needles.

The ligand of *N*-(5-phenyl-1,3,4-oxadiazol-2-yl)-*p*-nitrobenzamide was synthesized according to the method of literature (Zhang *et al.*, 2009). 4-Nitrobenzoyl chloride (5.94 g, 0.032 mol) was dropped slowly into the stirred slurry of 2-Amino-5-phenyl-1,3,4-oxadiazole (5.64 g, 0.035 mol) in 50 ml pyridine. 2-Amino-5-phenyl-1,3,4-oxadiazole dissolved gradually and gave a buff solution. After 2 h, the solution was poured into water. Then the sodium hydroxide (2.80 g, 0.07 mol) was added to give a alkaline solution, the precipitate was collected and dried under vacuum. The title compound was obtained by re-crystallization from ethanol. Yield: 5.7 g, 60%.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H =0.93–0.96 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figure 1

The molecular structure of the title complex with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The molecular structure of the title complex with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Tetrakis[µ₃-4-nitro-N-(5-phenyl-1,3,4-oxadiazol-2- yl)benzamidato]tetrakis[methanolsodium(I)]

 $D_{\rm x} = 1.451 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.0-29.0^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$

Prismatic, yellow

 $0.30 \times 0.20 \times 0.20$ mm

T = 293 K

Mo *Ka* radiation, $\lambda = 0.71073$ Å

Cell parameters from 5181 reflections

Crystal data

 $\begin{bmatrix} Na_4(C_{15}H_9N_4O_4)_4(CH_4O)_4 \end{bmatrix}$ $M_r = 1457.18$ Tetragonal, $I4_1/a$ a = 15.6635 (2) Å c = 27.1833 (6) Å V = 6669.29 (18) Å³ Z = 4F(000) = 3008

Data collection

Bruker SMART CCD area-detector	15582 measured reflections
diffractometer	3413 independent reflections
Radiation source: fine-focus sealed tube	2653 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.027$
phi and ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -17 \rightarrow 19$
(SADABS; Sheldrick, 2004)	$k = -19 \rightarrow 19$
$T_{\min} = 0.934, \ T_{\max} = 1.000$	$l = -33 \rightarrow 30$

Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
3413 reflections	and constrained refinement
239 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 3.8193P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{\min} = -0.22 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Na1	0.83748 (4)	0.26324 (4)	0.11911 (2)	0.03798 (19)
01	0.85910 (8)	0.13991 (7)	0.16902 (4)	0.0404 (3)
O2	0.90153 (7)	0.31903 (7)	0.27519 (4)	0.0363 (3)
03	0.65522 (12)	-0.23034 (10)	0.22897 (7)	0.0783 (5)
O4	0.63373 (12)	-0.18639 (10)	0.30241 (6)	0.0805 (5)

05	0.69874 (9)	0.29271 (10)	0.14628 (5)	0.0532 (4)
Н5	0.6938 (13)	0.2932 (16)	0.1773 (3)	0.080*
N1	0.90347 (9)	0.30288 (9)	0.19472 (5)	0.0386 (3)
N2	0.93939 (9)	0.38225 (9)	0.20680 (5)	0.0388 (3)
N3	0.84467 (9)	0.19219 (8)	0.24835 (5)	0.0352 (3)
C1	1.00589 (13)	0.52826 (12)	0.26187 (9)	0.0571 (5)
H1	1.0161	0.5274	0.2282	0.069*
C2	1.03166 (15)	0.59702 (14)	0.28927 (12)	0.0733 (7)
H2	1.0593	0.6426	0.2742	0.088*
C3	1.01644 (15)	0.59842 (15)	0.33943 (12)	0.0743 (8)
Н3	1.0341	0.6448	0.3582	0.089*
C4	0.97544 (15)	0.53153 (15)	0.36130 (9)	0.0660 (6)
H4	0.9649	0.5329	0.3950	0.079*
C5	0.94954 (13)	0.46210 (12)	0.33403 (7)	0.0488 (5)
H5A	0.9219	0.4167	0.3492	0.059*
C6	0.96483 (10)	0.46020 (10)	0.28401 (7)	0.0373 (4)
C7	0.93688 (10)	0.38873 (10)	0.25373 (6)	0.0330 (4)
C8	0.88199 (10)	0.26667 (10)	0.23605 (6)	0.0324 (4)
С9	0.83531 (10)	0.13374 (10)	0.21273 (6)	0.0322 (4)
C10	0.79134 (10)	0.05235 (10)	0.22781 (6)	0.0332 (4)
C11	0.76375 (13)	0.03611 (11)	0.27529 (7)	0.0468 (5)
H11	0.7734	0.0763	0.2998	0.056*
C12	0.72214 (13)	-0.03911 (12)	0.28662 (7)	0.0504 (5)
H12	0.7033	-0.0496	0.3185	0.060*
C13	0.70909 (11)	-0.09794 (10)	0.25015 (7)	0.0409 (4)
C14	0.73597 (13)	-0.08450 (12)	0.20282 (7)	0.0503 (5)
H14	0.7268	-0.1254	0.1786	0.060*
C15	0.77700 (12)	-0.00895 (12)	0.19195 (7)	0.0460 (4)
H15	0.7954	0.0011	0.1599	0.055*
N4	0.66286 (11)	-0.17717 (10)	0.26138 (7)	0.0527 (4)
C16	0.61860 (15)	0.30244 (17)	0.12369 (9)	0.0732 (7)
H16A	0.6260	0.3257	0.0913	0.110*
H16B	0.5840	0.3404	0.1429	0.110*
H16C	0.5911	0.2478	0.1214	0.110*

