Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(2-Hydroxyethyl)pyrrole-2,5-dione

Xue-Jie Tan,* Ting-Wen Du, Dian-Xiang Xing and Yun Liu
School of Chemical and Pharmaceutical Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China
Correspondence e-mail: tanxuejie@163.com

Received 28 January 2012; accepted 29 February 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.081 ; w R$ factor $=0.217$; data-to-parameter ratio $=14.9$.

The asymmetric unit of the title compound, $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{3}$, contains two molecules (A and B) related by a non-crystallographic twofold pseudo-axis. The molecules are joined in the $(A A B B)_{n}$ manner by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between their hydroxy groups, thus forming $C(2)$ chains along the a axis direction. Neighboring molecules of the same kind (A and A, or B and B) are related by inversion centers, so that all hydroxy H atoms are disordered other two sets of sites with half occupancies (superimposed $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ fragments). The molecules are further linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, which can be considered to be weak hydrogen bonds.

Related literature

For self-initiated photopolymerization, see: Cheng et al. (2006); Ericsson (2001). For photopolymerization of N substituted maleimides, see: Yamada et al. (1968). For applications of similar compounds, see: Stang \& White (2011); Sanchez et al. (2011); Keller et al. (2005). For the synthesis of the title compound, see: Yamada et al. (1961); Gramlich et al. (2010); Heath et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{3}$
$M_{r}=141.13$
Monoclinic, $P 2_{1} / c$
$a=7.734$ (4) \AA
$b=9.701(5) \AA$
$c=17.673$ (8) \AA
$\beta=96.660(7)^{\circ}$
$V=1317.0(11) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.45 \times 0.29 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.962, T_{\text {max }}=0.976$
7522 measured reflections 3003 independent reflections
1972 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.217$
independent and constrained refinement
$S=1.10$
3003 reflections
201 parameters
$\Delta \rho_{\text {max }}=0.38 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

8 restraints

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 2 B^{\mathrm{iii}}$	0.93	2.38	$3.188(4)$	146
$\mathrm{C} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 5 A^{\mathrm{i}}$	0.93	2.49	$3.114(4)$	125
$\mathrm{O} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 12 B$	$0.82(1)$	$1.91(1)$	$2.688(3)$	$158(3)$
$\mathrm{O} 12 A-\mathrm{H} 12 C \cdots \mathrm{O} 12 A^{\mathrm{i}}$	$0.82(1)$	$2.01(4)$	$2.702(5)$	$142(7)$
$\mathrm{O} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 12 A$	$0.82(1)$	$1.88(2)$	$2.688(3)$	$168(8)$
$\mathrm{O} 12 B-\mathrm{H} 12 D \cdots \mathrm{O} 12 B^{\mathrm{ii}}$	$0.82(1)$	$1.98(2)$	$2.773(4)$	$163(5)$
Symmetry codes: (i)	$-x+1,-y+1,-z+1 ;$	(ii)	$-x,-y+1,-z+1 ;$	(iii)
$-x,-y+2,-z+1$.				

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97.

This work was supported by the Science \& Technology Development Project of Shandong Province in China (No. 2011GGB01164), the National Natural Science Foundation of China (NSFC, No. 21103100) and the Natural Science Foundation of Shandong Province in China (No. ZR2009BM040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2042).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cheng, Ch. H., Sabahi, M., Sulzer, G. M. \& Ramachandran, V. (2006). US Patent Appl. 2006035386.
Ericsson, J. (2001). Int. Patent Appl. 2001000510.
Gramlich, W. M., Robertson, M. L. \& Hillmyer, M. A. (2010). Macromolecules, 43, 2313-2321.
Heath, W. H., Palmieri, F., Adams, J. R., Long, B. K., Chute, J., Holcombe, T. W., Zieren, S., Truitt, M. J., White, J. L. \& Willson, C. G. (2008). Macromolecules, 41, 719-726.
Keller, K. A., Guo, J., Punna, S. \& Finn, M. G. (2005). Tetrahedron Lett. 46, 1181-1184.
Sanchez, A., Pedroso, E. \& Grandas, A. (2011). Org. Lett. 13, 4364-4367.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stang, E. M. \& White, M. C. (2011). J. Am. Chem. Soc. 133, 14892-14895.
Yamada, M., Takase, I., Hayashi, K., Hashimoto, Y. \& Komiya, Y. (1961). J. Soc. Org. Synth. Chem. (Jpn), 23, 166-170.
Yamada, M., Takase, I. \& Koutou, N. (1968). J. Polym. Sci. B, 6, 883-888.

