metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-(Nitrato- $\kappa^2 O$,O')(2,5,5,7,9,12,12,14octamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$,N',N'',N''')cadmium nitrate hemihydrate

Tapashi G. Roy,^a‡ Saroj K. S. Hazari,^a Babul Chandra Nath,^a Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Chemistry, University of Chittagong, Chittagong 4331, Bangladesh, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: edward.tiekink@gmail.com

Received 12 March 2012; accepted 21 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.078; data-to-parameter ratio = 16.3.

The Cd^{II} atom in the title complex, $[Cd(NO_3)(C_{18}H_{40}N_4)]$ -NO₃·0.5H₂O, is coordinated within a *cis*-N₄O₂ donor set provided by the tetradentate macrocyclic ligand and two O atoms of a nitrate anion; the coordination geometry is distorted octahedral. The lattice water molecule is located on a twofold rotation axis. N-H···O hydrogen bonds and weak C-H···O interactions link the complex cations into a supramolecular layer in the *bc* plane. Layers are connected by O-H···O hydrogen bonds between the lattice water molecule and the non-coordinating nitrate anion, as well as by weak C-H···O contacts.

Related literature

For background to macrocyclic complexes, see: Hazari *et al.* (2008). For the crystal structure of the anhydrous form of the title complex, see: Hazari *et al.* (2010). For the synthesis of the macrocyclic ligand, see: Bembi *et al.* (1989).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Cd}(\mathrm{NO}_3)(\mathrm{C}_{18}\mathrm{H}_{40}\mathrm{N}_4)]\mathrm{NO}_3\cdot 0.5\mathrm{H}_2\mathrm{O}\\ & M_r = 557.98\\ & \mathrm{Monoclinic}, \ C2/c\\ & a = 18.4312 \ (4) \ \text{\AA}\\ & b = 11.3595 \ (2) \ \text{\AA}\\ & c = 25.1662 \ (6) \ \text{\AA}\\ & \beta = 111.782 \ (3)^\circ \end{split}$$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\min} = 0.738, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.078$ S = 1.064713 reflections 289 parameters 1 restraint Z = 8Cu K\alpha radiation $\mu = 7.55 \text{ mm}^{-1}$ T = 100 K $0.15 \times 0.15 \times 0.15 \text{ mm}$

V = 4892.8 (2) Å³

8065 measured reflections 4713 independent reflections 4467 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.019$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Table 1

_ ..

Selected bond lengths (Å).

Cd-O1	2.4562 (19)	Cd-N2	2.307 (2)
Cd-O2	2.404 (2)	Cd-N3	2.303 (2)
Cd-N1	2.306 (2)	Cd-N4	2.312 (2)

lable 2				
Hydrogen-bond	geometry	(Å,	°)	۱.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01w - H1w \cdots 05$ $N1 - H1n \cdots 01^{i}$ $N2 - H2n \cdots 04$ $N4 - H4n \cdots 05$ $C5 - H5B \cdots 06^{ii}$	0.85 (1) 0.88 0.88 0.88 0.88 0.98	2.04 (2) 2.42 2.30 2.11 2.58	2.836 (3) 3.242 (3) 3.133 (4) 2.991 (3) 3.539 (5)	156 (5) 155 157 175 168
$C11 - H11 \cdots O4^{iii}$ $C9 - H9B \cdots O1w^{iv}$	1.00 0.98	2.44 2.51	3.358 (3) 3.451 (4)	152 162

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

‡ Additional correspondence author, e-mail: tapashir@yahoo.com.