The mospice entern put universes (II)	Atomic	displ	lacement	parameters	$(Å^2)$
---------------------------------------	--------	-------	----------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0474 (4)	0.0400 (4)	0.0266 (3)	0.0005 (3)	0.0019 (3)	-0.0022 (3)
O1	0.0541 (8)	0.0366 (6)	0.0305 (6)	-0.0014 (5)	0.0096 (5)	-0.0032 (5)
O2	0.0489 (7)	0.0342 (6)	0.0257 (6)	-0.0075 (5)	0.0036 (5)	-0.0010 (5)
O3	0.0961 (13)	0.0499 (9)	0.0890 (12)	-0.0320 (8)	0.0193 (10)	-0.0198 (9)
O4	0.1073 (14)	0.0652 (10)	0.0691 (11)	-0.0349 (9)	0.0210 (10)	0.0069 (8)
O5	0.0461 (8)	0.0717 (9)	0.0420(7)	-0.0027 (7)	0.0096 (6)	-0.0025 (7)
N1	0.0496 (9)	0.0373 (8)	0.0289 (7)	-0.0089 (7)	0.0050 (6)	-0.0008 (6)
N2	0.0448 (8)	0.0390 (8)	0.0327 (8)	-0.0083 (6)	0.0054 (6)	0.0014 (6)
N3	0.0436 (8)	0.0327 (7)	0.0293 (7)	-0.0048 (6)	0.0049 (6)	-0.0016 (6)
C1	0.0543 (12)	0.0471 (11)	0.0699 (14)	-0.0149 (9)	0.0119 (10)	-0.0055 (10)

C2	0.0597 (14)	0.0465 (13)	0.114 (2)	-0.0196 (10)	0.0090 (14)	-0.0121 (13)
C3	0.0555 (13)	0.0551 (14)	0.112 (2)	-0.0034 (11)	-0.0177 (14)	-0.0392 (14)
C4	0.0749 (16)	0.0620 (14)	0.0611 (14)	0.0022 (12)	-0.0168 (12)	-0.0249 (12)
C5	0.0574 (12)	0.0459 (11)	0.0431 (10)	0.0000 (9)	-0.0065 (9)	-0.0064 (9)
C6	0.0322 (9)	0.0350 (9)	0.0445 (10)	-0.0005 (7)	-0.0022 (7)	-0.0039 (8)
C7	0.0323 (8)	0.0330 (8)	0.0337 (9)	-0.0034 (7)	0.0030 (7)	0.0021 (7)
C8	0.0357 (8)	0.0348 (8)	0.0267 (8)	-0.0022 (7)	0.0034 (7)	-0.0036 (7)
C9	0.0332 (8)	0.0324 (8)	0.0310 (8)	0.0029 (7)	0.0020 (7)	-0.0014 (7)
C10	0.0333 (8)	0.0315 (8)	0.0347 (8)	0.0013 (7)	0.0013 (7)	-0.0026 (7)
C11	0.0656 (12)	0.0363 (9)	0.0384 (10)	-0.0087 (8)	0.0096 (9)	-0.0070 (8)
C12	0.0681 (13)	0.0432 (10)	0.0399 (10)	-0.0099 (9)	0.0136 (9)	0.0003 (8)
C13	0.0398 (9)	0.0330 (9)	0.0498 (10)	-0.0038 (7)	0.0046 (8)	0.0003 (8)
C14	0.0611 (12)	0.0421 (10)	0.0476 (11)	-0.0128 (9)	0.0047 (9)	-0.0114 (9)
C15	0.0571 (12)	0.0445 (10)	0.0365 (9)	-0.0103 (9)	0.0068 (8)	-0.0058 (8)
N4	0.0525 (10)	0.0408 (9)	0.0649 (12)	-0.0084 (7)	0.0070 (9)	0.0005 (9)
C16	0.0564 (14)	0.0979 (19)	0.0654 (15)	-0.0038 (12)	0.0021 (12)	0.0079 (14)