supporting information

Acta Cryst. (2012). E68, o970 [https://doi.org/10.1107/S1600536812008938]
1-(2-Hydroxyethyl)pyrrole-2,5-dione

Xue-Jie Tan, Ting-Wen Du, Dian-Xiang Xing and Yun Liu

S1. Comment

Maleimides are a class of reactive "synthons" having a polymerizable double bond. They are particularly useful in manufacturing oligomers capable of self-initiated photopolymerization (Cheng et al., 2006; Ericsson, 2001). The title compound, N-2-hydroxyethylmaleimide, first prepared in 1961 (Yamada et al., 1961), is a well-known maleimide that has been intensively studied during last years (Stang \& White, 2011; Sanchez et al., 2011; Keller et al., 2005). However its crystal structure has not been determined. In this work, the crystal structure of the title compound is reported, and its molecular packing mode is discussed.
As shown in Fig. 1, the asymmetric unit of the title compound contains two molecules (A and B) related by the noncrystallographic two-fold pseudo-axis. The molecules are joined in the (AABB) $)_{n}$ manner by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between their hydroxy groups, thus forming the $\mathrm{C}(2)$ chains stretched along the a-axis direction. The neighboring molecules of the same kind (A and A, or B and B) are related by inversion centers, so that all hydroxy hydrogen atoms are disordered other two sets of sites with half occupancies, thus the fragments $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ are superimposed. The molecules are further linked by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, which can be considered as weak hydrogen bonds.
Instead of helices, hydrogen bonds make (I) pack into zigzag-type pleated sheets stretched along (0 0 1) planes (Fig. 2). Adjacent sheets are arranged in an antiparallel manner, yielding an $A B A B$ layer sequence. Either $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions or no such interactions occur between adjacent sheets. As can be seen, the hydrogen-bonded sheets are rather closely spaced in the lattice (3.9103 (9) Å) than no-hydrogen-bonded sheets (4.9262 (8) Å).

S2. Experimental

The title compound was synthesized using established method (Gramlich et al., 2010; Heath et al., 2008). Elemental analysis: Calcd: C 51.06; H 5.00; N 9.93\%. Found: C 51.11; H 4.92; N 10.02\%.

S3. Refinement

The C-bound H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The disordered O -bound H atoms with half occupancies were refined with the $\mathrm{O}-\mathrm{H}$ and $\mathrm{C} \cdots \mathrm{H}$ distances restrained to 0.82 (1) \AA and $1.85(2) \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The asymmetric unit of the title compound with atom labelling scheme and thermal ellipsoids drawn at the 40% probability level. Intermolecular hydrogen bonds $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ are presented by dashed lines.

Figure 2
Portion of six infinite two-dimensional corrugated sheets in (I) linked by hydrogen-bonds, viewed along the a axis. These six sheets can be dubbed in three pairs of hydrogen-bonded layers.

1-(2-Hydroxyethyl)pyrrole-2,5-dione

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{3}$
$M_{r}=141.13$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc

$$
\begin{aligned}
& a=7.734(4) \AA \\
& b=9.701(5) \AA \\
& c=17.673(8) \AA \\
& \beta=96.660(7)^{\circ}
\end{aligned}
$$

$V=1317.0(11) \AA^{3}$
$Z=8$
$F(000)=592.0$
$D_{\mathrm{x}}=1.424 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 344 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.962, T_{\text {max }}=0.976$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$
$w R\left(F^{2}\right)=0.217$
$S=1.10$
3003 reflections
201 parameters
8 restraints
Primary atom site location: structure-invariant
direct methods