m494 Roy et al.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are grateful to the Ministry of National Science, Information and Communication Technology (NSICT), Bangladesh, for a research fellowship to BCN. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12). Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5483).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Bembi, R., Sondhi, S. M., Singh, A. K., Jhanji, A. K., Roy, T. G., Lown, J. W. & Ball, R. G. (1989). Bull. Chem. Soc. Jpn, 62, 3701–3705.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.
- Hazari, S. K. S., Roy, T. G., Barua, K. K., Anwar, N., Zukerman-Schpector, J. & Tiekink, E. R. T. (2010). Appl. Organomet. Chem. 24, 878–887.
- Hazari, S. K. S., Roy, T. G., Barua, K. K. & Tiekink, E. R. T. (2008). J. Chem. Crystallogr. 38, 1-8.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m494–m495 [https://doi.org/10.1107/S160053681201238X]

cis-(Nitrato- $\kappa^2 O$,O')(2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane- $\kappa^4 N$,N',N'',N''')cadmium nitrate hemihydrate

Tapashi G. Roy, Saroj K. S. Hazari, Babul Chandra Nath, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

In continuation of on-going studies of the synthesis, characterization and biological activities of substituted tetraazamacrocyclic ligands and their metal complexes (Hazari *et al.*, 2008), attention was directed to cadmium complexes (Hazari *et al.*, 2010). In that study, the title complex was investigated in its anhydrous form. Recently, it was isolated as a hemihydrate (I). Herein, we describe the crystal structure of (I).

In cation in (I), Fig. 1, the Cd^{II} atom exists within a *cis*-N₄O₂ donor set defined by the four nitrogen atoms of the macrocyclic ligand and two nitrate-O atoms, Table 1. The coordination geometry is based on an octahedron, but with significant distortions owing in part to the restricted bite angle of the nitrate ligand as manifested in the O1—Cd—O2 angle of 52.80 (7)°. A more regular geometry was found in the anhydrous form of the complex (Hazari *et al.*, 2010). The N—H atoms are orientated oppositely going around the macrocyclic ring. The non-coordinating nitrate anion straddles one side of the cation forming two N—H…O hydrogen bonds and an eight-membered {…ONO…HNCdNH} synthon. The formation of N—H…O hydrogen bonds between a third amine-H and an oxygen atom of the coordinated nitrate ligand leads to four-ion aggregates. These are linked into a supramolecular layer in the *bc* plane *via* C—H…O interactions involving the non-coordinating nitrate anion, Fig. 2 and Table 2. The water molecules link layers in the *a* direction, Fig. 3 and Table 2.

S2. Experimental

The macrocyclic ligand, 3,10-*C-meso*-2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (0.312 g, 1.0 mmol), prepared in accord with the literature procedure (Bembi *et al.*, 1989), was dissolved in methanol (20 ml) in a round bottomed flask. Cadmium(II) nitrate hexahydrate (0.344 g, 1.0 mmol) in methanol (20 ml) was added drop wise to the round bottom flask with continuous stirring The mixture was heated for about 30 min. on a steam bath to ensure the completion of the reaction and was then filtered. After 48 h, the white crystalline product that formed from the filtrate was filtered off, washed with methanol followed by diethylether and dried in a desiccator over silica gel. Yield 85%. *M.*pt: 515–518 K. Anal. Calc. for. $C_{18}H_{41}CdN_6O_{6.5}$ C, 38.75; H, 7.41; N, 15.06; Cd, 20.15%. Found: C, 38.85; H, 7.33; N, 15.75; Cd, 20.35%. FT—IR (KBr, cm⁻¹) 3200 *v*(N—H), 2980 *v*(C—H), 1371 *v*(CH₃), 1178 *v*(C—C), 520 *v*(Cd—N), 1381, 1460, 1275, 730, 820 *v*(NO₃).

S3. Refinement

The N– and C-bound H-atoms were placed in calculated positions (N—H = 0.88 Å and C—H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = 1.2 \cdot 1.5 U_{eq}(N,C)$. The O—H atom was located from a difference map and refined with O—H = 0.84±0.01 Å, and with $U_{iso}(H)=1.5 U_{eq}(O)$.

Figure 1

The molecular structure of the cation in (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of the supramolecular layer in the *bc* plane in (I). The N—H…O hydrogen bonds and C—H…O interactions are shown as blue and brown dashed lines, respectively.

