organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[4-(2-Hydroxypropan-2-yl)-1H-1,2,3triazol-1-yl]phenol

Li-Li Zhang,* Kai Yu, Ling-Ling Liu and Dian-Shun Guo

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail: chdsguo@sdnu.edu.cn

Received 17 March 2012; accepted 24 March 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.109; data-to-parameter ratio = 13.4.

In the title compound, C₁₁H₁₃N₃O₂, the 1,2,3-triazole ring and the phenol ring form a dihedral angle of $55.46 (5)^{\circ}$. In the crystal, inversion-related molecules associate through pairs of hydroxy-phenol O-H···O hydrogen bonds, giving centrosymmetric cyclic dimers [graph set $R_2^2(18)$]. These dimers are linked into infinite chains along [001], giving an overall twodimensional network structure parallel to the bc plane through hydroxy $O-H \cdots N$ and triazole $C-H \cdots N$ hydrogen bonds.

Related literature

For general background to 1,2,3-triazole derivatives, see: Shia et al. (2002); Orgueira et al. (2005); Crowley & Bandeen (2010). For related structures, see: Zou et al. (2006); Danielraj et al. (2010); Stöger et al. (2011). For bond-length data, see: Banerjee et al. (2002); Janas & Sobota (2005). For hydrogenbond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

C11H13N3O2 $M_r = 219.24$ Monoclinic, $P2_1/c$ a = 11.599 (2) Å

b = 9.0747 (18) Å
c = 10.743 (2) Å
$\beta = 107.081 \ (3)^{\circ}$

V = 1080.9 (3) Å³

Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	5462 measured reflections
diffractometer	1994 independent reflections
Absorption correction: multi-scan	1696 reflections with $I > 2\sigma($
(SADABS; Bruker, 1999)	$R_{\rm int} = 0.025$
$T_{\min} = 0.963, \ T_{\max} = 0.983$	

T = 298 K

 $0.40 \times 0.30 \times 0.18 \text{ mm}$

 $2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 149 parameters $wR(F^2) = 0.109$ H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.24$ e Å⁻³ 1994 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{matrix} O2-H2\cdots O1^{i}\\ O1-H1\cdots N3^{ii}\\ C7-H7\cdots N2^{ii} \end{matrix}$	0.82	1.89	2.7090 (15)	173
	0.82	2.05	2.8665 (16)	171
	0.93	2.40	3.2738 (19)	157

Symmetry codes: (i) -x + 1, -y, -z; (ii) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the National Natural Science Foundation of China (grant No. 20572064) and the Natural Science Foundation of Shandong Province (grant No. ZR2010BM022) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2192).

References

- Banerjee, S., Mukherjee, A. K., Goswami, D., De, A. U. & Helliwell, M. (2002). Cryst. Res. Technol. 37, 309-317.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crowley, J. D. & Bandeen, P. H. (2010). Dalton Trans. pp. 612-623.
- Danielraj, P., Varghese, B. & Sankararaman, S. (2010). Acta Cryst. C66, m366m370.
- Janas, Z. & Sobota, P. (2005). Coord. Chem. Rev. 249, 2144-2155.
- Orgueira, H. A., Fokas, D., Isome, Y., Chan, P. C.-M. & Baldino, C. M. (2005). Tetrahedron Lett. 46, 2911-2914.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shia, K. S., Li, W. T., Chang, C. M., Hsu, M. C., Chern, J. H., Leong, M. K., Tseng, S. N., Lee, C. C., Lee, Y. C., Chen, S. J., Peng, K. C., Tseng, H. Y., Chang, Y. L., Tai, C. L. & Shih, S. R. (2002). J. Med. Chem. 45, 1644-1655.
- Stöger, B., Lumpi, D. & Fröhlich, J. (2011). Acta Cryst. C67, 0464-0468.
- Zou, W.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Acta Cryst. E62, o3591-o3593.

supporting information

Acta Cryst. (2012). E68, o1262 [https://doi.org/10.1107/S1600536812012925] 2-[4-(2-Hydroxypropan-2-yl)-1*H*-1,2,3-triazol-1-yl]phenol

Li-Li Zhang, Kai Yu, Ling-Ling Liu and Dian-Shun Guo

S1. Comment

1,2,3-Triazole derivatives have received much attention owing to their wide applications in drug discovery, materials and supramolecular chemistry (Shia *et al.*, 2002; Orgueira *et al.*, 2005; Crowley & Bandeen 2010). Numerous crystal structures of triazole derivatives have been described (Danielraj *et al.*, 2010; Stöger *et al.*, 2011). We report here the structure of a new triazole compound, 2-[4-(2-hydroxypropan-2-yl)-1*H*-1,2,3-triazol-1-yl]phenol, C₁₁H₁₃N₃O₂.