Cell parameters from 380 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.45 \times 0.29 \times 0.26 \mathrm{~mm}$

7522 measured reflections
3003 independent reflections
1972 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-8 \rightarrow 10$
$k=-11 \rightarrow 12$
$l=-23 \rightarrow 23$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.097 P)^{2}+0.420 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O2A	$0.2520(4)$	$1.0076(3)$	$0.5604(2)$	$0.0911(10)$	
O5A	$0.2601(3)$	$0.5693(2)$	$0.64576(16)$	$0.0653(7)$	
O12A	$0.4289(3)$	$0.6222(3)$	$0.47672(15)$	$0.0617(7)$	
H12A	$0.3228(14)$	$0.630(4)$	$0.475(5)$	0.093^{*}	0.50
H12B	$0.1884(13)$	$0.594(5)$	$0.452(5)$	0.093^{*}	0.50
O2B	$0.2505(3)$	$0.9305(2)$	$0.33843(17)$	$0.0709(8)$	
O5B	$0.2400(3)$	$0.4751(2)$	$0.28146(15)$	$0.0622(7)$	
O12B	$0.0831(3)$	$0.5827(2)$	$0.45141(14)$	$0.0529(6)$	
H12C	$0.450(9)$	$0.561(3)$	$0.508(2)$	0.079^{*}	0.50
H12D	$0.023(5)$	$0.548(6)$	$0.481(4)$	0.079^{*}	0.50

N1A	$0.3035(3)$	$0.7840(2)$	$0.59889(14)$	$0.0440(6)$
N1B	$0.1968(3)$	$0.7013(2)$	$0.31464(13)$	$0.0369(6)$
C2A	$0.2026(5)$	$0.9003(3)$	$0.5835(2)$	$0.0544(8)$
C3A	$0.0255(5)$	$0.8636(4)$	$0.6022(2)$	$0.0607(9)$
H3A	-0.0708	0.9216	0.5973	0.073^{*}
C4A	$0.0275(4)$	$0.7364(4)$	$0.62661(18)$	$0.0527(8)$
H4A	-0.0669	0.6888	0.6420	0.063^{*}
C5A	$0.2058(4)$	$0.6808(3)$	$0.62565(17)$	$0.0435(7)$
C11A	$0.4858(4)$	$0.7719(3)$	$0.5876(2)$	$0.0510(8)$
H111	0.5380	0.6972	0.6189	0.061^{*}
H112	0.5458	0.8564	0.6040	0.061^{*}
C12A	$0.5090(4)$	$0.7447(4)$	$0.5057(2)$	$0.0583(9)$
H121	0.4612	0.8216	0.4751	0.070^{*}
H122	0.6325	0.7398	0.5009	0.070^{*}
C2B	$0.2981(4)$	$0.8183(3)$	$0.32075(18)$	$0.0436(7)$
C3B	$0.4715(4)$	$0.7761(3)$	$0.30062(19)$	$0.0483(8)$
H3B	0.5671	0.8340	0.2997	0.058^{*}
C4B	$0.4683(4)$	$0.6462(3)$	$0.28466(18)$	$0.0468(8)$
H4B	0.5613	0.5957	0.2702	0.056^{*}
C5B	$0.2936(4)$	$0.5904(3)$	$0.29288(17)$	$0.0412(7)$
C11B	$0.0143(4)$	$0.6925(3)$	$0.32856(17)$	$0.0432(7)$
H113	-0.0359	0.6087	0.3055	0.052^{*}
H114	-0.0489	0.7700	0.3041	0.052^{*}
C12B	$-0.0084(4)$	$0.6927(3)$	$0.41195(19)$	$0.0491(8)$
H123	0.0332	0.7795	0.4343	0.059^{*}
H124	-0.1313	0.6850	0.4177	0.059^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2A	$0.089(2)$	$0.0435(16)$	$0.144(3)$	$0.0012(14)$	$0.0289(19)$	$0.0214(17)$
O5A	$0.0582(15)$	$0.0482(14)$	$0.0865(19)$	$-0.0029(11)$	$-0.0048(13)$	$0.0229(13)$
O12A	$0.0487(13)$	$0.0734(17)$	$0.0628(16)$	$0.0004(12)$	$0.0055(12)$	$-0.0066(12)$
O2B	$0.0717(17)$	$0.0406(14)$	$0.105(2)$	$0.0016(11)$	$0.0321(15)$	$-0.0125(13)$
O5B	$0.0615(15)$	$0.0379(13)$	$0.0905(19)$	$-0.0007(10)$	$0.0232(13)$	$-0.0092(12)$
O12B	$0.0448(12)$	$0.0588(14)$	$0.0561(14)$	$-0.0039(11)$	$0.0105(11)$	$0.0157(11)$
N1A	$0.0459(14)$	$0.0391(14)$	$0.0468(14)$	$-0.0010(11)$	$0.0048(11)$	$0.0041(11)$
N1B	$0.0362(12)$	$0.0353(13)$	$0.0407(13)$	$0.0040(10)$	$0.0109(10)$	$0.0037(10)$
C2A	$0.066(2)$	$0.0370(18)$	$0.060(2)$	$0.0050(15)$	$0.0101(17)$	$0.0021(15)$
C3A	$0.060(2)$	$0.053(2)$	$0.072(2)$	$0.0157(16)$	$0.0204(18)$	$-0.0029(18)$
C4A	$0.0535(19)$	$0.061(2)$	$0.0456(18)$	$-0.0009(16)$	$0.0136(15)$	$-0.0041(15)$
C5A	$0.0464(17)$	$0.0445(17)$	$0.0388(15)$	$-0.0010(13)$	$0.0011(12)$	$0.0060(13)$
C11A	$0.0379(16)$	$0.0485(18)$	$0.065(2)$	$-0.0061(14)$	$0.0005(14)$	$-0.0005(16)$
C12A	$0.0439(18)$	$0.062(2)$	$0.071(2)$	$-0.0044(16)$	$0.0140(16)$	$0.0094(18)$
C2B	$0.0481(17)$	$0.0371(16)$	$0.0468(17)$	$0.0009(13)$	$0.0109(13)$	$0.0052(13)$
C3B	$0.0433(17)$	$0.0446(18)$	$0.0588(19)$	$-0.0076(13)$	$0.0133(14)$	$0.0083(15)$
C4B	$0.0428(17)$	$0.0435(17)$	$0.0567(19)$	$0.0110(13)$	$0.0170(14)$	$0.0131(14)$
C5B	$0.0479(17)$	$0.0338(16)$	$0.0427(16)$	$0.0073(12)$	$0.0089(13)$	$0.0064(12)$