Figure 3

A view of the unit-cell contents in projection down the c axis in (I). The O—H···O, N—H···O hydrogen bonds and C—H···O interactions are shown as orange, blue and brown dashed lines, respectively.

cis-(Nitrato- κ^2 O,O')(2,5,5,7,9,12,12,14-octamethyl- 1,4,8,11-tetraazacyclotetradecane- κ^4 N,N',N'',N''') cadmium nitrate hemihydrate

Crystal data

 $[Cd(NO_3)(C_{18}H_{40}N_4)]NO_3 \cdot 0.5H_2O$ $M_r = 557.98$ Monoclinic, C2/c Hall symbol: -C 2yc a = 18.4312 (4) Å b = 11.3595 (2) Å c = 25.1662 (6) Å $\beta = 111.782$ (3)° V = 4892.8 (2) Å³ Z = 8

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ F(000) = 2328 $D_x = 1.515 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 4995 reflections $\theta = 3.8-74.2^{\circ}$ $\mu = 7.55 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.15 \times 0.15 \times 0.15 \text{ mm}$

 ω scan Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2011) $T_{\min} = 0.738$, $T_{\max} = 1.000$ 8065 measured reflections 4713 independent reflections

4467 reflections with $I > 2\sigma(I)$	$h = -22 \rightarrow 22$
$R_{\rm int} = 0.019$	$k = -13 \rightarrow 10$
$\theta_{\rm max} = 72.5^{\circ}, \theta_{\rm min} = 3.8^{\circ}$	$l = -26 \rightarrow 30$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.078$	neighbouring sites
S = 1.06	H atoms treated by a mixture of independent
4713 reflections	and constrained refinement
289 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 5.776P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.003$
direct methods	$\Delta \rho_{\rm max} = 0.81 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Cd	0.197738 (9)	0.571407 (14)	0.583635 (7)	0.01711 (7)
01	0.14876 (11)	0.69017 (17)	0.49587 (8)	0.0267 (4)
O2	0.09653 (11)	0.51918 (19)	0.49425 (8)	0.0303 (4)
O3	0.05888 (12)	0.6264 (2)	0.41718 (8)	0.0349 (5)
O4	0.30600 (16)	0.5939 (2)	0.78128 (12)	0.0541 (7)
O5	0.36324 (14)	0.4804 (2)	0.74149 (9)	0.0411 (5)
O6	0.42998 (16)	0.5642 (3)	0.82134 (12)	0.0625 (9)
O1w	0.5000	0.3546 (3)	0.7500	0.0546 (10)
H1w	0.468 (2)	0.400 (3)	0.757 (2)	0.071 (15)*
N1	0.31753 (12)	0.59274 (19)	0.57539 (9)	0.0180 (4)
H1n	0.3114	0.6462	0.5488	0.022*
N2	0.26080 (13)	0.69852 (18)	0.65796 (9)	0.0204 (4)
H2n	0.2802	0.6540	0.6886	0.024*
