Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Oosporein from Tremella fuciformis

Gang He, ${ }^{\text {a }}$ Jun Yan, ${ }^{\text {b }}$ Xiao-Yong Wu, ${ }^{\text {b }}$ Xiao-Jun Gou ${ }^{\text {b }}$ and Wan-Chen Li $^{\mathbf{a}}{ }^{*}$

${ }^{\text {a }}$ Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China, and ${ }^{\mathbf{b}}$ The Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Commission, Chengdu University, Chengdu 610106, People's Republic of China
Correspondence e-mail: Iwc0011@yahoo.cn
Received 16 March 2012; accepted 24 March 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.044 ; w R$ factor $=0.118$; data-to-parameter ratio $=13.0$.

The title compound [systematic name: 3, $3^{\prime}, 6,6^{\prime}$-tetrahydroxy-4,4'-dimethyl-1, 1^{\prime}-bi(cyclohexa-3,6-diene)-2,2',5,5'-tetraone], $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{8}$, was isolated from Tremella fuciformis. The molecule has 2 symmetry, with the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the cyclohexadienedione rings located on a twofold rotation axis. In the molecule, the ring is approximately planar, with an r.m.s. deviation of $0.0093 \AA$, and the two rings make a dihedral angle of $67.89(5)^{\circ}$. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs in the crystal structure.

Related literature

For general background to the title compound, see: Takeshita \& Anchel (1965). For the chemical structure of the title compound established from NMR data, see: Richard et al. (1974).

Experimental

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{8}$
$M_{r}=306.22$
Monoclinic, $C 2 /$ c
$a=11.9983$ (9) A
$b=8.2981$ (6) A
$c=13.7634$ (11) \AA
$\beta=105.994$ (7) ${ }^{\circ}$
$V=1317.28(17) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2848 measured reflections

1342 independent reflections 937 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.06$
1342 reflections

103 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O}^{\text {i }}$	0.82	2.03	$2.770(2)$	150
O3-H3 $^{\text {ii }}$	0.82	2.03	$2.7658(19)$	150

Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $x+\frac{1}{2}, y+\frac{1}{2}, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project was supported by the Chengdu University Research Fund (No. 2010XJZ23).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5486).

References

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Richard, J. C., Jerry, W. K., Horace, G. C. \& Elemer, E. D. (1974). J. Agric. Food Chem, 22, 517-520.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Takeshita, H. \& Anchel, M. (1965). Science, 147, 152-153.

supporting information

Acta Cryst. (2012). E68, o1231 [https://doi.org/10.1107/S1600536812012950]

Oosporein from Tremella fuciformis

Gang He, Jun Yan, Xiao-Yong Wu, Xiao-Jun Gou and Wan-Chen Li

S1. Comment

The oosporein was previously isolated from Phlebia mellea (Takeshita \& Anchel, 1965), and its structure was established from the spectroscopic data (Richard et al., 1974). In our recent investigation, it was isolated from Tremella fuciformis for the first time, and its structure is reported here.
The molecular structure of the title compound is shown in Fig. 1. The molecule of the title compound contains two plane six-membered rings which assumes a screw-plane conformation, and there is a dihedral angle between the two planes.
The crystal structure contains intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the hydroxy group and the aldehyde atom (Table 1).

S2. Experimental

Tremella fuciformis was a culture collection of our laboratory, the stock culture was maintained on potato dextrose agar (PDA) slants and subcultured once a month. It was used in submerged culture. Agar, slants containing potato-dextroseagar were inoculated with mycelia and incubated at $25^{\circ} \mathrm{C}$ for 5 days, and then used as inoculums for seed culture. The seed culture was grown in 250 ml shake flasks containing 50 ml for 2 days at initial $\mathrm{pH} 6.8-7.0,25^{\circ} \mathrm{C}$, and 150 rpm with a medium containing 20 g. l^{-1} glucose, 2 g. l^{-1} soybean meal leaching solution, $1.0 \mathrm{~g} . \mathrm{l}^{-1} \mathrm{MgSO}_{4}, 1.0 \mathrm{~g} . \mathrm{l}^{-1} \mathrm{KH}_{2} \mathrm{PO}_{4}$ and 0.46 g. $1^{-1} \mathrm{~K}_{2} \mathrm{HPO}_{4}$. Submerged fermentation was the same as the seed culture medium. All media were sterilized at $115^{\circ} \mathrm{C}$ for 20 min . Fermentation liquid centrifugal (10000 rpm) and then rotary evaporation at $50^{\circ} \mathrm{C}$. Fermented liquid was concentrated by rotating evaporation at $50^{\circ} \mathrm{C}$ and add 4 times the volume of the anhydrous alcohol, $4^{\circ} \mathrm{C}$ for the night precipitation, 10000 rmp centrifugal remove polysaccharides and protein. Rotated evaporation and concentration, concentrate on D101 macroporous resin adsorption, first washed with distilled water, then elution with 95\% ethanol elution, eluent was saved at $4^{\circ} \mathrm{C}$, to obtain crud crystals, crud crystals washing was 95% ethanol, and then recrystallized in 95% ethanol solution.

S3. Refinement

H atoms were located geometrically with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.96 \AA$, and using a riding model with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\mathrm{eq}}(\mathrm{C}, O)$.

Figure 1
The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.

