

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

1-(2-Hydroxyethyl)pyrrole-2,5-dione

Xue-Jie Tan,* Ting-Wen Du, Dian-Xiang Xing and Yun Liu

School of Chemical and Pharmaceutical Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China Correspondence e-mail: tanxuejie@163.com

Received 28 January 2012; accepted 29 February 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.081; wR factor = 0.217; data-to-parameter ratio = 14.9.

The asymmetric unit of the title compound, $C_6H_7NO_3$, contains two molecules (A and B) related by a non-crystal-lographic twofold pseudo-axis. The molecules are joined in the $(AABB)_n$ manner by $O-H\cdots O$ hydrogen bonds between their hydroxy groups, thus forming C(2) chains along the a-axis direction. Neighboring molecules of the same kind (A and A, or B and B) are related by inversion centers, so that all hydroxy H atoms are disordered other two sets of sites with half occupancies (superimposed $O-H\cdots O$ and $O\cdots H-O$ fragments). The molecules are further linked by $C-H\cdots O$ interactions, which can be considered to be weak hydrogen bonds.

Related literature

For self-initiated photopolymerization, see: Cheng *et al.* (2006); Ericsson (2001). For photopolymerization of *N*-substituted maleimides, see: Yamada *et al.* (1968). For applications of similar compounds, see: Stang & White (2011); Sanchez *et al.* (2011); Keller *et al.* (2005). For the synthesis of the title compound, see: Yamada *et al.* (1961); Gramlich *et al.* (2010); Heath *et al.* (2008).

Experimental

Crystal data

 $C_6H_7NO_3$ $M_r = 141.13$ Monoclinic, $P2_1/c$ a = 7.734 (4) Å b = 9.701 (5) Å c = 17.673 (8) Å $\beta = 96.660$ (7)° V = 1317.0 (11) Å³ Z = 8Mo Kα radiation $μ = 0.12 \text{ mm}^{-1}$ T = 293 K $0.45 \times 0.29 \times 0.26 \text{ mm}$ Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.962$, $T_{\max} = 0.976$ 7522 measured reflections 3003 independent reflections 1972 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.060$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.081$ $wR(F^2) = 0.217$ S = 1.103003 reflections 201 parameters 8 restraints

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.38 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (\mathring{A} , $^{\circ}$).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$C3A-H3A\cdots O2B^{iii}$	0.93	2.38	3.188 (4)	146
$C4B-H4B\cdots O5A^{i}$	0.93	2.49	3.114 (4)	125
$O12A - H12A \cdot \cdot \cdot O12B$	0.82(1)	1.91(1)	2.688 (3)	158 (3)
$O12A - H12C \cdot \cdot \cdot O12A^{i}$	0.82(1)	2.01 (4)	2.702 (5)	142 (7)
$O12B-H12B\cdots O12A$	0.82(1)	1.88 (2)	2.688 (3)	168 (8)
$O12B-H12D\cdots O12B^{ii}$	0.82(1)	1.98 (2)	2.773 (4)	163 (5)
Symmetry codes: (i)	-r + 1 - v + 1	-7 ± 1 (ii)	-r - v + 1	_7 ± 1: (iii)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y+2, -z+1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXL97*.

This work was supported by the Science & Technology Development Project of Shandong Province in China (No. 2011GGB01164), the National Natural Science Foundation of China (NSFC, No. 21103100) and the Natural Science Foundation of Shandong Province in China (No. ZR2009BM040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2042).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, Ch. H., Sabahi, M., Sulzer, G. M. & Ramachandran, V. (2006). US Patent Appl. 2006035386.

Ericsson, J. (2001). Int. Patent Appl. 2001000510.

Gramlich, W. M., Robertson, M. L. & Hillmyer, M. A. (2010). Macromolecules, 43, 2313–2321

Heath, W. H., Palmieri, F., Adams, J. R., Long, B. K., Chute, J., Holcombe, T. W., Zieren, S., Truitt, M. J., White, J. L. & Willson, C. G. (2008). *Macromolecules*, 41, 719–726.