C11B	$0.0368(15)$	$0.0454(17)$	$0.0484(17)$	$0.0037(12)$	$0.0092(13)$	$0.0045(13)$
C12B	$0.0490(18)$	$0.0458(18)$	$0.0565(19)$	$0.0015(14)$	$0.0227(15)$	$0.0005(15)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O2A-C2A	1.196 (4)	C3A-H3A	0.9300
O5A-C5A	1.199 (4)	C4A-C5A	1.483 (4)
O12A-C12A	1.409 (4)	C4A-H4A	0.9300
O12A-H12A	0.821 (10)	C11A-C12A	1.503 (5)
O12A-H12C	0.821 (10)	C11A-H111	0.9700
O2B-C2B	1.202 (4)	C11A-H112	0.9700
O5B-C5B	1.201 (4)	C12A-H121	0.9700
O12B-C12B	1.418 (4)	C12A-H122	0.9700
O12B-H12B	0.821 (10)	C2B-C3B	1.484 (4)
O12B-H12D	0.817 (10)	C3B-C4B	1.291 (4)
N1A-C5A	1.371 (4)	C3B-H3B	0.9300
N1A-C2A	1.381 (4)	C4B-C5B	1.478 (4)
N1A-C11A	1.452 (4)	C4B-H4B	0.9300
N1B-C2B	1.376 (4)	C11B-C12B	1.504 (4)
N1B-C5B	1.391 (4)	C11B-H113	0.9700
N1B-C11B	1.463 (4)	C11B-H114	0.9700
C2A-C3A	1.489 (5)	C12B-H123	0.9700
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	1.307 (5)	C12B-H124	0.9700
$\mathrm{C} 12 \mathrm{~A}-\mathrm{O} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{~A}$	110 (2)	O12A-C12A-C11A	113.7 (3)
$\mathrm{C} 12 \mathrm{~A}-\mathrm{O} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{C}$	109 (2)	O12A-C12A-H121	108.8
$\mathrm{H} 12 \mathrm{~A}-\mathrm{O} 12 \mathrm{~A}-\mathrm{H} 12 \mathrm{C}$	102 (8)	C11A-C12A-H121	108.8
C12B-O12B-H12B	110 (2)	O12A-C12A-H122	108.8
C12B-O12B-H12D	110 (2)	C11A-C12A-H122	108.8
H12B-O12B-H12D	133 (6)	$\mathrm{H} 121-\mathrm{C} 12 \mathrm{~A}-\mathrm{H} 122$	107.7
C5A-N1A-C2A	110.1 (3)	$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}$	125.3 (3)
C5A-N1A-C11A	124.8 (3)	$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	128.6 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	125.1 (3)	N1B-C2B-C3B	106.0 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	109.9 (2)	C4B-C3B-C2B	109.1 (3)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	125.9 (2)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	125.5
C5B-N1B-C11B	124.2 (2)	C2B-C3B-H3B	125.5
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	125.6 (3)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	109.3 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	128.5 (3)	C3B-C4B-H4B	125.3
N1A-C2A-C3A	105.9 (3)	C5B-C4B-H4B	125.3
C4A-C3A-C2A	108.9 (3)	O5B-C5B-N1B	125.5 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	125.6	$\mathrm{O} 5 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	128.7 (3)
C2A-C3A-H3A	125.6	N1B-C5B-C4B	105.7 (2)
C3A-C4A-C5A	108.4 (3)	N1B-C11B-C12B	112.9 (3)
C3A-C4A-H4A	125.8	N1B-C11B-H113	109.0
C5A-C4A-H4A	125.8	C12B-C11B-H113	109.0
O5A-C5A-N1A	125.0 (3)	N1B-C11B-H114	109.0
O5A-C5A-C4A	128.2 (3)	C12B-C11B-H114	109.0
N1A-C5A-C4A	106.8 (3)	H113-C11B-H114	107.8