The title compound, shown in Fig. 1, contains a 1,2,3-triazole ring and a phenol ring which are non-coplanar with a dihedral angle of 55.46 (5)°, larger than that reported previously for a similar structure [14.34 (17)°] (Zou *et al.*, 2006). This difference may be ascribed to the steric repulsion between the heterocyclic N atom, N2, and the phenolic hydroxyl oxygen atom, O2. The bond lengths of C7—N1, C8—N3 and N1—N2 are shorter than the normal C—N single bond length (1.483 Å) (Banerjee *et al.*, 2002) and N—N single bond length (1.467 Å) (Janas & Sobota, 2005), showing an obvious electron delocalization in the triazole ring.

The packing of the title compound is stabilized by intermolecular O—H···O, O—H···N and C—H···N hydrogen bonds (Table 1). Two inversion- related molecules form a centrosymmetric dimer through intermolecular hydroxyl O2—H···O1ⁱ hydrogen bonds, locally creating an $R^2_2(18)$ motif (Bernstein *et al.*, 1995) (Fig. 2). These dimers are linked into chains which give an overall two-dimensional network structure through intermolecular hydroxyl O1—H···N3ⁱⁱ and triazole C7 —H7···N2ⁱⁱ hydrogen-bonding interactions, which include a cyclic $R^2_2(8)$ motif (Fig. 3). For symmetry codes (i) and (ii), see Table 1.

S2. Experimental

2-Methylbut-3-yn-2-ol (0.093 g, 1.1 mmol) was added to a suspension of 2-azidophenol (0.135 g, 1.0 mmol), CuI (0.019 g, 0.10 mmol), Et₃N (0.5 ml) and ascorbic acid (0.018 g, 0.10 mmol) in CH₃CN (2.0 ml) and continuously stirred at 298 K for 0.5 h. The resulting mixture was extracted with CH_2Cl_2 and the organic layer was washed with brine, then dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the crude product was purified by recrystallization from CH_2Cl_2 /pentane to afford the title compound as a pale yellow solid (95% yield). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow diffusion of pentane into a solution of the title compound in CH_2Cl_2 at 298 K.

S3. Refinement

All H atoms were placed in geometrically idealized positions and refined using a riding model with C—H = 0.93 Å and $U_{iso}(H)$ = 1.2 $U_{eq}(C)$ (aromatic); C—H = 0.96 Å and $U_{iso}(H)$ = 1.5 $U_{eq}(C)$ (methyl); O—H= 0.82 Å and $U_{iso}(H)$ = 1.5 $U_{eq}(O)$ (hydroxyl).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the the 30% probability level.

Figure 2

A centrosymmetric dimer of the title compound formed by intermolecular O—H…O hydrogen bonds, showing the $R^2_2(18)$ motif. For the sake of clarity, H atoms not involved in the motif have been omitted. For symmetry code (i), see Table 1.

Figure 3

A hydrogen-bonded chain of the title compound, showing the $R^2_2(18)$ and $R^2_2(8)$ motifs. For the sake of clarity, H atoms not involved in the motifs have been omitted. For symmetry code (iii), -x + 1, y - 1/2, -z - 1/2. For symmetry code (ii), see Table 1.

2-[4-(2-Hydroxypropan-2-yl)-1H-1,2,3-triazol-1-yl]phenol

Crystal data

$C_{11}H_{13}N_3O_2$	F(000) = 464
$M_r = 219.24$	$D_{\rm x} = 1.347 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2071 reflections
a = 11.599 (2) Å	$\theta = 2.9 - 23.0^{\circ}$
b = 9.0747 (18) Å	$\mu = 0.10 \ { m mm^{-1}}$
c = 10.743 (2) Å	T = 298 K
$\beta = 107.081 \ (3)^{\circ}$	Block, pale yellow
V = 1080.9 (3) Å ³	$0.40 \times 0.30 \times 0.18 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Bruker, 1999)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.963, \ T_{\rm max} = 0.983$
Graphite monochromator	5462 measured reflections
φ and ω scans	1994 independent reflections

