organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-4-ylidene)(4nitrophenyl)methyl]amino}-3-phenylpropanoate

Xin Zhang,* Chen Sun, Fei-ran Li and Hua Zhang

College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China

Correspondence e-mail: zxin_tj@126.com

Received 13 January 2012; accepted 8 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.040; wR factor = 0.106; data-to-parameter ratio = 7.1.

The molecule of the title compound, $C_{27}H_{24}N_4O_5$, exists in the keto-enamine tautomeric form, stabilized by an intramolecular N-H···O hydrogen bond. An intramolecular C-H····O hydrogen bond also occurs. In the crystal, C-H····O hydrogen bonds link the molecules into chains.

Related literature

For general background to Schiff bases in coordination chemistry, see: Wu *et al.* (1993); Harrop *et al.* (2003); Habibi *et al.* (2007). For antibacterial properties of Schiff bases derived from 4-acyl-5-pyrazolone and their metal complexes, see: Li *et al.* (1997, 2004). For the antibacterial and biological activity of amino acid esters, see: Xiong *et al.* (1993). For related structures, see: Wang *et al.* (2003); Zhang *et al.* (2005). For synthetic details, see: Remya *et al.* (2005). For standard bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data C₂₇H₂₄N₄O₅

 $M_r = 484.50$

Monoclinic, P21 Z = 2a = 6.7713 (16) ÅMo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^$ b = 8.917 (2) Å c = 20.339(5) Å T = 296 K $\beta = 92.489 \ (4)^{\circ}$ $0.20 \times 0.16 \times 0.12 \text{ mm}$ V = 1226.9 (5) Å³ Data collection Bruker APEXII CCD 6305 measured reflections diffractometer 2315 independent reflections Absorption correction: multi-scan 1855 reflections with $I > 2\sigma(I)$ (SADABS; Bruker, 2007) $R_{\rm int} = 0.021$ $T_{\min} = 0.980, \ T_{\max} = 0.989$ Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.040 & 1 \text{ restraint} \\ wR(F^2) &= 0.106 & H\text{-atom parameters constrained} \\ S &= 1.07 & \Delta\rho_{\text{max}} &= 0.26 \text{ e } \text{ Å}^{-3} \\ 2315 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.15 \text{ e } \text{ Å}^{-3} \\ 327 \text{ parameters} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4-H4···O1	0.86	2.04	2.738 (4)	138
C1−H1···O1	0.93	2.41	3.001 (4)	121
$C20-H20A\cdotsO1^{i}$	0.96	2.55	3.385 (5)	145

Symmetry code: (i) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2041).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2007). SAINT, SADABS and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). *Acta Cryst.* E63, o2881.
- Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). *Chem. Commun.* pp. 410–411.
- Li, J. Z., Jiang, L. & An, Y. M. (2004). Chin. J. Appl. Chem. 21, 150-153.
- Li, J. Z., Yu, W. J. & Du, X. Y. (1997). Chin. J. Appl. Chem. 14, 98-100.
- Remya, P. N., Pavithran, R. & Reddy, M. L. P. (2005). Solvent Extr. Ion Exch. 24, 5016–5022.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J.-L., Yang, Y., Zhang, X. & Miao, F.-M. (2003). Acta Cryst. E59, 0430– 0432.
- Wu, J., Deng, R. & Chen, Z. (1993). Transition Met. Chem. 18, 23-26.
- Xiong, G. H., Yang, Z. M. & Guo, A. L. (1993). *Fine Chem.* **6**, 1–3. Zhang, X., Zhu, H.-L., Xu, H.-Z. & Dong, M. (2005). *Acta Cryst.* **E61**, o1629–
- o1630.

supporting information

Acta Cryst. (2012). E68, o1062 [https://doi.org/10.1107/S1600536812010343]

Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-4-ylidene)(4nitrophenyl)methyl]amino}-3-phenylpropanoate

Xin Zhang, Chen Sun, Fei-ran Li and Hua Zhang

S1. Comment

In recent years, Schiff bases play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Wu *et al.*, 1993; Harrop *et al.*, 2003; Habibi *et al.*, 2007). In recent years, the Schiff bases derived from 4–acyl–5–pyrazolone and their metal complexes have been studied widely for their high antibacterial activity (Li *et al.*, 1997, 2004). Both 1–phenyl–3–methyl–4–(*p*–nitro–benzyl)–5–pyrazolone and its metal complexes are widely used and well known for their analgetic activity (Remya *et al.*, 2005). Amino acid esters also demonstrate high antibacterial and biological activity (Xiong *et al.*, 1993). Structure of Schiff base derived from 4–acyl–5–pyrazolone and amino acid ester, closely related to the title compound, has been reported (Zhang *et al.*, 2005).