Keller, K. A., Guo, J., Punna, S. & Finn, M. G. (2005). Tetrahedron Lett. 46, 1181–1184.

Sanchez, A., Pedroso, E. & Grandas, A. (2011). *Org. Lett.* **13**, 4364–4367. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Stang, E. M. & White, M. C. (2011). J. Am. Chem. Soc. 133, 14892–14895.
Yamada, M., Takase, I., Hayashi, K., Hashimoto, Y. & Komiya, Y. (1961). J. Soc. Org. Synth. Chem. (Jpn), 23, 166–170.

Yamada, M., Takase, I. & Koutou, N. (1968). J. Polym. Sci. B, 6, 883-888.

Acta Cryst. (2012). E68, o970 [https://doi.org/10.1107/S1600536812008938]

1-(2-Hydroxyethyl)pyrrole-2,5-dione

Xue-Jie Tan, Ting-Wen Du, Dian-Xiang Xing and Yun Liu

S1. Comment

Maleimides are a class of reactive "synthons" having a polymerizable double bond. They are particularly useful in manufacturing oligomers capable of self-initiated photopolymerization (Cheng *et al.*, 2006; Ericsson, 2001). The title compound, *N*-2-hydroxyethylmaleimide, first prepared in 1961 (Yamada *et al.*, 1961), is a well-known maleimide that has been intensively studied during last years (Stang & White, 2011; Sanchez *et al.*, 2011; Keller *et al.*, 2005). However its crystal structure has not been determined. In this work, the crystal structure of the title compound is reported, and its molecular packing mode is discussed.

As shown in Fig. 1, the asymmetric unit of the title compound contains two molecules (A and B) related by the non-crystallographic two-fold pseudo-axis. The molecules are joined in the (AABB)_n manner by O—H···O hydrogen bonds between their hydroxy groups, thus forming the C(2) chains stretched along the *a*-axis direction. The neighboring molecules of the same kind (A and A, or B and B) are related by inversion centers, so that all hydroxy hydrogen atoms are disordered other two sets of sites with half occupancies, thus the fragments O—H···O and O···H—O are superimposed. The molecules are further linked by intermolecular C—H···O interactions, which can be considered as weak hydrogen bonds.

Instead of helices, hydrogen bonds make (I) pack into zigzag-type pleated sheets stretched along (0 0 1) planes (Fig. 2). Adjacent sheets are arranged in an antiparallel manner, yielding an ABAB layer sequence. Either O—H···O and C—H···O interactions or no such interactions occur between adjacent sheets. As can be seen, the hydrogen-bonded sheets are rather closely spaced in the lattice (3.9103 (9) Å) than no-hydrogen-bonded sheets (4.9262 (8) Å).

S2. Experimental

The title compound was synthesized using established method (Gramlich *et al.*, 2010; Heath *et al.*, 2008). Elemental analysis: Calcd: C 51.06; H 5.00; N 9.93%. Found: C 51.11; H 4.92; N 10.02%.

S3. Refinement

The C-bound H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$. The disordered O-bound H atoms with half occupancies were refined with the O—H and C···H distances restrained to 0.82 (1) Å and 1.85 (2) Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1
The asymmetric unit of the title compound with atom labelling scheme and thermal ellipsoids drawn at the 40% probability level. Intermolecular hydrogen bonds O—H···O are presented by dashed lines.

Figure 2Portion of six infinite two-dimensional corrugated sheets in (I) linked by hydrogen-bonds, viewed along the *a* axis. These six sheets can be dubbed in three pairs of hydrogen-bonded layers.

