Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[2-({6-[(pyrimidin-2-yl-sulfanyl- κ S)methyl]pyridin-2-yl- κ N}-methylsulfanyl)pyrimidine]copper(I)]- μ -thiocyanato- κ^2 N:S]

Rong Peng^a and Seik Weng Ng^{b,c}*

^aDepartment of Chemistry, Shantou University, Shantou 515063, Guangdong, People's Republic of China, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 2 March 2012; accepted 10 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.125; data-to-parameter ratio = 17.3.

The *N*-heterocyclic ligand in the title compound, $[Cu(NCS)(C_{15}H_{13}N_5S_2)]_n$, coordinates to the Cu^I atom through its pyridine N-donor site, and adjacent metal atoms are bridged by the thiocyanate ion, forming a helical chain along the *b* axis. The geometry of the metal atom is tetrahedral owing to a somewhat long intramolecular Cu-S interaction of 2.5621 (9) Å.

Related literature

For the synthesis of the *N*-heterocyle and its copper(I) adducts, see: Peng *et al.* (2006).

Experimental

Crystal data

 $\begin{bmatrix} \text{Cu(NCS)}(\text{C}_{15}\text{H}_{13}\text{N}_{5}\text{S}_{2}) \end{bmatrix} & V \\ M_{r} = 449.04 & Z \\ \text{Monoclinic, } P_{2_{1}}/n & \text{Momoclinic, } P_{3_{1}}/n \\ a = 11.1706 (8) \text{ Å} & \mu \\ b = 8.6735 (6) \text{ Å} & T \\ c = 19.0956 (14) \text{ Å} & 0.1 \\ \beta = 100.978 (1)^{\circ} \\ \end{bmatrix}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.703, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.125$ S = 1.044077 reflections $V = 1816.3 \text{ (2) } \text{\AA}^{3}$ Z = 4 Mo K\alpha radiation \mu = 1.56 mm⁻¹ T = 293 K 0.16 \times 0.11 \times 0.06 mm

10799 measured reflections 4077 independent reflections 3022 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$

235 parameters H-atom parameters constrained $\Delta \rho_{max} = 1.18 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Shantou University and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2186).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Peng, R., Li, D., Wu, T., Zhou, X.-P. & Ng, S. W. (2006). Inorg. Chem. 45, 4035– 4046.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m429 [https://doi.org/10.1107/S160053681201063X]

catena-Poly[[[2-({6-[(pyrimidin-2-ylsulfanyl- κS)methyl]pyridin-2-yl- κN }methyl-sulfanyl)pyrimidine]copper(I)]- μ -thiocyanato- $\kappa^2 N$:S]

Rong Peng and Seik Weng Ng

S1. Comment

We have previously reported the crystal structures of the copper(I) bromide and iodide adducts of 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine. The ligand is a flexible thioether than can coordinate through the nitrogen and sulfur sites (Peng *et al.*, 2006). In the present copper(I) thiocyanate adduct (Scheme I), the *N*-heterocyclic ligand coordinates to the Cu^I atom through its pyridyl *N*-donor site (Fig. 1). Adjacent metal atoms are bridged by the thiocyanate ion to form a helical chain running along the *b*-axis of the monoclinic unit cell (Fig. 2). The geometry of the metal atom is a tetrahedron owing to a somewhat long intramolecular sulfur–copper interaction of 2.5621 (9) Å.

S2. Experimental

The ligand was synthesized as described by Peng *et al.* (2006). Copper(I) thiocyanate (0.012 g, 1 mmol), 2,6-bis(2-pyrimidinesulfanylmethyl)pyridine (0.032 g, 0.1 mmol) and acetonitrile (4 ml) were placed in a 13-ml, Teflon-line, stainless-steel Parr bomb. This was heated at 373 K for 48 h, and then cooled at 3 K a minute. The solution was filtered and the solvent allowed to evaporate over two weeks to give brown prisms.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.97 Å) and were included in the refinement in the riding model approximation, with U_{iso} (H) set to $1.2U_{eq}$ (C). The final difference Fourier map had a peak (1.179 eÅ⁻³in the vicinity of Cu1.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of a portion of the polymeric chain structure of $[Cu(NCS)(C_{16}H_{13}N_5S_2)]_n$ at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