Geometric parameters (Å, °)

Nal—O5	2.3413 (14)	C1—H1	0.9300
Na1—N1	2.3828 (15)	C2—C3	1.384 (4)
Na1—O1	2.3848 (13)	С2—Н2	0.9300
Na1—O1 ⁱ	2.3972 (13)	C3—C4	1.365 (4)
Na1—N2 ⁱⁱ	2.4127 (15)	С3—Н3	0.9300
Na1—N1 ⁱⁱ	2.9859 (15)	C4—C5	1.377 (3)
Na1—Na1 ⁱ	3.6261 (9)	C4—H4	0.9300
Na1—Na1 ⁱⁱ	3.6261 (9)	C5—C6	1.381 (3)
O1—C9	1.2491 (19)	C5—H5A	0.9300
O1—Na1 ⁱⁱ	2.3972 (13)	C6—C7	1.457 (2)
O2—C7	1.3559 (19)	C9—C10	1.506 (2)
O2—C8	1.3778 (18)	C10-C11	1.385 (2)
O3—N4	1.218 (2)	C10—C15	1.387 (2)
O4—N4	1.214 (2)	C11—C12	1.381 (3)
O5—C16	1.406 (3)	C11—H11	0.9300
O5—H5	0.847 (9)	C12—C13	1.369 (3)
N1-C8	1.303 (2)	C12—H12	0.9300
N1—N2	1.4036 (19)	C13—C14	1.370 (3)
N1—Na1 ⁱ	2.9859 (15)	C13—N4	1.469 (2)
N2C7	1.280 (2)	C14—C15	1.379 (3)
N2-Na1 ⁱ	2.4127 (15)	C14—H14	0.9300
N3—C9	1.341 (2)	C15—H15	0.9300
N3—C8	1.347 (2)	C16—H16A	0.9600
C1—C2	1.370 (3)	C16—H16B	0.9600
C1—C6	1.383 (3)	C16—H16C	0.9600
O5—Na1—N1	94.54 (5)	C3—C2—H2	120.1
O5-Na1-O1	96.43 (5)	C4—C3—C2	119.8 (2)
N1—Na1—O1	70.05 (5)	С4—С3—Н3	120.1