N3	0.10838 (12)	0.5348 (2)	0.62575 (9)	0.0201 (4)
H3n	0.0670	0.5039	0.5991	0.024*
N4	0.24524 (12)	0.39622 (19)	0.63040 (9)	0.0185 (4)
H4n	0.2805	0.4164	0.6638	0.022*
N5	0.10019 (11)	0.6129 (2)	0.46812 (9)	0.0201 (4)
N6	0.36913 (15)	0.5470 (2)	0.78257 (10)	0.0305 (5)
C1	0.37042 (15)	0.6450 (2)	0.63004 (11)	0.0224 (5)
H1A	0.4184	0.6743	0.6255	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H1B	0.3858	0.5841	0.6603	0.027*
C2	0.32955 (15)	0.7467 (2)	0.64762 (11)	0.0240 (5)
H2A	0.3101	0.8032	0.6149	0.029*
C3	0.38695 (18)	0.8119 (3)	0.69901 (13)	0.0349 (7)
H3A	0.3599	0.8767	0.7096	0.052*
H3B	0.4298	0.8434	0.6891	0.052*
H3C	0.4080	0.7574	0.7313	0.052*
C4	0.20833 (16)	0.7847 (2)	0.67095 (12)	0.0250 (5)
H4A	0.2421	0.8293	0.7055	0.030*
C5	0.17717 (18)	0.8748 (3)	0.62320 (13)	0.0304 (6)
H5A	0.2209	0.9107	0.6159	0.046*
H5B	0.1483	0.9359	0.6345	0.046*
H5C	0.1423	0.8358	0.5884	0.046*
C6	0.14814 (16)	0.7182 (2)	0.68874 (12)	0.0258 (6)
H6A	0.1235	0.7779	0.7053	0.031*
H6B	0.1786	0.6658	0.7206	0.031*
C7	0.08049 (16)	0.6424 (2)	0.64788 (12)	0.0247 (5)
C8	0.02921 (17)	0.7092 (3)	0.59449 (13)	0.0312 (6)
H8A	-0.0124	0.6573	0.5703	0.047*
H8B	0.0611	0.7354	0.5731	0.047*
H8C	0.0060	0.7778	0.6058	0.047*
C9	0.02975 (18)	0.6059 (3)	0.68196 (14)	0.0318 (6)
H9A	-0.0140	0.5574	0.6577	0.048*
H9B	0.0095	0.6764	0.6941	0.048*
H9C	0.0615	0.5606	0.7157	0.048*
C10	0.14391 (16)	0.4404 (2)	0.66829 (12)	0.0226 (5)
H10A	0.1034	0.4060	0.6807	0.027*
H10B	0.1851	0.4748	0.7023	0.027*
C11	0.17965 (15)	0.3427 (2)	0.64345 (11)	0.0215 (5)
H11	0.2019	0.2813	0.6736	0.026*
C12	0.11974 (15)	0.2840 (2)	0.59113 (12)	0.0251 (5)
H12A	0.1453	0.2224	0.5771	0.038*
H12B	0.0970	0.3429	0.5611	0.038*
H12C	0.0783	0.2489	0.6016	0.038*
C13	0.28665 (14)	0.3164 (2)	0.60372 (11)	0.0203 (5)
H13	0.2493	0.2937	0.5648	0.024*
C14	0.31561 (16)	0.2039 (2)	0.63891 (12)	0.0263 (6)
H14A	0.2713	0.1628	0.6431	0.039*
H14B	0.3537	0.2245	0.6768	0.039*
H14C	0.3404	0.1524	0.6193	0.039*
C15	0.35667 (14)	0.3792 (2)	0.59731 (11)	0.0223 (5)
H15A	0.3872	0.3186	0.5864	0.027*
H15B	0.3901	0.4077	0.6358	0.027*
C16	0.34558 (14)	0.4833 (2)	0.55567 (11)	0.0211 (5)
C17	0.28420 (16)	0.4545 (2)	0.49697 (11)	0.0243 (5)
H17A	0.2781	0.5218	0.4713	0.037*
H17B	0.2342	0.4378	0.5008	0.037*
H17C	0.3009	0.3854	0.4811	0.037*