The chain structure of the title compound, extending along the *b*-axis of the unit cell.

catena-Poly[[[2-({6-[(pyrimidin-2-ylsulfanyl- κ S)methyl]pyridin-2- yl- κ N}methylsulfanyl)pyrimidine]copper(l)]- μ -thiocyanato- κ^2 N:S]

F(000) = 912

 $\theta = 2.6 - 25.0^{\circ}$

 $\mu = 1.56 \text{ mm}^{-1}$ T = 293 K

Prism, brown

 $0.16 \times 0.11 \times 0.06 \text{ mm}$

 $D_{\rm x} = 1.642 \text{ Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2743 reflections

Crystal data

[Cu(NCS)(C₁₅H₁₃N₅S₂)] $M_r = 449.04$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.1706 (8) Å b = 8.6735 (6) Å c = 19.0956 (14) Å $\beta = 100.978$ (1)° V = 1816.3 (2) Å³ Z = 4

Data collection

Bruker SMART APEX CCD	10799 measured reflections
diffractometer	4077 independent reflections
Radiation source: fine-focus sealed tube	3022 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.028$
ω scans	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.2^\circ$
Absorption correction: multi-scan	$h = -13 \rightarrow 14$
(SADABS; Sheldrick, 1996)	$k = -11 \rightarrow 4$
$T_{\min} = 0.703, T_{\max} = 1.000$	$l = -24 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.125$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
4077 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0592P)^2 + 0.7767P]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.18 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.40542 (4)	0.22472 (5)	0.23431 (3)	0.06021 (17)	
S1	0.39013 (7)	0.38008 (9)	0.11883 (4)	0.0492 (2)	
S2	0.51157 (8)	0.14604 (12)	0.39459 (5)	0.0604 (2)	
S3	0.05933 (8)	0.47654 (10)	0.29022 (5)	0.0583 (2)	
N1	0.4820 (3)	0.2133 (3)	0.02977 (15)	0.0547 (7)	
N2	0.6034 (2)	0.4274 (3)	0.07782 (14)	0.0522 (6)	
N3	0.5545 (2)	0.3694 (3)	0.26678 (12)	0.0404 (5)	
N4	0.6536 (3)	0.3205 (4)	0.49195 (15)	0.0615 (8)	
N5	0.4632 (3)	0.2354 (4)	0.51544 (18)	0.0740 (9)	

