metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[di- μ_3 -chlorido-di- μ_2 -chlorido-{ μ_4 -N,N,N',N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine- $\kappa^4 P:P':P'''$ }tetracopper(II)]

Jia-Qin Liu, Yan Zhang, Ya-Jing Lü and Zhen-Jü Jiang*

School of Physics and Chemistry, Xihua University, Chengdu 610039, People's Republic of China

Correspondence e-mail: liujq67@yahoo.com.cn

Received 12 January 2012; accepted 12 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.054; wR factor = 0.143; data-to-parameter ratio = 16.4.

In the title complex, $[Cu_4Cl_4(C_{58}H_{52}N_2P_4)]_n$, four Cu^{II} atoms are held together *via* two doubly bridging and two triply bridging chlorides, forming a stair-like Cu_4Cl_4 core having crystallographically imposed inversion symmetry, while the benzene-1,4-diamine ligand (with a crystallographic inversion center at the centroid) acts in a tetradentate coordination mode, bridging two adjacent Cu_4Cl_4 cores, resulting in a chain along the *a*-axis direction. One Cu atom has a distorted tetrahedral geometry, coordinated by one P atom, one μ_2 -Cl and two μ_3 -Cl atoms, while the second Cu atom adopts a trigonal geometry, coordinated by one P atom, one μ_2 -Cl and one μ_3 -Cl atoms.

Related literature

For the structures and properties of Cu^{I} complexes containing polyphosphine ligands, see: Li *et al.* (2009); Kohl *et al.* (2006); Wang *et al.* (2008); Hou *et al.*(2011); Ni *et al.* (2011). For the synthesis of Cu(I) complexes with diphosphine ligands, see: Saravanabharathi *et al.* (2002); Sivasankar *et al.* (2004).

Experimental

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.852, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	325 parameters
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 0.94	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
5333 reflections	$\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$

15819 measured reflections

 $R_{\rm int} = 0.085$

5333 independent reflections

3089 reflections with $I > 2\sigma(I)$

 Table 1

 Selected bond lengths (Å).

Cu1-P1	2.1998 (19)	Cu2-P2 ⁱⁱ	2.188 (2)
Cu1-Cl2	2.3975 (19)	Cu2-Cl2	2.3062 (18)
Cu1-Cl1	2.4140 (17)	Cu2-Cl1	2.3255 (18)
Cu1-Cl1 ⁱ	2.565 (2)		. ,

Symmetry codes: (i) -x - 1, -y, -z + 1; (ii) -x, -y, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Key Program of Xihua University (E0913305, E0913307).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2150).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hou, R., Huang, T.-H., Wang, X.-J., Jiang, X.-F., Ni, Q.-L., Gui, L.-C., Fan, Y.-J. & Tan, Y.-L. (2011). Dalton Trans. 40, 7551–7558.
- Kohl, S. W., Heinemann, F. W., Hummert, M., Bauer, W. & Grohmann, A. (2006). Dalton Trans. pp. 5583–5592.
- Li, N.-Y., Ren, Z.-G., Liu, D., Wang, J., Dai, M., Li, H.-X. & Lang, J.-P. (2009). Inorg. Chem. Commun. 12, 1031–1034.
- Ni, Q.-L., Jiang, X.-F., Gui, L.-C., Wang, X.-J., Yang, K.-G. & Bi, X.-S. (2011). New J. Chem. 35, 2471–2476.
- Saravanabharathi, D., Monika, Venugopalan, P. & Samuelson, A. G. (2002). Polyhedron, 21, 2433–2443.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivasankar, C., Nethaji, M. & Samuelson, A. G. (2004). *Inorg. Chem. Commun.* 7, 238–240.
- Wang, X.-J., Gui, L.-C., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.

supporting information

Acta Cryst. (2012). E68, m430 [https://doi.org/10.1107/S1600536812010860]

Poly[di- μ_3 -chlorido-di- μ_2 -chlorido-{ μ_4 -N,N,N',N'-tetrakis[(diphenyl-phosphanyl)methyl]benzene-1,4-diamine- $\kappa^4 P$:P'':P'''}tetracopper(II)]

Jia-Qin Liu, Yan Zhang, Ya-Jing Lü and Zhen-Jü Jiang

S1. Comment

Recently, Cu^{I} complexes containing multiphosphine ligands have received much attention so far due to their special structures, novel reactivity, as well as catalytic and luminescent properties (Kohl *et al.*, 2006; Wang *et al.*, 2008; Hou *et al.*, 2011; Ni *et al.*, 2011). However, synthesis of Cu^{I} complexes with tetraphosphine ligands have been virtually not explored, though a great number of Cu(I) complexes with diphosphines were reported (Saravanabharathi *et al.*, 2002; Sivasankar *et al.*, 2004; Li *et al.*, 2009). Herein, we report the synthesis and crystal structure of a new Cu^{I} complex with the tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda), the title complex [$Cu_4Cl_4(dpppda)$]_n.