$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$111.9(3)$	O12B-C12B-C11B	$111.9(2)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 111$	109.2	O12B-C12B-H123	109.2
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 111$	109.2	C11B-C12B-H123	109.2
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 112$	109.2	O12B-C12B-H124	109.2
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 112$	109.2	C11B-C12B-H124	109.2
$\mathrm{H} 111-\mathrm{C} 11 \mathrm{~A}-\mathrm{H} 112$	107.9	$\mathrm{H} 123-\mathrm{C} 12 \mathrm{~B}-\mathrm{H} 124$	107.9

Hydrogen-bond geometry $\left(\hat{A},{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 12 A — \mathrm{H} 12 A \cdots \mathrm{O} 12 B$	$0.82(1)$	$1.91(1)$	$2.688(3)$	$158(3)$
$\mathrm{O} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 12 A$	$0.82(1)$	$1.88(2)$	$2.688(3)$	$168(8)$
$\mathrm{O} 12 A-\mathrm{H} 12 C \cdots \mathrm{O} 12 A^{\mathrm{i}}$	$0.82(1)$	$2.01(4)$	$2.702(5)$	$142(7)$
$\mathrm{O} 12 B-\mathrm{H} 12 D \cdots \mathrm{O} 12 B^{\mathrm{ii}}$	$0.82(1)$	$1.98(2)$	$2.773(4)$	$163(5)$
$\mathrm{C} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 5 A^{\mathrm{i}}$	0.93	2.49	$3.114(4)$	125
$\mathrm{C} 3 A — \mathrm{H} 3 A \cdots \mathrm{O} 2 B^{\mathrm{iii}}$	0.93	2.38	$3.188(4)$	146

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii) $-x,-y+2,-z+1$.