1696 reflections with $I > 2\sigma(I)$	$h = -14 \rightarrow 12$
$R_{\rm int} = 0.025$	$k = -10 \rightarrow 10$
$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$	$l = -11 \rightarrow 13$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
1994 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0589P)^2 + 0.1715P]$
149 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.57130 (10)	0.27595 (13)	0.05416 (11)	0.0285 (3)
N2	0.50492 (12)	0.30872 (16)	-0.06770 (11)	0.0374 (3)
N3	0.39371 (11)	0.32767 (15)	-0.06404 (11)	0.0352 (3)
01	0.26044 (9)	0.18448 (11)	0.16529 (9)	0.0321 (3)
H1	0.2976	0.1914	0.2428	0.048*
O2	0.65112 (10)	0.05481 (13)	-0.07335 (11)	0.0447 (3)
H2	0.6832	-0.0144	-0.0993	0.067*
C1	0.93917 (15)	0.1799 (2)	0.14569 (17)	0.0443 (4)
H1A	1.0210	0.1584	0.1663	0.053*
C2	0.90012 (16)	0.2893 (2)	0.21198 (17)	0.0478 (5)
H2A	0.9552	0.3409	0.2780	0.057*
C3	0.77857 (14)	0.32227 (18)	0.18018 (15)	0.0391 (4)
Н3	0.7517	0.3971	0.2239	0.047*
C4	0.69727 (13)	0.24373 (16)	0.08337 (13)	0.0293 (3)
C5	0.73520 (13)	0.13098 (17)	0.01699 (14)	0.0314 (4)
C6	0.85794 (14)	0.10189 (19)	0.04891 (15)	0.0389 (4)
H6	0.8857	0.0287	0.0043	0.047*
C7	0.50258 (13)	0.27627 (17)	0.13542 (13)	0.0312 (4)
H7	0.5273	0.2581	0.2245	0.037*
C8	0.38921 (13)	0.30876 (15)	0.05978 (13)	0.0276 (3)
C9	0.27444 (13)	0.32016 (16)	0.09872 (14)	0.0312 (4)
C10	0.28121 (17)	0.44984 (19)	0.18952 (18)	0.0495 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

H10A	0.2095	0.4530	0.2167	0.074*	
H10B	0.2881	0.5396	0.1449	0.074*	
H10C	0.3503	0.4391	0.2645	0.074*	
C11	0.16508 (15)	0.3294 (2)	-0.01930 (17)	0.0495 (5)	
H11A	0.1618	0.2438	-0.0727	0.074*	
H11B	0.1704	0.4162	-0.0684	0.074*	
H11C	0.0935	0.3341	0.0082	0.074*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0282 (6)	0.0342 (7)	0.0230 (6)	0.0021 (5)	0.0074 (5)	0.0005 (5)
N2	0.0356 (7)	0.0538 (9)	0.0229 (6)	0.0069 (6)	0.0088 (5)	0.0035 (6)
N3	0.0327 (7)	0.0475 (8)	0.0254 (6)	0.0055 (6)	0.0083 (5)	0.0012 (6)
01	0.0347 (6)	0.0357 (6)	0.0252 (5)	-0.0038 (4)	0.0077 (4)	-0.0015 (4)
O2	0.0401 (7)	0.0444 (7)	0.0469 (7)	0.0023 (5)	0.0084 (5)	-0.0152 (5)
C1	0.0284 (8)	0.0522 (11)	0.0519 (10)	0.0023 (7)	0.0114 (8)	0.0061 (8)
C2	0.0364 (10)	0.0517 (11)	0.0479 (10)	-0.0050 (8)	0.0010 (8)	-0.0062 (8)
C3	0.0380 (9)	0.0414 (9)	0.0358 (9)	0.0011 (7)	0.0079 (7)	-0.0057 (7)
C4	0.0293 (8)	0.0325 (8)	0.0276 (7)	0.0014 (6)	0.0106 (6)	0.0045 (6)
C5	0.0317 (8)	0.0341 (8)	0.0291 (8)	-0.0019 (6)	0.0100 (6)	0.0018 (6)
C6	0.0376 (9)	0.0413 (9)	0.0422 (9)	0.0056 (7)	0.0187 (7)	0.0014 (7)
C7	0.0326 (8)	0.0404 (9)	0.0218 (7)	0.0003 (6)	0.0098 (6)	0.0011 (6)
C8	0.0324 (8)	0.0276 (8)	0.0224 (7)	-0.0006 (6)	0.0077 (6)	-0.0024 (6)
C9	0.0309 (8)	0.0322 (8)	0.0319 (8)	0.0018 (6)	0.0113 (6)	0.0025 (6)
C10	0.0594 (12)	0.0372 (10)	0.0632 (12)	0.0013 (8)	0.0355 (10)	-0.0056 (8)
C11	0.0327 (9)	0.0685 (13)	0.0466 (10)	0.0057 (8)	0.0107 (8)	0.0180 (9)

Geometric parameters (Å, °)