The asymmetric unit of the title complex, $[Cu_2Cl_2(C_{29}H_{26}NP_2)]_n$, contains two copper ions, two chlorine atoms and one half of the *N*,*N*,*N'*,*N'*-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (dpppda). Four copper atoms are held together *via* two doubly bridging and two triply-bridging chlorides to form a stair-like Cu₄Cl₄ core having a crystallographically imposed centrosymmetry, while the *N*,*N*,*N'*,*N'*-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine ligand (with a crystallographic inversion center at the midpoint of the central phenyl ring) acts as a tetradentate coordination mode to bridge two adjacent Cu₄Cl₄ cores resulting in a one-dimentional chain. The structure of the title complex is anologous to the reported complex [Cu₄I₄(dpppda)] (Li *et al.*, 2009). Cu1 has a distorted tetrahedral geometry, coordinated by one P atom, one μ_2 -Cl and two μ_3 -Cl atoms, while Cu2 adopts a trigonal geometry, coordinated by one P atom, one μ_2 -Cl and one μ_3 -Cl atoms. The mean Cu—Cl and Cu—P bond distances are 2.40 (1) and 2.19 (2) Å, respectively.

S2. Experimental

CuCl (0.0198 g, 0.2 mmol) was added with stirring to a solution of N, N, N', N'-tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine (0.0900 g, 0.10 mmol) in DMF (5 ml), and the resulting solution was allowed to stir for 1 h at room temperature. Slow diffusion of diethyl ether into the solution give colourless block crystals suitable for X-ray analysis after three days.

S3. Refinement

All hydrogen atoms were generated geometrically with C—H distances of 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms) and refined with a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure of the title compound with displacement ellipsoids drawn at the 20% probability level. Hydrogen atoms are omitted for clarity. [symmetry code: (A) 1-x, -y, 1-z; (B) -x, -y, 1-z; (C) -1+x, y, z.]

Poly[di- μ_3 -chlorido-di- μ_2 -chlorido-{ μ_4 - N, N, N', N'- tetrakis[(diphenylphosphanyl)methyl]benzene-1,4-diamine- $\kappa^4 P: P': P'''$ }tetracopper(II)]

Crystal data	
$[Cu_4Cl_4(C_{58}H_{52}N_2P_4)]$	V = 2715 (3) Å ³
$M_r = 1296.86$	Z = 2
Monoclinic, $P2_1/c$	F(000) = 1316
Hall symbol: -P 2ybc	$D_{\rm x} = 1.586 {\rm Mg} {\rm m}^{-3}$
a = 10.298 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 17.649 (12) Å	Cell parameters from 5682 reflections
c = 18.009 (9) Å	$\theta = 2.8 - 26.3^{\circ}$
$\beta = 123.94 \ (3)^{\circ}$	$\mu = 1.90 \text{ mm}^{-1}$
	-

T = 296 KBlock, colourless

Data collection

Bruker SMART CCD area-detector diffractometer	15819 measured reflections 5333 independent reflections
Radiation source: fine-focus sealed tube	3089 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.085$
ωscans	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -12 \rightarrow 9$
(SADABS; Bruker, 1998)	$k = -19 \rightarrow 21$
$T_{\min} = 0.852, \ T_{\max} = 1.000$	$l = -21 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.143$	neighbouring sites