supporting information

C18	0.42393 (15)	0.5078 (3)	0.54909 (13)	0.0272 (6)
H18A	0.4177	0.5737	0.5226	0.041*
H18B	0.4404	0.4375	0.5340	0.041*
H18C	0.4636	0.5277	0.5865	0.041*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd	0.01787 (10)	0.01742 (11)	0.01620 (11)	0.00284 (6)	0.00652 (7)	-0.00031 (6)
01	0.0250 (9)	0.0259 (10)	0.0247 (10)	0.0008 (8)	0.0042 (8)	0.0014 (8)
O2	0.0318 (10)	0.0334 (11)	0.0253 (10)	-0.0033 (9)	0.0101 (8)	0.0040 (8)
O3	0.0285 (10)	0.0479 (13)	0.0194 (10)	0.0028 (9)	-0.0014 (8)	0.0061 (9)
O4	0.0538 (16)	0.0466 (14)	0.0562 (17)	0.0203 (12)	0.0135 (13)	-0.0026 (13)
05	0.0483 (13)	0.0455 (14)	0.0239 (11)	-0.0074 (11)	0.0067 (9)	-0.0056 (10)
O6	0.0405 (14)	0.099 (3)	0.0364 (14)	-0.0271 (14)	0.0015 (11)	-0.0104 (14)
O1w	0.063 (2)	0.0305 (18)	0.089 (3)	0.000	0.051 (2)	0.000
N1	0.0179 (10)	0.0188 (10)	0.0172 (10)	0.0034 (8)	0.0064 (8)	0.0007 (8)
N2	0.0268 (11)	0.0164 (10)	0.0186 (10)	0.0009 (9)	0.0092 (8)	-0.0017 (8)
N3	0.0202 (10)	0.0212 (10)	0.0204 (10)	0.0033 (9)	0.0094 (8)	-0.0015 (9)
N4	0.0186 (9)	0.0174 (10)	0.0194 (10)	0.0014 (8)	0.0069 (8)	-0.0012 (8)
N5	0.0128 (9)	0.0288 (12)	0.0185 (10)	0.0050 (9)	0.0055 (8)	0.0030 (9)
N6	0.0420 (14)	0.0243 (12)	0.0213 (12)	-0.0032 (11)	0.0071 (10)	0.0054 (10)
C1	0.0210 (12)	0.0241 (13)	0.0205 (12)	-0.0023 (10)	0.0058 (10)	-0.0018 (10)
C2	0.0281 (13)	0.0222 (13)	0.0225 (12)	-0.0039 (11)	0.0102 (10)	-0.0040 (10)
C3	0.0395 (16)	0.0367 (17)	0.0288 (15)	-0.0147 (13)	0.0129 (13)	-0.0109 (13)
C4	0.0350 (14)	0.0207 (13)	0.0240 (13)	0.0009 (11)	0.0163 (11)	-0.0045 (10)
C5	0.0426 (16)	0.0229 (14)	0.0307 (15)	0.0045 (12)	0.0194 (13)	0.0006 (11)
C6	0.0351 (14)	0.0239 (13)	0.0242 (13)	0.0026 (11)	0.0178 (11)	-0.0036 (11)
C7	0.0283 (13)	0.0236 (13)	0.0270 (13)	0.0059 (11)	0.0160 (11)	-0.0023 (11)
C8	0.0297 (14)	0.0266 (14)	0.0378 (16)	0.0110 (12)	0.0133 (12)	0.0027 (12)
C9	0.0355 (15)	0.0301 (15)	0.0398 (17)	0.0049 (13)	0.0257 (14)	-0.0042 (13)
C10	0.0245 (13)	0.0223 (13)	0.0236 (13)	0.0035 (10)	0.0120 (11)	0.0016 (10)
C11	0.0220 (12)	0.0186 (12)	0.0256 (13)	0.0017 (10)	0.0109 (10)	0.0015 (10)
C12	0.0234 (12)	0.0236 (13)	0.0310 (14)	-0.0008 (10)	0.0132 (11)	-0.0038 (11)
C13	0.0202 (11)	0.0173 (12)	0.0238 (12)	0.0044 (10)	0.0086 (10)	-0.0011 (10)
C14	0.0276 (13)	0.0204 (13)	0.0328 (15)	0.0070 (11)	0.0133 (11)	0.0031 (11)
C15	0.0182 (11)	0.0229 (13)	0.0269 (13)	0.0046 (10)	0.0095 (10)	0.0012 (11)
C16	0.0193 (11)	0.0233 (13)	0.0221 (12)	0.0036 (10)	0.0095 (10)	-0.0008 (10)
C17	0.0262 (13)	0.0264 (13)	0.0214 (13)	0.0030 (11)	0.0101 (11)	-0.0020 (11)
C18	0.0218 (12)	0.0296 (14)	0.0344 (15)	0.0043 (11)	0.0153 (11)	0.0024 (12)