The molecular structure of the title compound is presented in Fig. 1, and the numerical results are given in tables below. Atoms O1, C9, C8, C11 and N4 form a plane, the largest deviation being 0.021 (4) Å for atom C11. The dihedral angle between this mean plane and the pyrazolone ring is $1.2 (1)^{\circ}$, indicating that they are essentially coplanar, as seen in 4– {[3,4–dihydro–5–methyl–3–oxo–2–phenyl–2H–pyrazol–4–ylidene]–(phenyl)methyl]amino}–1,5–dimethyl–2–phenyl–1H–pyrazol–3(2*H*)–one [3.56 (3)°; Wang *et al.*, 2003]. The bond lengths within central part of the molecule lie between typical single- and double- bond lengths, indicating extensive conjugation. A strong intramolecular N—H···O hydrogen bond is observed, stabilizing the enamine-keto tautomeric form. In the crystal structure, intermolecular C1—H1···O4 hydrogen bonds link the molecules into chains, shown in Fig. 2.

S2. Experimental

The title compound was synthesized by refluxing a mixture of 1–phenyl–3—methyl–4–(p–nitro–benzyl)–5–pyrazolone (15 mmol) (Remya *et al.*, 2005) and phenylalanine methyl ester (15 mmol) in ethanol (100 ml) for about 5 h. The product was recrystallized from ethanol, affording pale yellow crystals suitable for *X*–ray analysis.

S3. Refinement

All H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for other H atoms.

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Methyl 2-{[(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1*H*-pyrazol-4- ylidene)(4-nitrophenyl)methyl]amino}-3-phenylpropanoate

F(000) = 508

 $\theta = 2.5 - 22.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.20 \times 0.16 \times 0.12$ mm

6305 measured reflections 2315 independent reflections 1855 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$

T = 296 K

 $R_{\rm int} = 0.021$

 $h = -8 \rightarrow 7$ $k = -10 \rightarrow 10$ $l = -24 \rightarrow 16$

 $D_{\rm x} = 1.312 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2125 reflections

Crystal data

 $C_{27}H_{24}N_4O_5$ $M_r = 484.50$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 6.7713 (16) Å b = 8.917 (2) Å c = 20.339 (5) Å $\beta = 92.489$ (4)° V = 1226.9 (5) Å³ Z = 2

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.980, \ T_{\max} = 0.989$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0582P)^2 + 0.0914P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.2384 (4)	-0.1136 (2)	0.34497 (13)	0.0631 (7)
02	-0.7694 (4)	0.4350 (4)	0.12919 (15)	0.0803 (9)
O3	-0.5325 (5)	0.4977 (5)	0.06804 (18)	0.1058 (12)