 $0.20 \times 0.15 \times 0.13 \text{ mm}$

R[I] > 20(I')] = 0.054	Hydrogen site location. Interfed nom
$wR(F^2) = 0.143$	neighbouring sites
S = 0.94	H-atom parameters constrained
5333 reflections	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.70 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.62 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	-0.45394 (8)	0.04466 (4)	0.43168 (4)	0.0540 (2)	
Cu2	-0.15464 (7)	0.07255 (4)	0.62081 (4)	0.0487 (2)	
Cl1	-0.30501 (14)	-0.03659 (7)	0.56069 (8)	0.0417 (3)	
Cl2	-0.32846 (15)	0.15805 (7)	0.51454 (9)	0.0526 (4)	
P1	-0.52339 (15)	0.01608 (8)	0.29527 (8)	0.0402 (3)	
P2	-0.07631 (15)	-0.08176 (7)	0.25371 (8)	0.0367 (3)	
N1	-0.2438 (4)	-0.0268 (2)	0.3202 (2)	0.0397 (10)	
C1	-0.1055 (6)	0.0562 (3)	0.4500 (3)	0.0370 (12)	
H1A	-0.1767	0.0948	0.4172	0.044*	
C2	-0.1233 (5)	-0.0133 (3)	0.4094 (3)	0.0336 (11)	
C3	-0.0155 (6)	-0.0698 (3)	0.4619 (3)	0.0364 (11)	
H3A	-0.0251	-0.1175	0.4372	0.044*	
C4	-0.3712 (5)	0.0258 (3)	0.2699 (3)	0.0393 (12)	
H4A	-0.4193	0.0173	0.2064	0.047*	

H4B	-0.3304	0.0771	0.2835	0.047*
C5	-0.5742 (6)	-0.0830(3)	0.2617 (3)	0.0430 (13)
C6	-0.6482 (7)	-0.1100 (4)	0.1736 (4)	0.0658 (18)
H6A	-0.6962	-0.0752	0.1269	0.079*
C7	-0.6531 (8)	-0.1842 (4)	0.1535 (5)	0.077 (2)
H7A	-0.7037	-0.1999	0.0943	0.092*
C8	-0.5818 (8)	-0.2361 (4)	0.2222 (5)	0.087 (2)
H8A	-0.5802	-0.2870	0.2094	0.104*
C9	-0.5123 (8)	-0.2134 (4)	0.3103 (4)	0.088 (2)
H9A	-0.4684	-0.2490	0.3562	0.105*
C10	-0.5089 (7)	-0.1380 (3)	0.3292 (4)	0.0647 (17)
H10A	-0.4619	-0.1230	0.3884	0.078*
C11	-0.6787 (6)	0.0772 (3)	0.2085 (3)	0.0481 (14)
C12	-0.7157 (8)	0.0836 (4)	0.1220 (4)	0.078 (2)
H12A	-0.6607	0.0545	0.1053	0.094*
C13	-0.8307 (9)	0.1312 (4)	0.0603 (4)	0.099 (3)
H13A	-0.8583	0.1319	0.0015	0.118*
C14	-0.9051 (8)	0.1783 (4)	0.0868 (5)	0.086(2)
H14A	-0.9836	0.2108	0.0454	0.103*
C15	-0.8645 (7)	0.1776 (4)	0.1730 (5)	0.0743 (19)
H15A	-0.9118	0.2110	0.1910	0.089*
C16	-0.7513 (7)	0.1263 (3)	0.2341 (4)	0.0647 (17)
H16A	-0.7245	0.1253	0.2927	0.078*
C17	-0.2353(5)	-0.0931(3)	0.2727(3)	0.0402 (12)
H17A	-0.3346	-0.0990	0.2156	0.048*
H17B	-0.2165	-0.1385	0.3077	0.048*
C18	-0.1096(5)	-0.1626(2)	0.1820 (3)	0.0352 (11)
C19	-0.2520(6)	-0.1996(3)	0.1284(3)	0.0516 (14)
H19A	-0.3385	-0.1823	0.1271	0.062*
C20	-0.2680(7)	-0.2612(3)	0.0773 (4)	0.0551 (15)
H20A	-0.3647	-0.2849	0.0418	0.066*
C21	-0.1420(7)	-0.2879(3)	0.0785 (4)	0.0525 (14)
H21A	-0.1526	-0.3296	0.0441	0.063*
C22	-0.0008(7)	-0.2525(3)	0.1307(4)	0.0548(15)
H22A	0.0849	-0.2699	0.1312	0.066*
C23	0.0160 (6)	-0.1911(3)	0.1812 0.1827(3)	0.0453(13)
H23A	0.1138	-0.1685	0.2190	0.054*
C24	-0 1553 (6)	0.0012(3)	0.2790 0.1797(3)	0.021 0.0430(13)
C25	-0.1172(7)	0.0012(3)	0.1797(3) 0.2188(4)	0.0450(15) 0.0545(15)
H25A	-0.0423	0.0769	0.2798	0.065*
C26	-0.1018(8)	0.0707	0.1661 (5)	0.005
H26A	-0.1672	0.1304 (3)	0.1001 (5)	0.084*
C27	-0.2081 (8)	0.1340 0.1301 (4)	0.1928 0.0776 (4)	0.034
U27 H27A	-0.3477	0.1301 (4)	0.0770(4)	0.0710(19)
C28	-0.3334(8)	0.1752 0.0610 (4)	0.0378 (4)	0.005
U20	-0.4057	0.0010 (4)	-0.0378(4)	0.0714(19)
C20	0.4037 -0.2620(7)	-0.0025(2)	0.0237	0.000°
U29	-0.2029 (7)	-0.0055(5)	0.0600 (4)	0.000/(1/)
н29А	-0.28/8	-0.0505	0.0399	0.0/3*