N6	0.2579 (3)	0.3150 (3)	0.25756 (16)	0.0560 (7)
C1	0.5066 (3)	0.3375 (4)	0.07088 (15)	0.0425 (6)
C2	0.5642 (3)	0.1795 (4)	-0.00998 (18)	0.0573 (8)
H2	0.5505	0.0949	-0.0404	0.069*
C3	0.6680(3)	0.2642 (4)	-0.00794 (18)	0.0565 (9)
H3	0.7248	0.2391	-0.0360	0.068*
C4	0.6842 (3)	0.3875 (4)	0.03729 (18)	0.0578 (9)
H4	0.7544	0.4465	0.0401	0.069*
C5	0.4517 (3)	0.5411 (4)	0.17298 (17)	0.0508 (7)
H5A	0.4792	0.6173	0.1424	0.061*
H5B	0.3865	0.5875	0.1928	0.061*
C6	0.5557 (3)	0.5052 (3)	0.23334 (15)	0.0428 (7)
C7	0.6469 (3)	0.6129 (4)	0.25452 (18)	0.0542 (8)
H7	0.6454	0.7066	0.2307	0.065*
C8	0.7392 (3)	0.5806 (5)	0.31075 (19)	0.0611 (9)
H8	0.8015	0.6513	0.3254	0.073*
C9	0.7378 (3)	0.4420 (4)	0.34490 (18)	0.0549 (8)
H9	0.7993	0.4179	0.3834	0.066*
C10	0.6455 (3)	0.3388 (4)	0.32216 (16)	0.0463 (7)
C11	0.6440 (3)	0.1836 (4)	0.35597 (19)	0.0582 (8)
H11A	0.7163	0.1736	0.3930	0.070*
H11B	0.6487	0.1055	0.3202	0.070*
C12	0.5486 (3)	0.2465 (4)	0.47565 (18)	0.0514 (8)
C13	0.6736 (4)	0.3913 (5)	0.5549 (2)	0.0738 (11)
H13	0.7461	0.4454	0.5686	0.089*
C14	0.5936 (4)	0.3884 (6)	0.5997 (2)	0.0797 (12)
H14	0.6095	0.4388	0.6435	0.096*
C15	0.4898 (4)	0.3090 (7)	0.5780 (2)	0.0903 (15)
H15	0.4334	0.3051	0.6080	0.108*
C16	0.1773 (3)	0.3838 (3)	0.26969 (16)	0.0443 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0529 (3)	0.0354 (2)	0.0982 (4)	0.00026 (17)	0.0294 (2)	-0.0022 (2)
S 1	0.0522 (4)	0.0427 (4)	0.0549 (4)	0.0001 (3)	0.0157 (3)	0.0011 (3)
S2	0.0644 (5)	0.0590 (6)	0.0588 (5)	-0.0066 (4)	0.0142 (4)	0.0121 (4)
S3	0.0532 (5)	0.0343 (4)	0.0968 (7)	0.0037 (3)	0.0376 (4)	0.0064 (4)
N1	0.0595 (17)	0.0439 (16)	0.0633 (16)	-0.0106 (13)	0.0185 (13)	-0.0113 (13)
N2	0.0567 (16)	0.0472 (16)	0.0533 (15)	-0.0099 (13)	0.0123 (12)	-0.0070 (12)
N3	0.0459 (13)	0.0321 (13)	0.0478 (13)	0.0040 (10)	0.0206 (11)	0.0004 (10)
N4	0.0522 (17)	0.075 (2)	0.0563 (17)	-0.0033 (15)	0.0080 (13)	0.0150 (15)
N5	0.0558 (18)	0.095 (3)	0.076 (2)	-0.0009 (17)	0.0254 (15)	0.0030 (19)
N6	0.0511 (15)	0.0437 (15)	0.0782 (18)	0.0038 (13)	0.0252 (14)	0.0003 (14)
C1	0.0507 (16)	0.0363 (15)	0.0401 (14)	0.0009 (13)	0.0080 (12)	0.0061 (12)
C2	0.066 (2)	0.0468 (18)	0.0612 (19)	-0.0061 (16)	0.0175 (17)	-0.0147 (16)
C3	0.057 (2)	0.058 (2)	0.0585 (19)	0.0017 (16)	0.0199 (16)	-0.0053 (16)
C4	0.0519 (18)	0.061 (2)	0.063 (2)	-0.0144 (16)	0.0168 (16)	-0.0090 (17)

supporting information

C5	0.066 (2)	0.0342 (16)	0.0550 (17)	0.0072 (15)	0.0190 (15)	0.0018 (14)
C6	0.0543 (16)	0.0332 (15)	0.0477 (15)	0.0029 (13)	0.0268 (13)	-0.0035 (12)
C7	0.068 (2)	0.0411 (17)	0.0615 (19)	-0.0099 (16)	0.0331 (17)	-0.0036 (15)
C8	0.059 (2)	0.063 (2)	0.067 (2)	-0.0173 (18)	0.0274 (18)	-0.0150 (18)
C9	0.0469 (17)	0.065 (2)	0.0551 (18)	0.0031 (16)	0.0159 (14)	-0.0075 (17)
C10	0.0495 (17)	0.0447 (17)	0.0506 (17)	0.0086 (14)	0.0244 (14)	0.0015 (14)
C11	0.063 (2)	0.057 (2)	0.0587 (19)	0.0121 (17)	0.0203 (16)	0.0087 (17)
C12	0.0459 (17)	0.0512 (19)	0.0583 (18)	0.0115 (14)	0.0133 (14)	0.0189 (15)
C13	0.075 (3)	0.076 (3)	0.064 (2)	-0.008(2)	-0.001 (2)	0.010 (2)
C14	0.091 (3)	0.081 (3)	0.067 (2)	0.017 (3)	0.014 (2)	-0.004 (2)
C15	0.078 (3)	0.128 (4)	0.076 (3)	0.016 (3)	0.040 (2)	-0.006 (3)
C16	0.0457 (16)	0.0334 (15)	0.0566 (17)	-0.0040 (13)	0.0166 (13)	0.0032 (13)