O4	-0.3079 (4)	-0.3075 (3)	0.31388 (15)	0.0683 (7)
05	-0.4842 (5)	-0.3580 (4)	0.22187 (18)	0.1000 (11)
N1	0.3237 (4)	0.1290 (3)	0.38007 (13)	0.0506 (7)
N2	0.2558 (4)	0.2758 (3)	0.36907 (15)	0.0579 (7)
N3	-0.5986 (4)	0.4262 (4)	0.11306 (16)	0.0645 (8)
N4	-0.0863 (4)	-0.0999(3)	0.26012 (15)	0.0551 (7)
H4	-0.0086	-0.1510	0.2861	0.066*
C1	0.6183 (5)	-0.0145 (5)	0.4130 (2)	0.0709 (11)
H1	0.5785	-0.0909	0.3842	0.085*
C2	0.7941 (6)	-0.0259 (6)	0.4492 (2)	0.0879 (14)
H2	0.8727	-0.1104	0.4444	0.105*
C3	0.8550 (7)	0.0833 (8)	0.4916 (3)	0.1011 (17)
H3	0.9744	0.0747	0.5156	0.121*
C4	0.7377 (8)	0.2064 (9)	0.4983 (3)	0.118 (2)
H4A	0.7776	0.2803	0.5283	0.142*
C5	0.5612 (7)	0.2250 (6)	0.4621 (2)	0.0901 (15)
H5	0.4852	0.3112	0.4661	0.108*
C6	0.5025 (5)	0.1097(4)	0.41960 (16)	0.0534 (8)
C7	0.1051(5)	0.2653(4)	0.32700 (17)	0.0508 (8)
C8	0.0671(4)	0.1120(3)	0.30814(15)	0.0437(7)
C9	0.0071(1) 0.2132(4)	0.0246(4)	0.34512 (16)	0.0474(8)
C10	0.2132(1)	0.0210(1) 0.4069(4)	0.3050(3)	0.0824(13)
H10A	0.0556	0.4893	0.3310	0.124*
H10R	-0.1352	0 3979	0.3106	0.124*
H10C	0.0281	0.4245	0.2595	0.124*
C11	-0.0733(4)	0.4243	0.2595 0.26523(15)	0.124 0.0449 (8)
C12	-0.2120(4)	0.0100(1) 0.1434(3)	0.20323(15) 0.22373(15)	0.0423(7)
C12	-0.1507(5)	0.1494(3) 0.2096(4)	0.22575(17) 0.16670(17)	0.0425(7) 0.0514(8)
H13	-0.0236	0.1915	0.1530	0.062*
C14	-0.2753(5)	0.1919 0.3019 (4)	0.12978 (17)	0.002 0.0545 (9)
H14	-0.2339	0.3465	0.0914	0.0545 (5)
C15	-0.4630(4)	0.3465	0.0514 0.15121 (17)	0.005
C16	-0.5284(5)	0.3204(4) 0.2614(4)	0.15121(17) 0.20677(18)	0.0593 (9)
H16	-0.6562	0.2014 (4)	0.2109	0.0555 (5)
C17	-0.4023(5)	0.2791 0.1686 (4)	0.2199 0.24343 (17)	0.0564 (9)
H17	-0.4454	0.1000 (4)	0.24343(17) 0.2814	0.0504 (5)
C18	-0.2165(5)	-0.1856(4)	0.2014 0.21573 (19)	0.000
H18	-0.3020	-0.1133	0.1020	0.071*
C10	-0.3515(6)	-0.2028(4)	0.1920 0.2507 (2)	0.071
C20	-0.4402(7)	-0.4046(5)	0.2507(2)	0.0048 (15)
	-0.5602	-0.3500	0.3500 (3)	0.142*
1120A	-0.3884	-0.4150	0.3309	0.142° 0.142*
H20D	-0.4404	-0.5012	0.3200	0.142*
C21	-0.0087 (6)	-0.2607(4)	0.3233	0.142° 0.0721 (11)
	-0.0012	-0.2220	0.1055 (2)	0.0731 (11)
1121A U21D	-0.1884	-0.3339	0.105/	0.088.
1121D C22	-0.1004	-0.5551	0.13/3	0.0605 (10)
C22	0.0040(0)	-0.1032(4)	0.1100(2)	0.0055(10)
023	-0.0986 (7)	-0.0965 (5)	0.0057(2)	0.0///(12)