Geometric parameters (Å, °)

Cd-01	2.4562 (19)	C5—H5C	0.9800	
Cd—O2	2.404 (2)	C6—C7	1.550 (4)	
Cd—N1	2.306 (2)	C6—H6A	0.9900	
Cd—N2	2.307 (2)	C6—H6B	0.9900	
Cd—N3	2.303 (2)	С7—С8	1.527 (4)	

supporting information

G1			
Cd—N4	2.312 (2)	C/_C9	1.542 (4)
01—N5	1.263 (3)	C8—H8A	0.9800
O2—N5	1.266 (3)	C8—H8B	0.9800
O3—N5	1.234 (3)	C8—H8C	0.9800
O4—N6	1.269 (4)	С9—Н9А	0.9800
O5—N6	1.253 (3)	С9—Н9В	0.9800
O6—N6	1.198 (4)	С9—Н9С	0.9800
O1w—H1w	0.850 (10)	C10-C11	1.537 (3)
N1-C1	1.483 (3)	C10—H10A	0.9900
N1-C16	1 500 (3)	C10—H10B	0 9900
N1_H1n	0.8800	C_{11}	1.523(4)
N2 C2	1 / 80 (3)	C11 H11	1.0000
N2 C4	1.405(3)		0.0000
N2 U2:	1.495 (5)	C12 $H12D$	0.9800
N2—H2fi	0.8800	CI2—HI2B	0.9800
N3-C10	1.485 (3)	CI2—HI2C	0.9800
N3—C/	1.511 (3)	C13—C14	1.534 (3)
N3—H3n	0.8800	C13—C15	1.535 (3)
N4—C11	1.494 (3)	C13—H13	1.0000
N4—C13	1.496 (3)	C14—H14A	0.9800
N4—H4n	0.8800	C14—H14B	0.9800
C1—C2	1.531 (4)	C14—H14C	0.9800
C1—H1A	0.9900	C15—C16	1.542 (4)
C1—H1B	0.9900	C15—H15A	0.9900
C2—C3	1.525 (4)	C15—H15B	0.9900
C2—H2A	1.0000	C16—C17	1.526 (4)
С3—НЗА	0.9800	C16—C18	1.539 (3)
C3—H3B	0.9800	C17—H17A	0.9800
C3—H3C	0.9800	С17—Н17В	0.9800
C4-C5	1 519 (4)	C17 - H17C	0.9800
C4-C6	1.540(4)	C18 - H18A	0.9800
CA HAA	1.0000	C18 H18B	0.9800
C5 H5A	0.0800		0.9800
C5 USD	0.9800		0.9800
Сэ—пэв	0.9800		
N3—Cd—N1	158.83 (8)	С4—С6—Н6А	106.2
N3—Cd—N2	88.35 (8)	С7—С6—Н6А	106.2
N1—Cd—N2	78.23 (7)	С4—С6—Н6В	106.2
N3—Cd—N4	79.08 (7)	С7—С6—Н6В	106.2
N1—Cd—N4	86 67 (7)	H6A—C6—H6B	106.4
N2—Cd—N4	98 30 (7)	N3-C7-C8	105.2(2)
N3_Cd_O2	86 96 (7)	N3 - C7 - C9	103.2(2) 110.3(2)
N1-Cd-02	112 22 (7)	$C_8 - C_7 - C_9$	10.5(2) 108.6(2)
N2_Cd_O2	153 62 (7)	N3-C7-C6	1132(2)
$N_{4} = C_{4} = O_{2}$	105.02(7) 106.24(7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.2(2) 113.0(2)
$N_2 = C_4 = O_2$	100.24(7) 115.22(7)	$C_0 = C_7 = C_6$	113.0(2)
	113.22(7)	$C_{7} = C_{9} = U_{9}$	100.0 (2)
	04.01 (/) 106.06 (7)	C_{-} C_{0} C_{0	109.5
N2—Cd—Ol	100.96 (7)	$C / - C \delta - H \delta B$	109.5
N4—Cd—O1	150.90 (7)	Н8А—С8—Н8В	109.5