1-(2-Hydroxyethyl)pyrrole-2,5-dione

Crystal data

 $C_6H_7NO_3$ a = 7.734 (4) Å $M_r = 141.13$ b = 9.701 (5) Å Monoclinic, $P2_1/c$ c = 17.673 (8) Å Hall symbol: -P 2ybc $\beta = 96.660 (7)^\circ$

V = 1317.0 (11) Å³ Z = 8 F(000) = 592.0 $D_x = 1.424$ Mg m⁻³ Melting point: 344 K Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.962$, $T_{\max} = 0.976$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.081$ $wR(F^2) = 0.217$ S = 1.10 3003 reflections 201 parameters 8 restraints Primary atom site location: structure-invariant

direct methods

Cell parameters from 380 reflections $\theta = 2.5-28.3^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$

 μ = 0.12 mm T = 293 KBlock, colourless $0.45 \times 0.29 \times 0.26 \text{ mm}$

7522 measured reflections 3003 independent reflections 1972 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.060$ $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$

 $h = -8 \rightarrow 10$ $k = -11 \rightarrow 12$

 $l = -23 \rightarrow 23$

Secondary atom site location: difference Fourier

map
Hydrogen site location: inferred from
neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.097P)^2 + 0.420P]$ where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.38 \text{ e Å}^{-3}$ $\Delta\rho_{\rm min} = -0.29 \text{ e Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
O2A	0.2520 (4)	1.0076 (3)	0.5604(2)	0.0911 (10)	
O5A	0.2601(3)	0.5693 (2)	0.64576 (16)	0.0653 (7)	
O12A	0.4289 (3)	0.6222(3)	0.47672 (15)	0.0617 (7)	
H12A	0.3228 (14)	0.630(4)	0.475 (5)	0.093*	0.50
H12B	0.1884 (13)	0.594 (5)	0.452 (5)	0.093*	0.50
O2B	0.2505(3)	0.9305(2)	0.33843 (17)	0.0709(8)	
O5B	0.2400(3)	0.4751 (2)	0.28146 (15)	0.0622 (7)	
O12B	0.0831(3)	0.5827(2)	0.45141 (14)	0.0529(6)	
H12C	0.450 (9)	0.561 (3)	0.508(2)	0.079*	0.50
H12D	0.023 (5)	0.548 (6)	0.481 (4)	0.079*	0.50