supporting information

H23	-0.2311	-0.1194	0.0570	0.093*	
C24	-0.0046 (8)	0.0060 (6)	0.0261 (2)	0.0874 (14)	
H24	-0.0743	0.0508	-0.0091	0.105*	
C25	0.1903 (8)	0.0413 (6)	0.0387 (3)	0.0911 (14)	
H25	0.2528	0.1109	0.0126	0.109*	
C26	0.2911 (7)	-0.0259 (6)	0.0894 (3)	0.0903 (14)	
H26	0.4238	-0.0028	0.0976	0.108*	
C27	0.2016 (6)	-0.1274 (5)	0.1291 (2)	0.0816 (13)	
H27	0.2746	-0.1717	0.1637	0.098*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0668 (15)	0.0396 (15)	0.0809 (17)	0.0042 (11)	-0.0176 (12)	0.0071 (12)
O2	0.0508 (15)	0.087 (2)	0.103 (2)	0.0157 (14)	-0.0078 (14)	0.0168 (17)
O3	0.086 (2)	0.128 (3)	0.104 (2)	0.033 (2)	0.0136 (17)	0.062 (2)
O4	0.0676 (15)	0.0495 (15)	0.088 (2)	-0.0010 (13)	0.0039 (14)	0.0021 (14)
O5	0.093 (2)	0.072 (2)	0.132 (3)	-0.0315 (19)	-0.0316 (19)	0.004 (2)
N1	0.0474 (14)	0.0488 (16)	0.0552 (16)	-0.0002 (13)	-0.0033 (12)	-0.0010 (14)
N2	0.0578 (16)	0.0465 (16)	0.0688 (19)	0.0048 (14)	-0.0034 (14)	-0.0125 (14)
N3	0.0571 (18)	0.064 (2)	0.072 (2)	0.0105 (15)	-0.0038 (15)	0.0147 (17)
N4	0.0621 (17)	0.0311 (15)	0.0703 (19)	0.0030 (13)	-0.0170 (14)	0.0037 (13)
C1	0.066 (2)	0.071 (3)	0.074 (3)	0.007 (2)	-0.0150 (19)	-0.001 (2)
C2	0.064 (2)	0.095 (4)	0.102 (3)	0.009 (3)	-0.020 (2)	0.012 (3)
C3	0.062 (3)	0.145 (5)	0.094 (4)	-0.008 (3)	-0.028 (2)	0.003 (4)
C4	0.089 (4)	0.153 (6)	0.109 (4)	-0.005 (4)	-0.039 (3)	-0.045 (4)
C5	0.073 (3)	0.104 (4)	0.092 (3)	0.004 (2)	-0.018 (2)	-0.034 (3)
C6	0.0458 (17)	0.070 (2)	0.0444 (19)	-0.0047 (18)	0.0009 (13)	0.0002 (17)
C7	0.0468 (18)	0.0410 (17)	0.065 (2)	0.0064 (15)	0.0035 (15)	-0.0057 (16)
C8	0.0424 (16)	0.0355 (17)	0.0530 (19)	0.0032 (14)	-0.0005 (13)	0.0001 (14)
C9	0.0440 (18)	0.046 (2)	0.052 (2)	0.0001 (14)	0.0027 (14)	-0.0001 (15)
C10	0.080 (3)	0.046 (2)	0.119 (4)	0.016 (2)	-0.025 (2)	-0.018 (2)
C11	0.0440 (17)	0.0440 (19)	0.0469 (19)	0.0036 (14)	0.0046 (14)	0.0020 (14)
C12	0.0439 (16)	0.0315 (15)	0.0514 (18)	0.0007 (13)	0.0008 (13)	-0.0007 (14)
C13	0.0421 (17)	0.0472 (18)	0.065 (2)	0.0044 (15)	0.0073 (15)	0.0034 (17)
C14	0.0540 (19)	0.053 (2)	0.057 (2)	0.0031 (16)	0.0082 (15)	0.0122 (16)
C15	0.0441 (16)	0.0418 (18)	0.060 (2)	0.0067 (14)	-0.0031 (15)	0.0012 (15)
C16	0.0439 (17)	0.069 (2)	0.065 (2)	0.0101 (18)	0.0069 (15)	0.011 (2)
C17	0.0525 (18)	0.060 (2)	0.057 (2)	0.0054 (17)	0.0089 (15)	0.0169 (16)
C18	0.067 (2)	0.0341 (17)	0.075 (3)	0.0029 (16)	-0.0178 (19)	-0.0030 (17)
C19	0.064 (2)	0.0346 (17)	0.092 (3)	0.0031 (17)	-0.007 (2)	-0.0013 (19)
C20	0.088 (3)	0.063 (3)	0.136 (4)	-0.007 (2)	0.036 (3)	0.011 (3)
C21	0.086 (3)	0.045 (2)	0.087 (3)	0.0055 (19)	-0.007 (2)	-0.009 (2)
C22	0.072 (2)	0.047 (2)	0.070 (2)	0.0085 (18)	-0.0045 (19)	-0.0138 (18)
C23	0.086 (3)	0.076 (3)	0.070 (3)	0.012 (2)	-0.016 (2)	-0.016 (2)
C24	0.117 (4)	0.091 (4)	0.053 (2)	0.014 (3)	-0.003 (2)	-0.005 (2)
C25	0.106 (4)	0.088 (3)	0.081 (3)	0.011 (3)	0.025 (3)	-0.003 (3)
C26	0.067 (3)	0.091 (3)	0.113 (4)	0.007 (3)	0.012 (3)	-0.003 (3)