N1—N2	1.3428 (16)	C3—H3	0.9300
N1—C7	1.3441 (18)	C4—C5	1.390 (2)
N1C4	1.4316 (19)	C5—C6	1.388 (2)
N2—N3	1.3134 (18)	С6—Н6	0.9300
N3—C8	1.3575 (18)	C7—C8	1.360 (2)
O1—C9	1.4568 (18)	С7—Н7	0.9300
01—H1	0.8200	C8—C9	1.512 (2)
O2—C5	1.3472 (18)	C9—C11	1.510 (2)
O2—H2	0.8200	C9—C10	1.516 (2)
C1—C2	1.374 (3)	C10—H10A	0.9600
C1—C6	1.376 (2)	C10—H10B	0.9600
C1—H1A	0.9300	C10—H10C	0.9600
C2—C3	1.383 (2)	C11—H11A	0.9600
C2—H2A	0.9300	C11—H11B	0.9600
C3—C4	1.379 (2)	C11—H11C	0.9600
N2—N1—C7	110.68 (12)	N1—C7—C8	105.44 (12)
N2—N1—C4	121.00 (11)	N1—C7—H7	127.3

C7—N1—C4	128 31 (12)	С8—С7—Н7	127.3
N3—N2—N1	106.67 (11)	N3—C8—C7	107.72 (13)
N2—N3—C8	109.48 (12)	N3—C8—C9	123.57 (13)
С9—О1—Н1	109.5	C7—C8—C9	128.70 (13)
С5—О2—Н2	109.5	O1—C9—C11	105.78 (12)
C2—C1—C6	120.43 (15)	01—C9—C8	108.19 (11)
C2—C1—H1A	119.8	C11—C9—C8	111.25 (12)
C6—C1—H1A	119.8	O1—C9—C10	109.42 (12)
C1—C2—C3	119.74 (16)	C11—C9—C10	111.68 (14)
C1—C2—H2A	120.1	C8—C9—C10	110.36 (13)
C3—C2—H2A	120.1	C9—C10—H10A	109.5
C4—C3—C2	119.74 (15)	C9—C10—H10B	109.5
С4—С3—Н3	120.1	H10A-C10-H10B	109.5
С2—С3—Н3	120.1	C9—C10—H10C	109.5
C3—C4—C5	121.17 (14)	H10A—C10—H10C	109.5
C3—C4—N1	119.17 (13)	H10B—C10—H10C	109.5
C5—C4—N1	119.62 (13)	C9—C11—H11A	109.5
O2—C5—C6	123.59 (14)	C9—C11—H11B	109.5
O2—C5—C4	118.42 (13)	H11A—C11—H11B	109.5
C6—C5—C4	117.99 (14)	C9—C11—H11C	109.5
C1—C6—C5	120.90 (15)	H11A—C11—H11C	109.5
С1—С6—Н6	119.5	H11B—C11—H11C	109.5
С5—С6—Н6	119.5		
C7—N1—N2—N3	-0.92 (17)	C2-C1-C6-C5	-0.6 (3)
C4—N1—N2—N3	177.94 (12)	O2-C5-C6-C1	-177.47 (15)
N1—N2—N3—C8	0.68 (16)	C4—C5—C6—C1	1.6 (2)
C6—C1—C2—C3	-0.7 (3)	N2—N1—C7—C8	0.77 (16)
C1—C2—C3—C4	0.9 (3)	C4—N1—C7—C8	-177.98 (14)
C2—C3—C4—C5	0.2 (2)	N2—N3—C8—C7	-0.22 (17)
C2—C3—C4—N1	178.08 (14)	N2—N3—C8—C9	-178.97 (13)
N2—N1—C4—C3	125.90 (15)	N1—C7—C8—N3	-0.34 (16)
C7—N1—C4—C3	-55.5 (2)	N1	178.33 (14)
N2—N1—C4—C5	-56.22 (19)	N3-C8-C9-O1	125.29 (14)
C7—N1—C4—C5	122.42 (16)	C7—C8—C9—O1	-53.19 (19)
C3—C4—C5—O2	177.68 (14)	N3—C8—C9—C11	9.5 (2)
N1-C4-C5-O2	-0.2 (2)	C7—C8—C9—C11	-168.97 (16)
C3—C4—C5—C6	-1.5 (2)	N3-C8-C9-C10	-115.03 (16)
N1—C4—C5—C6	-179.33 (13)	C7—C8—C9—C10	66.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
O2—H2···O1 ⁱ	0.82	1.89	2.7090 (15)	173
O1—H1···N3 ⁱⁱ	0.82	2.05	2.8665 (16)	171
C7—H7···N2 ⁱⁱ	0.93	2.40	3.2738 (19)	157

Symmetry codes: (i) -x+1, -y, -z; (ii) x, -y+1/2, z+1/2.