O5—Na1—O1 ⁱ	106.86 (5)	С2—С3—Н3	120.1
N1—Na1—O1 ⁱ	90.40 (5)	C3—C4—C5	120.7 (2)
O1—Na1—O1 ⁱ	150.81 (5)	С3—С4—Н4	119.7
O5—Na1—N2 ⁱⁱ	123.14 (5)	С5—С4—Н4	119.7
N1—Na1—N2 ⁱⁱ	141.02 (6)	C4—C5—C6	119.7 (2)
O1—Na1—N2 ⁱⁱ	94.03 (5)	C4—C5—H5A	120.1
O1 ⁱ —Na1—N2 ⁱⁱ	87.87 (5)	С6—С5—Н5А	120.1
O5—Na1—N1 ⁱⁱ	146.17 (5)	C5—C6—C1	119.51 (17)
N1—Na1—N1 ⁱⁱ	113.69 (6)	C5—C6—C7	121.38 (16)
O1—Na1—N1 ⁱⁱ	77.43 (4)	C1—C6—C7	119.10 (17)
O1 ⁱ —Na1—N1 ⁱⁱ	91.84 (4)	N2—C7—O2	112.17 (14)
N2 ⁱⁱ —Na1—N1 ⁱⁱ	27.62 (4)	N2—C7—C6	127.92 (15)
O5—Na1—Na1 ⁱ	123.35 (5)	O2—C7—C6	119.89 (14)
N1—Na1—Na1 ⁱ	55.00 (4)	N1—C8—N3	134.68 (15)
O1—Na1—Na1 ⁱ	111.36 (4)	N1—C8—O2	110.45 (13)
O1 ⁱ —Na1—Na1 ⁱ	40.56 (3)	N3—C8—O2	114.86 (13)
N2 ⁱⁱ —Na1—Na1 ⁱ	103.62 (4)	O1—C9—N3	126.97 (15)
N1 ⁱⁱ —Na1—Na1 ⁱ	89.20 (3)	O1—C9—C10	117.45 (14)
O5—Na1—Na1 ⁱⁱ	136.08 (5)	N3—C9—C10	115.58 (14)
N1—Na1—Na1 ⁱⁱ	80.91 (4)	C11—C10—C15	118.53 (16)
O1—Na1—Na1 ⁱⁱ	40.82 (3)	C11—C10—C9	123.50 (15)
O1 ⁱ —Na1—Na1 ⁱⁱ	116.78 (3)	C15—C10—C9	117.97 (15)
N2 ⁱⁱ —Na1—Na1 ⁱⁱ	65.47 (4)	C12—C11—C10	120.78 (17)
N1 ⁱⁱ —Na1—Na1 ⁱⁱ	40.82 (3)	C12—C11—H11	119.6
Na1 ⁱ —Na1—Na1 ⁱⁱ	89.553 (3)	C10—C11—H11	119.6
C9-01-Na1	124.17 (10)	C13—C12—C11	118.90 (17)
C9-01-Na1 ⁱⁱ	129.32 (11)	C13—C12—H12	120.5
$Na1 - O1 - Na1^{ii}$	98.63 (5)	C11 - C12 - H12	120.5
C7-O2-C8	103.76 (12)	C12 - C13 - C14	122.05 (16)
C16—O5—Na1	135.43 (13)	C12—C13—N4	119.46 (17)
C16—O5—H5	110.6 (14)	C14—C13—N4	118.47 (16)
Na1-05-H5	113.6 (14)	C13—C14—C15	118.46 (17)
C8—N1—N2	106.69 (13)	C13—C14—H14	120.8
C8—N1—Na1	121.22 (11)	C15—C14—H14	120.8
N2—N1—Na1	127.35(10)	C14 - C15 - C10	120.0 121.27(17)
C8—N1—Na1 ⁱ	154 19 (11)	C14-C15-H15	119.4
$N_2 N_1 N_1 N_1^i$	52,83 (7)	C10-C15-H15	119.1
$Na1 - N1 - Na1^{i}$	84 17 (4)	04 - N4 - 03	123 11 (17)
C7-N2-N1	106.93(13)	04 - N4 - C13	123.11(17) 11849(17)
C7—N2—Na1 ⁱ	148.36(12)	03-N4-C13	118.39(17)
$N1 - N2 - Na1^{i}$	99 56 (9)	05-C16-H16A	109 5
C9—N3—C8	117 38 (13)	05-C16-H16B	109.5
$C_{2} - C_{1} - C_{6}$	120 4 (2)	H16A - C16 - H16B	109.5
C2-C1-H1	119.8	05-C16-H16C	109.5
C6—C1—H1	119.8	H16A - C16 - H16C	109.5
			107.0

supporting information

C1—C2—C3 C1—C2—H2	119.8 (2) 120.1	H16B—C16—	-H16C	109.5				
Symmetry codes: (i) $y+3/4$, $-x+$	-5/4, -z+1/4; (ii) -y+5/4, x-3/4, -	z+1/4.						
Hydrogen-bond geometry (Å, °)								
D—H···A	D	—Н Н…А	D····A	D—H···A				

$D \longrightarrow \Pi \cdots A$	<i>D</i> —H	H···A	$D^{\dots}A$	$D - H \cdot \cdot \cdot A$
O5—H5…N3 ⁱⁱⁱ	0.85 (1)	2.12 (1)	2.9534 (19)	167 (2)

Symmetry code: (iii) -x+3/2, -y+1/2, -z+1/2.