						0
C27	0.069 (3)	0.079 (3)	0.096 (3)	0.017 (2)	-0.011 (2)	0.002 (3)
Geome	tric parameters ((Å, °)				
01-0	9	1.244 (4	ł)	C11—C12		1.500 (4)
02—N	[3	1.218 (4	, .)	C12—C13		1.381 (4)
03—N	[3	1.217 (4	-)	C12—C17		1.384 (4)
04—C	19	1.313 (5	5)	C13—C14		1.378 (5)
04—C	20	1.473 (5	5)	С13—Н13		0.9300
05—C	19	1.201 (4)	C14—C15		1.379 (4)
N1—C	9	1.374 (4	l)	C14—H14		0.9300
N1—N	2	1.403 (4	l)	C15—C16		1.361 (5)
N1—C	6	1.434 (4	l)	C16—C17		1.384 (5)
N2—C	27	1.306 (4)	C16—H16		0.9300
N3—C	15	1.474 (4	, F)	C17—H17		0.9300
N4—C	11	1.326 (4)	C18—C19		1.520 (6)
N4—C	18	1.452 (4)	C18—C21		1.550 (6)
N4—H	[4	0.8600	,	C18—H18		0.9800
C1—C	6	1.367 (6	5)	C20—H20A		0.9600
C1—C	2	1.376 (5	5)	C20—H20B		0.9600
С1—Н	1	0.9300	,	C20—H20C		0.9600
С2—С	3	1.352 (8	3)	C21—C22		1.497 (6)
С2—Н	2	0.9300	,	C21—H21A		0.9700
С3—С	4	1.365 (8	3)	C21—H21B		0.9700
С3—Н	3	0.9300	,	C22—C27		1.387 (6)
C4—C	5	1.386 (7	7)	C22—C23		1.396 (6)
С4—Н	4A	0.9300	,	C23—C24		1.391 (7)
С5—С	6	1.391 (6	5)	С23—Н23		0.9300
С5—Н	5	0.9300	·	C24—C25		1.370 (7)
С7—С	8	1.440 (5	5)	C24—H24		0.9300
С7—С	10	1.494 (5	5)	C25—C26		1.352 (7)
C8—C	11	1.385 (4	ł)	C25—H25		0.9300
C8—C	9	1.445 (4	4)	C26—C27		1.371 (7)
C10—1	H10A	0.9600		C26—H26		0.9300
C10—1	H10B	0.9600		С27—Н27		0.9300
C10—1	H10C	0.9600				
C19—	O4—C20	116.1 (3	5)	C12—C13—H13		119.5
C9—N	1—N2	112.5 (2	2)	C13—C14—C15		118.3 (3)
C9—N	1—C6	129.5 (3	3)	C13—C14—H14		120.9
N2—N	[1—C6	117.7 (3	5)	C15—C14—H14		120.9
C7—N	2—N1	106.2 (3	3)	C16—C15—C14		122.2 (3)
03—N	I3—O2	123.6 (3	3)	C16—C15—N3		118.5 (3)
03—N	[3—C15	118.1 (3	5)	C14—C15—N3		119.4 (3)
02—N	13—C15	118.2 (3	5)	C15—C16—C17		119.1 (3)
C11—]	N4—C18	127.5 (3	3)	C15—C16—H16		120.4
C11—]	N4—H4	116.3		C17—C16—H16		120.4
C18—1	N4—H4	116.3		C16—C17—C12		120.1 (3)