Geometric parameters (Å, °)

Cu1—N6	1.951 (3)	C2—H2	0.9300	-
Cu1—N3	2.083 (2)	C3—C4	1.364 (5)	
Cu1—S3 ⁱ	2.2536 (9)	С3—Н3	0.9300	
Cu1—S1	2.5621 (9)	C4—H4	0.9300	
S1—C1	1.767 (3)	C5—C6	1.505 (4)	
S1—C5	1.794 (3)	C5—H5A	0.9700	
S2—C12	1.756 (4)	С5—Н5В	0.9700	
S2—C11	1.804 (3)	C6—C7	1.385 (4)	
S3—C16	1.653 (3)	С7—С8	1.369 (5)	
S3—Cu1 ⁱⁱ	2.2536 (9)	С7—Н7	0.9300	
N1-C1	1.331 (4)	C8—C9	1.369 (5)	
N1-C2	1.331 (4)	C8—H8	0.9300	
N2C1	1.319 (4)	C9—C10	1.372 (5)	
N2-C4	1.341 (4)	С9—Н9	0.9300	
N3—C6	1.341 (4)	C10—C11	1.494 (5)	
N3—C10	1.346 (4)	C11—H11A	0.9700	
N4—C12	1.322 (4)	C11—H11B	0.9700	
N4—C13	1.329 (5)	C13—C14	1.351 (6)	
N5-C12	1.331 (4)	C13—H13	0.9300	
N5-C15	1.337 (6)	C14—C15	1.344 (7)	
N6-C16	1.140 (4)	C14—H14	0.9300	
C2—C3	1.367 (5)	C15—H15	0.9300	
N6—Cu1—N3	110.66 (11)	H5A—C5—H5B	107.4	
N6—Cu1—S3 ⁱ	128.26 (9)	N3—C6—C7	121.8 (3)	
N3—Cu1—S3 ⁱ	118.42 (7)	N3—C6—C5	118.0 (3)	
N6—Cu1—S1	93.67 (9)	C7—C6—C5	120.1 (3)	
N3—Cu1—S1	81.83 (7)	C8—C7—C6	119.6 (3)	
S3 ⁱ —Cu1—S1	108.00 (4)	C8—C7—H7	120.2	
C1—S1—C5	102.84 (15)	С6—С7—Н7	120.2	
C1—S1—Cu1	113.65 (10)	С7—С8—С9	118.6 (3)	
C5—S1—Cu1	87.58 (10)	С7—С8—Н8	120.7	
C12—S2—C11	101.37 (17)	С9—С8—Н8	120.7	