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cu1	0.0651 (5)	0.0619 (5)	0.0341 (4)	0.0056 (3)	0.0270 (4)	0.0001 (3)
Cu2	0.0389 (4)	0.0554 (4)	0.0406 (4)	-0.0038 (3)	0.0154 (3)	-0.0054 (3)
Cl1	0.0392 (7)	0.0407 (7)	0.0396 (7)	-0.0005 (5)	0.0187 (6)	0.0031 (5)
Cl2	0.0503 (8)	0.0430 (8)	0.0577 (9)	0.0049 (6)	0.0259 (7)	0.0008 (6)
P1	0.0376 (8)	0.0506 (9)	0.0318 (7)	0.0042 (6)	0.0190 (6)	0.0011 (6)
P2	0.0355 (7)	0.0419 (8)	0.0322 (7)	-0.0021 (6)	0.0185 (6)	-0.0041 (6)
N1	0.038 (2)	0.043 (2)	0.035 (2)	0.0018 (19)	0.018 (2)	-0.0083 (18)
C1	0.040 (3)	0.038 (3)	0.032 (3)	0.001 (2)	0.020 (2)	0.004 (2)
C2	0.035 (3)	0.039 (3)	0.029 (2)	-0.002(2)	0.019 (2)	-0.001 (2)
C3	0.046 (3)	0.031 (3)	0.040 (3)	-0.006 (2)	0.030 (3)	-0.006 (2)
C4	0.041 (3)	0.048 (3)	0.026 (2)	-0.002 (2)	0.017 (2)	0.001 (2)
C5	0.035 (3)	0.055 (3)	0.047 (3)	-0.004 (2)	0.027 (3)	-0.008 (3)
C6	0.066 (4)	0.079 (5)	0.044 (3)	-0.022 (3)	0.026 (3)	-0.010 (3)
C7	0.083 (5)	0.070 (5)	0.087 (5)	-0.034 (4)	0.053 (4)	-0.037 (4)
C8	0.068 (5)	0.058 (4)	0.119 (7)	-0.011 (4)	0.044 (5)	-0.022 (5)
C9	0.088 (5)	0.063 (5)	0.066 (5)	0.000 (4)	0.014 (4)	0.005 (4)
C10	0.064 (4)	0.058 (4)	0.054 (4)	-0.006 (3)	0.021 (3)	0.000 (3)
C11	0.044 (3)	0.064 (4)	0.034 (3)	0.010 (3)	0.021 (3)	0.003 (2)
C12	0.093 (5)	0.090 (5)	0.047 (4)	0.045 (4)	0.037 (4)	0.017 (3)
C13	0.123 (7)	0.107 (6)	0.053 (4)	0.055 (5)	0.041 (5)	0.022 (4)
C14	0.065 (5)	0.106 (6)	0.064 (5)	0.027 (4)	0.021 (4)	0.022 (4)
C15	0.075 (5)	0.072 (5)	0.083 (5)	0.027 (4)	0.048 (4)	0.016 (4)
C16	0.064 (4)	0.070 (4)	0.057 (4)	0.018 (3)	0.032 (3)	0.015 (3)
C17	0.040 (3)	0.047 (3)	0.036 (3)	-0.001 (2)	0.023 (2)	-0.002 (2)
C18	0.038 (3)	0.034 (3)	0.034 (3)	0.000(2)	0.020 (2)	-0.001 (2)
C19	0.043 (3)	0.058 (4)	0.053 (3)	-0.005 (3)	0.026 (3)	-0.017 (3)
C20	0.052 (4)	0.061 (4)	0.056 (4)	-0.018 (3)	0.033 (3)	-0.022 (3)
C21	0.068 (4)	0.043 (3)	0.056 (4)	-0.006 (3)	0.040 (3)	-0.011 (3)
C22	0.052 (4)	0.053 (4)	0.065 (4)	0.005 (3)	0.036 (3)	-0.007 (3)
C23	0.040 (3)	0.048 (3)	0.050 (3)	0.000(2)	0.027 (3)	-0.007(2)
C24	0.043 (3)	0.046 (3)	0.041 (3)	-0.004 (2)	0.025 (3)	-0.004(2)
C25	0.062 (4)	0.048 (3)	0.053 (3)	-0.011 (3)	0.032 (3)	-0.009 (3)
C26	0.090 (5)	0.035 (3)	0.085 (5)	-0.005 (3)	0.048 (4)	-0.002 (3)
C27	0.077 (5)	0.056 (4)	0.068 (4)	0.006 (3)	0.033 (4)	0.021 (3)
C28	0.077 (5)	0.067 (5)	0.046 (4)	0.000 (3)	0.020 (3)	0.008 (3)
C29	0.074 (4)	0.048 (4)	0.046 (3)	-0.003 (3)	0.025 (3)	-0.004 (3)