supporting information

C6—C1—C2	119.6 (4)	С16—С17—Н17	119.9
С6—С1—Н1	120.2	С12—С17—Н17	119.9
C2—C1—H1	120.2	N4—C18—C19	113.7 (3)
C3—C2—C1	121.3 (5)	N4—C18—C21	111.3 (3)
С3—С2—Н2	119.3	C19—C18—C21	110.8 (3)
C1—C2—H2	119.3	N4—C18—H18	106.9
C2—C3—C4	118.7 (4)	С19—С18—Н18	106.9
С2—С3—Н3	120.6	C21—C18—H18	106.9
С4—С3—Н3	120.6	O5—C19—O4	124.1 (4)
C3—C4—C5	122.3 (5)	O5-C19-C18	121.9 (4)
C3—C4—H4A	118.8	O4—C19—C18	114.0 (3)
C5—C4—H4A	118.8	O4—C20—H20A	109.5
C4-C5-C6	117.3 (5)	04—C20—H20B	109.5
C4—C5—H5	121.4	H20A—C20—H20B	109.5
С6—С5—Н5	121.4	O4-C20-H20C	109.5
C1-C6-C5	120.7 (3)	$H_{20}A - C_{20} - H_{20}C$	109.5
C1 - C6 - N1	120.7(3) 121.1(3)	H_{20B} C_{20} H_{20C}	109.5
$C_5 - C_6 - N_1$	1181(4)	$C_{22} = C_{21} = C_{18}$	102.5 112.6(3)
N_{2} C_{7} C_{8}	110.1(1) 111.6(3)	$C_{22} = C_{21} = H_{21A}$	109.1
$N_{2} - C_{7} - C_{10}$	117.9(3)	C18 - C21 - H21A	109.1
C8 - C7 - C10	1304(3)	C_{22} C_{21} H_{21R}	109.1
$C_{11} - C_{8} - C_{7}$	130.1(3) 132.0(3)	C18 - C21 - H21B	109.1
$C_{11} = C_{8} = C_{9}$	132.0(3) 122.8(3)	$H_{21}A = C_{21} = H_{21}B$	107.8
C7 - C8 - C9	122.0(3) 105.3(3)	C_{27} C_{22} C_{23}	107.8 117 2 (4)
$O_1 = C_0 = O_1$	105.5(5) 126.9(3)	$C_{27} = C_{22} = C_{23}$	117.2(4) 1218(4)
01 - 09 - 08	120.9(3) 128.6(3)	C_{23} C_{22} C_{21} C_{21}	121.0(4) 120.9(4)
N1 C9 C8	120.0(3) 104.4(3)	$C_{23} = C_{22} = C_{21}$	120.5(4)
11 - 03 - 03	104.4 (5)	$C_{24} = C_{23} = C_{22}$	120.0 (4)
$C_7 = C_{10} = H_{10}$	109.5	$C_{24} = C_{23} = H_{23}$	119.7
C_{-}	109.5	$C_{22} = C_{23} = H_{23}$	119.7 120.2(5)
C7 C10 H10C	109.5	$C_{25} = C_{24} = C_{25}$	120.3 (3)
	109.5	$C_{23} = C_{24} = H_{24}$	119.9
H10A - C10 - H10C	109.5	$C_{23} = C_{24} = H_{24}$	119.9
$\mathbf{M} = \mathbf{M} = $	109.3	$C_{20} = C_{23} = C_{24}$	119.4 (3)
N4 - C11 - C3	120.0(3)	$C_{20} = C_{23} = H_{23}$	120.5
N4-CII-CI2	118.9(3)	C24—C25—H25	120.3
C_{8} C_{12} $C_$	121.1(3)	$C_{25} = C_{26} = C_{27}$	121.4 (5)
C13 - C12 - C17	119.4(3)	$C_{23} = C_{20} = H_{20}$	119.3
C13 - C12 - C11	120.7(3)	$C_2/-C_{26}$ -H ₂₆	119.3
CI/-CI2-CII	119.8 (3)	$C_{26} = C_{27} = C_{22}$	121.2 (4)
C14—C13—C12	120.9 (3)	$C_{26} = C_{27} = H_{27}$	119.4
C14—C13—H13	119.5	C22—C27—H27	119.4
C9—N1—N2—C7	-0.7 (4)	N4—C11—C12—C17	81.3 (4)
C6—N1—N2—C7	173.7 (3)	C8-C11-C12-C17	-99.0 (4)
C6—C1—C2—C3	0.3 (7)	C17—C12—C13—C14	1.0 (5)
C1—C2—C3—C4	0.3 (9)	C11—C12—C13—C14	-177.5 (3)
C2—C3—C4—C5	-1.7 (10)	C12—C13—C14—C15	-0.1 (5)
C3—C4—C5—C6	2.4 (9)	C13—C14—C15—C16	-0.7 (5)