3,3',6,6'-tetrahydroxy-4,4'-dimethyl-1,1'-bi(cyclohexa-3,6-diene)-2,2',5,5'- tetraone

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{8}$
$M_{r}=306.22$
Monoclinic, $C 2 / c$
$a=11.9983$ (9) \AA
$b=8.2981$ (6) \AA
$c=13.7634$ (11) \AA
$\beta=105.994$ (7) ${ }^{\circ}$
$V=1317.28(17) \AA^{3}$
$Z=4$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.0 pixels mm^{-1}
ω scans
2848 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.118$
$S=1.06$
1342 reflections
103 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=632$
$D_{\mathrm{x}}=1.544 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 884 reflections
$\theta=3.0-28.7^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$

1342 independent reflections
937 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.4^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-14 \rightarrow 11$
$k=-9 \rightarrow 10$
$l=-17 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0491 P)^{2}+0.4579 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * U_{\text {eq }}$
O1	$0.82546(12)$	$0.06885(18)$	$0.65807(11)$	$0.0380(4)$
O2	$0.79548(13)$	$0.0605(2)$	$0.45935(11)$	$0.0434(5)$
H2	0.7623	0.0135	0.4958	0.065^{*}
O3	$1.16014(12)$	$0.3820(2)$	$0.71051(11)$	$0.0402(5)$
H3	1.1965	0.4229	0.6744	0.060^{*}
O4	$1.12577(13)$	$0.3814(2)$	$0.51152(12)$	$0.0454(5)$
C1	$0.95888(17)$	$0.2202(2)$	$0.47435(15)$	$0.0275(5)$
C2	$0.88498(16)$	$0.1437(2)$	$0.51643(15)$	$0.0274(5)$
C3	$0.89706(16)$	$0.1438(2)$	$0.62776(15)$	$0.0259(5)$
C4	$0.99324(15)$	$0.2298(2)$	$0.69505(14)$	$0.0232(5)$
C5	$1.06929(16)$	$0.3034(2)$	$0.65361(15)$	$0.0267(5)$
C6	$1.05442(17)$	$0.3056(2)$	$0.54165(16)$	$0.0284(5)$
C7	$0.9473(2)$	$0.2204(3)$	$0.36334(16)$	$0.0399(6)$
H7A	0.9064	0.1254	0.3332	0.060^{*}
H7B	1.0229	0.2215	0.3525	0.060^{*}
H7C	0.9050	0.3144	0.3331	0.060^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0323(8)$	$0.0499(10)$	$0.0336(9)$	$-0.0172(7)$	$0.0120(7)$	$0.0003(7)$
O2	$0.0398(9)$	$0.0616(12)$	$0.0274(9)$	$-0.0259(8)$	$0.0069(7)$	$-0.0044(8)$
O3	$0.0339(9)$	$0.0544(11)$	$0.0309(9)$	$-0.0219(7)$	$0.0066(7)$	$-0.0014(8)$
O4	$0.0416(9)$	$0.0618(11)$	$0.0351(10)$	$-0.0259(8)$	$0.0146(7)$	$-0.0008(8)$
C1	$0.0264(10)$	$0.0320(12)$	$0.0243(11)$	$-0.0007(9)$	$0.0074(8)$	$-0.0006(9)$
C2	$0.0236(10)$	$0.0315(12)$	$0.0259(12)$	$-0.0045(9)$	$0.0047(8)$	$-0.0013(9)$
C3	$0.0227(10)$	$0.0269(11)$	$0.0286(12)$	$0.0003(8)$	$0.0080(8)$	$0.0034(8)$
C4	$0.0223(10)$	$0.0247(11)$	$0.0227(11)$	$0.0019(8)$	$0.0064(8)$	$0.0009(8)$
C5	$0.0220(10)$	$0.0289(11)$	$0.0274(12)$	$-0.0033(8)$	$0.0040(8)$	$-0.0019(9)$
C6	$0.0260(11)$	$0.0299(12)$	$0.0313(12)$	$-0.0024(9)$	$0.0112(9)$	$0.0018(9)$
C7	$0.0424(13)$	$0.0499(15)$	$0.0291(13)$	$-0.0063(11)$	$0.0125(10)$	$-0.0024(11)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 3$	$1.223(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.499(3)$
$\mathrm{O} 2-\mathrm{C} 2$	$1.335(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.452(3)$

$\mathrm{O} 2-\mathrm{H} 2$	0.8200
$\mathrm{O} 3-\mathrm{C} 5$	$1.325(2)$
$\mathrm{O} 3-\mathrm{H} 3$	0.8200
$\mathrm{O} 4-\mathrm{C} 6$	$1.223(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.344(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.445(3)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.496(3)$
$\mathrm{C} 2-\mathrm{O} 2-\mathrm{H} 2$	109.5
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{H} 3$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$117.14(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$123.62(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$119.24(18)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$120.65(18)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$115.94(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.41(17)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$122.79(19)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$117.97(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.23(17)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$117.65(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 4$	$122.51(19)$

$\mathrm{C} 4-\mathrm{C} 5$	$1.348(3)$
$\mathrm{C} 4-\mathrm{C} 4$	$1.476(4)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.502(3)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4$	$119.81(18)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 4$	$121.01(18)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$116.50(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.46(17)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 1$	$122.71(19)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 5$	$117.24(18)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.04(17)$
C1-C7-H7A	109.5
C1-C7-H7B	109.5
H7A-C7-H7B	109.5
C1-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5

Symmetry code: (i) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 4^{\mathrm{ii}}$	0.82	2.03	$2.770(2)$	150
$\mathrm{O}^{\mathrm{ii}} \mathrm{H} 3 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.82	2.03	$2.7658(19)$	150

Symmetry codes: (ii) $x-1 / 2, y-1 / 2, z$; (iii) $x+1 / 2, y+1 / 2, z$.