O2—Cd—O1	52.80 (7)	С7—С8—Н8С	109.5
N5—O1—Cd	93.68 (14)	H8A—C8—H8C	109.5
N5—O2—Cd	96.09 (15)	H8B—C8—H8C	109.5
C1—N1—C16	116.76 (19)	С7—С9—Н9А	109.5
C1—N1—Cd	106.29 (15)	С7—С9—Н9В	109.5
C16—N1—Cd	113.69 (15)	Н9А—С9—Н9В	109.5
C1—N1—H1n	106.5	С7—С9—Н9С	109.5
C16—N1—H1n	106.5	Н9А—С9—Н9С	109.5
Cd—N1—H1n	106.5	H9B—C9—H9C	109.5
C2—N2—C4	117.3 (2)	N3-C10-C11	111.7 (2)
C2—N2—Cd	107.09 (15)	N3-C10-H10A	109.3
C4—N2—Cd	114.53 (16)	C11—C10—H10A	109.3
$C_2 - N_2 - H_2 n$	105.6	N3-C10-H10B	109.3
C4—N2—H2n	105.6	C11—C10—H10B	109.3
$Cd - N^2 - H^2n$	105.6	H10A - C10 - H10B	107.9
C10 - N3 - C7	1160(2)	N4-C11-C12	107.9 112.0(2)
C10 N3 Cd	105.24(15)	N4-C11-C10	107.4(2)
C7 - N3 - Cd	115.00 (16)	C_{12} C_{11} C_{10}	107.1(2) 112.6(2)
C10 N3 H3n	106.7	N4-C11-H11	108.2
C7—N3—H3n	106.7	C12 $C11$ $H11$	108.2
Cd_N3_H3n	106.7	C10-C11-H11	108.2
C11 N4 $C13$	116.7	C_{11} C_{12} H_{12}	100.2
C_{11} N4 C_{13}	106.12(14)	C11 - C12 - H12B	109.5
C13 N4 Cd	116.95 (15)	H12A - C12 - H12B	109.5
C_{11} N4 H4n	105.5	C_{11} C_{12} H_{12} H_{12}	109.5
C13 - N4 - H4n	105.5	$H_{12} = H_{12} = H_{12}$	109.5
Cd_N4_H4n	105.5	$H_{12}R_{-}C_{12}-H_{12}C$	109.5
03 - N5 - 01	103.3 121.7(2)	N4-C13-C14	107.5 111.9(2)
03 - N5 - 01	121.7(2) 120.8(2)	N4-C13-C15	111.9(2) 110.8(2)
01 - N5 - 02	120.0(2) 1174(2)	C14 - C13 - C15	10.0(2) 108.8(2)
06—N6—05	122 6 (3)	N4_C13_H13	108.4
06—N6—04	122.0(3) 121.7(3)	C14 - C13 - H13	108.4
05-N6-04	121.7(3) 115.8(3)	C15-C13-H13	108.4
N1-C1-C2	110.3(3)	C_{13} C_{13} C_{14} H_{14A}	100.4
$N_1 - C_1 - H_1 A$	109.6	C13 - C14 - H14B	109.5
$C_2 - C_1 - H_1 \Delta$	109.6	$H_{14} - C_{14} - H_{14}B$	109.5
N1 - C1 - H1B	109.6	C13 - C14 - H14C	109.5
C_2 C_1 H_1B	109.6	$H_{14} - C_{14} - H_{14} C_{14}$	109.5
$H_1A - C_1 - H_1B$	108.1	$H_{14B} - C_{14} - H_{14C}$	109.5
$N_2 - C_2 - C_3$	1134(2)	C13 - C15 - C16	109.5 121.5(2)
$N_2 = C_2 = C_3$	113.4(2) 108.3(2)	$C_{13} = C_{15} = C_{10}$	106.0
C_{3} C_{2} C_{1}	100.5(2) 110.5(2)	$C_{15} - C_{15} - H_{15A}$	106.9
$N_2 - C_2 - H_2 \Delta$	108.1	C_{13} C_{15} H_{15R}	106.9
$C_3 = C_2 = H_2 A$	108.1	C16—C15—H15B	106.9
C1 - C2 - H2A	108.1	H15A—C15—H15B	106.7
$C^2 - C^3 - H^3 A$	109 5	N1-C16-C17	106.7
$C_2 = C_3 = H_3 B$	109.5	N1-C16-C18	100.0(2) 109.8(2)
H3A-C3-H3B	109.5	C17—C16—C18	109.0(2) 108.8(2)