C2-C1-C6-C5	0.5 (6)	C13—C14—C15—N3	179.3 (3)
C2-C1-C6-N1	176.6 (4)	O3—N3—C15—C16	171.5 (4)
C4—C5—C6—C1	-1.7 (7)	O2—N3—C15—C16	-7.0 (5)
C4—C5—C6—N1	-178.0 (4)	O3—N3—C15—C14	-8.5 (5)
C9—N1—C6—C1	18.5 (5)	O2—N3—C15—C14	173.0 (3)
N2—N1—C6—C1	-154.8 (3)	C14—C15—C16—C17	0.6 (6)
C9—N1—C6—C5	-165.3 (4)	N3-C15-C16-C17	-179.4 (3)
N2—N1—C6—C5	21.4 (5)	C15—C16—C17—C12	0.3 (6)
N1—N2—C7—C8	-0.2 (4)	C13—C12—C17—C16	-1.1 (5)
N1—N2—C7—C10	-178.9 (3)	C11—C12—C17—C16	177.4 (3)
N2-C7-C8-C11	-179.3 (3)	C11—N4—C18—C19	-121.9 (4)
C10—C7—C8—C11	-0.9 (7)	C11—N4—C18—C21	112.2 (4)
N2-C7-C8-C9	1.0 (4)	C20—O4—C19—O5	-3.5 (5)
C10—C7—C8—C9	179.4 (4)	C20—O4—C19—C18	177.1 (3)
N2—N1—C9—O1	179.9 (3)	N4—C18—C19—O5	170.7 (4)
C6—N1—C9—O1	6.3 (5)	C21—C18—C19—O5	-63.1 (5)
N2—N1—C9—C8	1.3 (3)	N4-C18-C19-O4	-10.0 (4)
C6—N1—C9—C8	-172.3 (3)	C21—C18—C19—O4	116.3 (4)
C11—C8—C9—O1	0.4 (5)	N4-C18-C21-C22	-64.3 (4)
C7—C8—C9—O1	-179.9 (3)	C19—C18—C21—C22	168.2 (3)
C11—C8—C9—N1	179.0 (3)	C18—C21—C22—C27	97.0 (5)
C7—C8—C9—N1	-1.3 (3)	C18—C21—C22—C23	-80.1 (5)
C18—N4—C11—C8	-176.7 (3)	C27—C22—C23—C24	-0.4 (6)
C18—N4—C11—C12	3.1 (5)	C21—C22—C23—C24	176.9 (4)
C7—C8—C11—N4	-174.9 (4)	C22—C23—C24—C25	-0.3 (7)
C9—C8—C11—N4	4.7 (5)	C23—C24—C25—C26	0.9 (7)
C7—C8—C11—C12	5.3 (5)	C24—C25—C26—C27	-0.8 (7)
C9—C8—C11—C12	-175.1 (3)	C25—C26—C27—C22	0.1 (7)
N4—C11—C12—C13	-100.2 (4)	C23—C22—C27—C26	0.5 (6)
C8—C11—C12—C13	79.5 (4)	C21—C22—C27—C26	-176.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N4—H4…O1	0.86	2.04	2.738 (4)	138
С1—Н1…О1	0.93	2.41	3.001 (4)	121
C20—H20A…O1 ⁱ	0.96	2.55	3.385 (5)	145

Symmetry code: (i) x-1, y, z.