N1A	0.3035 (3)	0.7840(2)	0.59889 (14)	0.0440(6)
N1B	0.1968 (3)	0.7013 (2)	0.31464 (13)	0.0369 (6)
C2A	0.2026 (5)	0.9003(3)	0.5835 (2)	0.0544 (8)
C3A	0.0255 (5)	0.8636 (4)	0.6022(2)	0.0607 (9)
Н3А	-0.0708	0.9216	0.5973	0.073*
C4A	0.0275 (4)	0.7364 (4)	0.62661 (18)	0.0527(8)
H4A	-0.0669	0.6888	0.6420	0.063*
C5A	0.2058 (4)	0.6808(3)	0.62565 (17)	0.0435 (7)
C11A	0.4858 (4)	0.7719 (3)	0.5876 (2)	0.0510(8)
H111	0.5380	0.6972	0.6189	0.061*
H112	0.5458	0.8564	0.6040	0.061*
C12A	0.5090 (4)	0.7447 (4)	0.5057 (2)	0.0583 (9)
H121	0.4612	0.8216	0.4751	0.070*
H122	0.6325	0.7398	0.5009	0.070*
C2B	0.2981 (4)	0.8183 (3)	0.32075 (18)	0.0436 (7)
C3B	0.4715 (4)	0.7761 (3)	0.30062 (19)	0.0483 (8)
Н3В	0.5671	0.8340	0.2997	0.058*
C4B	0.4683 (4)	0.6462 (3)	0.28466 (18)	0.0468 (8)
H4B	0.5613	0.5957	0.2702	0.056*
C5B	0.2936 (4)	0.5904(3)	0.29288 (17)	0.0412 (7)
C11B	0.0143 (4)	0.6925 (3)	0.32856 (17)	0.0432 (7)
H113	-0.0359	0.6087	0.3055	0.052*
H114	-0.0489	0.7700	0.3041	0.052*
C12B	-0.0084(4)	0.6927(3)	0.41195 (19)	0.0491 (8)
H123	0.0332	0.7795	0.4343	0.059*
H124	-0.1313	0.6850	0.4177	0.059*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2A	0.089(2)	0.0435 (16)	0.144(3)	0.0012 (14)	0.0289 (19)	0.0214 (17)
O5A	0.0582 (15)	0.0482 (14)	0.0865 (19)	-0.0029(11)	-0.0048 (13)	0.0229 (13)
O12A	0.0487 (13)	0.0734 (17)	0.0628 (16)	0.0004 (12)	0.0055 (12)	-0.0066 (12)
O2B	0.0717 (17)	0.0406 (14)	0.105(2)	0.0016 (11)	0.0321 (15)	-0.0125 (13)
O5B	0.0615 (15)	0.0379 (13)	0.0905 (19)	-0.0007 (10)	0.0232 (13)	-0.0092 (12)
O12B	0.0448 (12)	0.0588 (14)	0.0561 (14)	-0.0039(11)	0.0105 (11)	0.0157 (11)
N1A	0.0459 (14)	0.0391 (14)	0.0468 (14)	-0.0010(11)	0.0048 (11)	0.0041 (11)
N1B	0.0362 (12)	0.0353 (13)	0.0407 (13)	0.0040 (10)	0.0109 (10)	0.0037 (10)
C2A	0.066(2)	0.0370 (18)	0.060(2)	0.0050 (15)	0.0101 (17)	0.0021 (15)
C3A	0.060(2)	0.053(2)	0.072(2)	0.0157 (16)	0.0204 (18)	-0.0029(18)
C4A	0.0535 (19)	0.061(2)	0.0456 (18)	-0.0009 (16)	0.0136 (15)	-0.0041 (15)
C5A	0.0464 (17)	0.0445 (17)	0.0388 (15)	-0.0010(13)	0.0011 (12)	0.0060 (13)
C11A	0.0379 (16)	0.0485 (18)	0.065(2)	-0.0061 (14)	0.0005 (14)	-0.0005 (16)
C12A	0.0439 (18)	0.062(2)	0.071(2)	-0.0044 (16)	0.0140 (16)	0.0094 (18)
C2B	0.0481 (17)	0.0371 (16)	0.0468 (17)	0.0009 (13)	0.0109 (13)	0.0052 (13)
C3B	0.0433 (17)	0.0446 (18)	0.0588 (19)	-0.0076 (13)	0.0133 (14)	0.0083 (15)
C4B	0.0428 (17)	0.0435 (17)	0.0567 (19)	0.0110 (13)	0.0170 (14)	0.0131 (14)
C5B	0.0479 (17)	0.0338 (16)	0.0427 (16)	0.0073 (12)	0.0089 (13)	0.0064 (12)

0.0045 (13)

0.0092 (13)