C16—S3—Cu1 ⁱⁱ	103.70 (10)	C8—C9—C10	119.9 (3)
C1—N1—C2	115.3 (3)	С8—С9—Н9	120.1
C1—N2—C4	114.7 (3)	С10—С9—Н9	120.1
C6—N3—C10	118.2 (3)	N3—C10—C9	122.0 (3)
C6—N3—Cu1	117.9 (2)	N3—C10—C11	116.6 (3)
C10—N3—Cu1	123.8 (2)	C9—C10—C11	121.4 (3)
C12—N4—C13	115.2 (3)	C10—C11—S2	114.6 (2)
C12—N5—C15	114.5 (3)	C10—C11—H11A	108.6
C16—N6—Cu1	172.1 (3)	S2—C11—H11A	108.6
N2—C1—N1	127.7 (3)	C10—C11—H11B	108.6
N2-C1-S1	119.7 (2)	S2—C11—H11B	108.6
N1-C1-S1	112.6 (2)	H11A—C11—H11B	107.6
N1-C2-C3	122.7 (3)	N4—C12—N5	127.0 (3)
N1-C2-H2	118.7	N4-C12-S2	119.9(2)
C3-C2-H2	118.7	N5-C12-S2	113.2(3)
C4-C3-C2	116.6 (3)	N4-C13-C14	123.2(4)
C4—C3—H3	121.7	N4—C13—H13	118.4
C2—C3—H3	121.7	C14—C13—H13	118.4
$N_2 - C_4 - C_3$	123.0(3)	C15-C14-C13	116.7 (4)
N2-C4-H4	118 5	C_{15} C_{14} H_{14}	121.7
C3-C4-H4	118.5	C_{13} C_{14} H_{14}	121.7
C6-C5-S1	115.8 (2)	N5-C15-C14	121.7 123.5(4)
C6-C5-H5A	108.3	N5-C15-H15	118.2
S1-C5-H5A	108.3	C_{14} C_{15} H_{15}	118.2
C6-C5-H5B	108.3	N6-C16-S3	177.0(3)
S1—C5—H5B	108.3		177.0 (5)
51 00 1100	100.5		
N6—Cu1—S1—C1	-178.20(14)	C10—N3—C6—C5	-178.1(2)
N_3 — Cu_1 — S_1 — C_1	71 44 (13)	Cu1 - N3 - C6 - C5	-2.2(3)
S3 ⁱ —Cu1—S1—C1	-45.88(12)	S1-C5-C6-N3	-35.0(3)
N6-Cu1-S1-C5	78.83 (14)	S1-C5-C6-C7	147.2 (2)
N3—Cu1—S1—C5	-31.53(12)	N3—C6—C7—C8	0.5 (4)
S3 ⁱ —Cu1—S1—C5	-148.84(11)	C5—C6—C7—C8	178.2 (3)
N6—Cu1—N3—C6	-67.0(2)	C6-C7-C8-C9	-0.5(5)
S3 ⁱ —Cu1—N3—C6	129.96 (18)	C7—C8—C9—C10	0.4 (5)
S1—Cu1—N3—C6	23.86 (18)	C6—N3—C10—C9	0.2 (4)
N6—Cu1—N3—C10	108.6 (2)	Cu1—N3—C10—C9	-175.4(2)
S3 ⁱ —Cu1—N3—C10	-54.4(2)	C6—N3—C10—C11	-177.3(2)
S1—Cu1—N3—C10	-160.5(2)	Cu1—N3—C10—C11	7.0 (3)
C4—N2—C1—N1	1.0 (5)	C8-C9-C10-N3	-0.3(5)
C4-N2-C1-S1	-177.9(2)	C8-C9-C10-C11	177.2 (3)
C_2 —N1—C1—N2	-1.8(5)	N3-C10-C11-S2	-61.7(3)
C2 - N1 - C1 - S1	177.2 (3)	C9—C10—C11—S2	120.8 (3)
C5—S1—C1—N2	-4.7 (3)	C12—S2—C11—C10	-79.1 (3)
Cu1—S1—C1—N2	-97.7 (2)	C13—N4—C12—N5	-0.5 (6)
C5—S1—C1—N1	176.2 (2)	C13—N4—C12—S2	-179.2(3)
Cu1—S1—C1—N1	83.2 (2)	C15—N5—C12—N4	0.3 (6)
C1—N1—C2—C3	1.2 (5)	C15—N5—C12—S2	179.1 (3)

supporting information

N1—C2—C3—C4	-0.2 (6)	C11—S2—C12—N4	-0.6 (3)
C1—N2—C4—C3	0.3 (5)	C11—S2—C12—N5	-179.5 (3)
C2—C3—C4—N2	-0.7 (5)	C12—N4—C13—C14	0.3 (6)
C1—S1—C5—C6	-71.3 (2)	N4—C13—C14—C15	0.0 (7)
Cu1—S1—C5—C6	42.4 (2)	C12—N5—C15—C14	0.1 (7)
C10—N3—C6—C7	-0.3 (4)	C13—C14—C15—N5	-0.2 (8)
Cu1—N3—C6—C7	175.6 (2)		

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2.