Geometric parameters (Å, °)

Cu1—P1	2.1998 (19)	C10—H10A	0.9300	
Cu1—Cl2	2.3975 (19)	C11—C16	1.381 (7)	
Cu1—Cl1	2.4140 (17)	C11—C12	1.386 (8)	
Cu1—Cl1 ⁱ	2.565 (2)	C12—C13	1.369 (8)	
Cu2—P2 ⁱⁱ	2.188 (2)	C12—H12A	0.9300	
Cu2—Cl2	2.3062 (18)	C13—C14	1.382 (9)	

Cu2—Cl1	2.3255 (18)	C13—H13A	0.9300
Cl1—Cu1 ⁱ	2.565 (2)	C14—C15	1.364 (9)
P1—C5	1.828 (5)	C14—H14A	0.9300
P1—C11	1.837 (5)	C15—C16	1.399 (7)
P1C4	1.869 (5)	C15—H15A	0.9300
P2—C18	1.824 (5)	C16—H16A	0.9300
P2—C24	1.836 (5)	C17—H17A	0.9700
P2—C17	1.861 (5)	C17—H17B	0.9700
P2—Cu2 ⁱⁱ	2.188 (2)	C18—C23	1.381 (7)
N1—C2	1.397 (5)	C18—C19	1.389 (6)
N1—C4	1.442 (6)	C19—C20	1.374 (7)
N1—C17	1.479 (6)	С19—Н19А	0.9300
C1—C3 ⁱⁱ	1.386 (6)	C20—C21	1.368 (8)
C1—C2	1.387 (6)	C20—H20A	0.9300
C1—H1A	0.9300	C21—C22	1.364 (7)
C2—C3	1.396 (6)	C21—H21A	0.9300
C3—C1 ⁱⁱ	1.386 (6)	C22—C23	1.378 (7)
С3—НЗА	0.9300	C22—H22A	0.9300
C4—H4A	0.9700	C23—H23A	0.9300
C4—H4B	0.9700	C24—C25	1.378 (7)
C5-C10	1,400 (7)	C24—C29	1.386 (7)
C5—C6	1.405 (7)	C25—C26	1.404 (7)
C6—C7	1.352 (8)	C25—H25A	0.9300
C6—H6A	0.9300	C26—C27	1.342 (8)
C7—C8	1.377 (9)	C26—H26A	0.9300
C7—H7A	0.9300	C27—C28	1.358 (8)
C8—C9	1.387 (9)	C27—H27A	0.9300
C8—H8A	0.9300	C_{28} C_{29}	1.380(7)
C9—C10	1 368 (8)	C28—H28A	0.9300
C9—H9A	0.9300	C29—H29A	0.9300
	0.9500		0.9500
P1—Cu1—Cl2	127.78 (6)	C16—C11—C12	117.7 (5)
P1—Cu1—Cl1	125.05 (7)	C16—C11—P1	117.4 (4)
Cl2—Cu1—Cl1	93.71 (7)	C12—C11—P1	124.5 (4)
P1—Cu1—Cl1 ⁱ	109.03 (6)	C13—C12—C11	122.2 (6)
Cl2—Cu1—Cl1 ⁱ	102.38 (6)	C13—C12—H12A	118.9
Cl1—Cu1—Cl1 ⁱ	91.68 (6)	C11—C12—H12A	118.9
$P2^{ii}$ —Cu2—Cl2	134.50 (6)	C12—C13—C14	118.9 (7)
$P2^{ii}$ —Cu2—Cl1	126.84 (6)	С12—С13—Н13А	120.5
Cl2—Cu2—Cl1	98.57 (7)	C14—C13—H13A	120.5
Cu2—Cl1—Cu1	81.73 (6)	C15—C14—C13	120.7 (6)
Cu2—Cl1—Cu1 ⁱ	115.71 (6)	C15—C14—H14A	119.6
Cu1—Cl1—Cu1 ⁱ	88.32 (6)	C13—C14—H14A	119.6
Cu2—Cl2—Cu1	82.49 (7)	C14—C15—C16	119.5 (6)
C5—P1—C11	109.2 (2)	C14—C15—H15A	120.2
C5—P1—C4	97.5 (2)	C16—C15—H15A	120.2
C11—P1—C4	100.9 (2)	C11—C16—C15	120.8 (6)
C5—P1—Cu1	116.30 (18)	C11—C16—H16A	119.6