C12B	0.0490 (18)	0.0458 (18)	0.0565 (19)	0.0015 (14)	0.0227 (15)	0.0005 (15)
Geometri	c parameters (Å,	9)				
O2A—C	2A	1.196 (4))	СЗА—НЗА		0.9300
O5A—C	5A	1.199 (4))	C4A—C5A		1.483 (4)
O12A—(C12A	1.409 (4))	C4A—H4A		0.9300
O12A—I	H12A	0.821 (10	0)	C11A—C12A		1.503 (5)
O12A—I	H12C	0.821 (10	0)	C11A—H111		0.9700
O2B—C	2B	1.202 (4))	C11A—H112		0.9700
O5B—C:	5B	1.201 (4))	C12A—H121		0.9700
O12B—0	C12B	1.418 (4))	C12A—H122		0.9700
O12B—I	H12B	0.821 (10	0)	C2B—C3B		1.484 (4)
O12B—I	H12D	0.817 (10	0)	C3B—C4B		1.291 (4)
N1A—C	5A	1.371 (4))	СЗВ—НЗВ		0.9300
N1A—C		1.381 (4)		C4B—C5B		1.478 (4)
N1A—C	11A	1.452 (4)		C4B—H4B		0.9300
N1B—C		1.376 (4)		C11B—C12B		1.504 (4)
N1B—C:	5B	1.391 (4)		C11B—H113		0.9700
N1B—C	11B	1.463 (4)		C11B—H114		0.9700
C2A—C.	3A	1.489 (5)		C12B—H123		0.9700
C3A—C	4A	1.307 (5)		C12B—H124		0.9700
C12A—(012A—H12A	110 (2)		O12A—C12A—C11	A	113.7 (3)
C12A—(D12A—H12C	109 (2)		O12A—C12A—H12	1	108.8
H12A—(D12A—H12C	102 (8)		C11A—C12A—H12	1	108.8
C12B—C	D12B—H12B	110(2)		O12A—C12A—H12	2	108.8
C12B—C	D12B—H12D	110(2)		C11A—C12A—H12	2	108.8
H12B—(D12B—H12D	133 (6)		H121—C12A—H122	2	107.7
C5A—N	1A—C2A	110.1 (3))	O2B—C2B—N1B		125.3 (3)
C5A—N	1A—C11A	124.8 (3))	O2B—C2B—C3B		128.6 (3)
C2A—N	1A—C11A	125.1 (3))	N1B—C2B—C3B		106.0 (2)
C2B—N	1B—C5B	109.9 (2))	C4B—C3B—C2B		109.1 (3)
C2B—N	1B—C11B	125.9 (2))	C4B—C3B—H3B		125.5
C5B—N	1B—C11B	124.2 (2))	C2B—C3B—H3B		125.5
O2A—C	2A—N1A	125.6 (3))	C3B—C4B—C5B		109.3 (3)
O2A—C	2A—C3A	128.5 (3))	C3B—C4B—H4B		125.3
N1A—C	2A—C3A	105.9 (3))	C5B—C4B—H4B		125.3
C4A—C	3A—C2A	108.9 (3))	O5B—C5B—N1B		125.5 (3)
C4A—C	ЗА—НЗА	125.6		O5B—C5B—C4B		128.7 (3)
C2A—C	ЗА—НЗА	125.6		N1B—C5B—C4B		105.7 (2)
	4A—C5A	108.4 (3))	N1B—C11B—C12B		112.9 (3)
	4A—H4A	125.8		N1B—C11B—H113		109.0
	4A—H4A	125.8		C12B—C11B—H113	3	109.0
	5A—N1A	125.0 (3))	N1B—C11B—H114		109.0
	5A—C4A	128.2 (3)		C12B—C11B—H114	4	109.0
	5A—C4A	106.8 (3)		H113—C11B—H114		107.8

C11B

0.0368 (15)

0.0454 (17)

0.0484 (17)

0.0037 (12)

N1A—C11A—C12A	111.9 (3)	O12B—C12B—C11B	111.9 (2)	
N1A—C11A—H111	109.2	O12B—C12B—H123	109.2	
C12A—C11A—H111	109.2	C11B—C12B—H123	109.2	
N1A—C11A—H112 C12A—C11A—H112 H111—C11A—H112	109.2 109.2 109.2 107.9	O12B—C12B—H124 C11B—C12B—H124 H123—C12B—H124	109.2 109.2 109.2	

Hydrogen-bond geometry (Å, °)

D— H ··· A	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
O12 <i>A</i> —H12 <i>A</i> ···O12 <i>B</i>	0.82(1)	1.91(1)	2.688 (3)	158 (3)
O12 <i>B</i> —H12 <i>B</i> ···O12 <i>A</i>	0.82(1)	1.88 (2)	2.688 (3)	168 (8)
O12 <i>A</i> —H12 <i>C</i> ···O12 <i>A</i> ⁱ	0.82(1)	2.01 (4)	2.702 (5)	142 (7)
O12 <i>B</i> —H12 <i>D</i> ···O12 <i>B</i> ⁱⁱ	0.82(1)	1.98 (2)	2.773 (4)	163 (5)
$C4B$ — $H4B$ ··· $O5A^{i}$	0.93	2.49	3.114 (4)	125
C3A— $H3A$ ··· $O2B$ ⁱⁱⁱ	0.93	2.38	3.188 (4)	146

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x, -y+2, -z+1.