C11—P1—Cu1	113.65 (18)	C15—C16—H16A	119.6
C4—P1—Cu1	117.26 (16)	N1—C17—P2	111.4 (3)
C18—P2—C24	106.1 (2)	N1—C17—H17A	109.4
C18—P2—C17	102.1 (2)	P2	109.4
C24—P2—C17	98.1 (2)	N1—C17—H17B	109.4
C18—P2—Cu2 ⁱⁱ	117.10 (16)	P2	109.4
C24—P2—Cu2 ⁱⁱ	118.43 (17)	H17A—C17—H17B	108.0
C17—P2—Cu2 ⁱⁱ	112.24 (17)	C23—C18—C19	117.1 (4)
C2—N1—C4	121.7 (4)	C23—C18—P2	118.3 (4)
C2—N1—C17	119.9 (4)	C19—C18—P2	124.6 (4)
C4—N1—C17	118.2 (4)	C20—C19—C18	121.5 (5)
C3 ⁱⁱ —C1—C2	121.7 (4)	C20—C19—H19A	119.2
C3 ⁱⁱ —C1—H1A	119.1	C18—C19—H19A	119.2
C2—C1—H1A	119.1	C21—C20—C19	120.2 (5)
C1—C2—C3	117.0 (4)	C21—C20—H20A	119.9
C1—C2—N1	121.9 (4)	C19—C20—H20A	119.9
C3—C2—N1	121.1 (4)	C22—C21—C20	119.3 (5)
C1 ⁱⁱ —C3—C2	121.2 (4)	C22—C21—H21A	120.3
C1 ⁱⁱ —C3—H3A	119.4	C20—C21—H21A	120.3
С2—С3—НЗА	119.4	C21—C22—C23	120.6 (5)
N1—C4—P1	112.3 (3)	C21—C22—H22A	119.7
N1—C4—H4A	109.1	C23—C22—H22A	119.7
P1C4H4A	109.1	C22—C23—C18	121.2 (5)
N1—C4—H4B	109.1	C22—C23—H23A	119.4
P1—C4—H4B	109.1	C18—C23—H23A	119.4
H4A—C4—H4B	107.9	C25—C24—C29	118.2 (5)
C10—C5—C6	116.0 (5)	C25—C24—P2	117.9 (4)
C10—C5—P1	117.8 (4)	C29—C24—P2	123.6 (4)
C6C5P1	125.0 (4)	C24—C25—C26	119.8 (5)
C7—C6—C5	123.2 (6)	C24—C25—H25A	120.1
С7—С6—Н6А	118.4	C26—C25—H25A	120.1
С5—С6—Н6А	118.4	C27—C26—C25	120.8 (5)
C6—C7—C8	118.8 (6)	C27—C26—H26A	119.6
С6—С7—Н7А	120.6	C25—C26—H26A	119.6
С8—С7—Н7А	120.6	C26—C27—C28	120.1 (6)
C7—C8—C9	120.8 (6)	C26—C27—H27A	120.0
C7—C8—H8A	119.6	C28—C27—H27A	120.0
C9—C8—H8A	119.6	C27—C28—C29	120.5 (6)
C10—C9—C8	119.4 (6)	C27—C28—H28A	119.8
С10—С9—Н9А	120.3	C29—C28—H28A	119.8
С8—С9—Н9А	120.3	C28—C29—C24	120.6 (5)
C9—C10—C5	121.7 (6)	C28—C29—H29A	119.7
С9—С10—Н10А	119.1	C24—C29—H29A	119.7
C5-C10-H10A	119.1		

Symmetry codes: (i) -x-1, -y, -z+1; (ii) -x, -y, -z+1.