С2—С3—Н3С	109.5	N1-C16-C15	112.7 (2)
НЗА—СЗ—НЗС	109.5	C17—C16—C15	110.9 (2)
НЗВ—СЗ—НЗС	109.5	C18—C16—C15	108.6 (2)
N2—C4—C5	110.7 (2)	C16—C17—H17A	109.5
N2—C4—C6	109.7 (2)	C16—C17—H17B	109.5
C5—C4—C6	117.3 (2)	H17A—C17—H17B	109.5
N2—C4—H4A	106.2	C16—C17—H17C	109.5
C5—C4—H4A	106.2	H17A—C17—H17C	109.5
C6—C4—H4A	106.2	H17B—C17—H17C	109.5
C4—C5—H5A	109.5	C16—C18—H18A	109.5
C4—C5—H5B	109.5	C16—C18—H18B	109.5
H5A—C5—H5B	109.5	H18A—C18—H18B	109.5
C4—C5—H5C	109.5	C16—C18—H18C	109.5
H5A—C5—H5C	109.5	H18A—C18—H18C	109.5
H5B—C5—H5C	109.5	H18B—C18—H18C	109.5
C4—C6—C7	124.7 (2)		
N3—Cd—O1—N5	-65.15 (15)	Cd-01-N5-03	-177.3(2)
N1—Cd—O1—N5	122.59 (14)	Cd—O1—N5—O2	1.2 (2)
N2-Cd-O1-N5	-161.48(13)	Cd - O2 - N5 - O3	177.29 (19)
N4—Cd—O1—N5	49.4 (2)	Cd - O2 - N5 - O1	-1.2(2)
02-Cd-01-N5	-0.68(12)	C16-N1-C1-C2	-173.3(2)
N3-Cd-O2-N5	125.85 (15)	Cd - N1 - C1 - C2	-45.3(2)
N1-Cd-O2-N5	-63.37(16)	C4 - N2 - C2 - C3	61.9(3)
N2-Cd-O2-N5	45.8 (2)	Cd - N2 - C2 - C3	-167.8(2)
N4-Cd-O2-N5	-156.45(14)	C4 - N2 - C2 - C1	-175.0(2)
01 - Cd - 02 - N5	0.68 (12)	Cd - N2 - C2 - C1	-44.7(2)
N_3 —Cd— N_1 —C1	-36.2(3)	N1-C1-C2-N2	63.1 (3)
N2-Cd-N1-C1	15.51 (15)	N1-C1-C2-C3	-172.0(2)
N4—Cd—N1—C1	-83.68 (16)	$C_{2} - N_{2} - C_{4} - C_{5}$	57.1 (3)
O2-Cd-N1-C1	170.12 (15)	Cd - N2 - C4 - C5	-69.7(2)
O1-Cd-N1-C1	124.11 (16)	C_{2} N2 C4 C6	-171.9(2)
N_3 —Cd— N_1 —C16	93.6 (2)	Cd - N2 - C4 - C6	61.3(2)
N_2 —Cd— N_1 —C16	145.33 (17)	$N_2 - C_4 - C_6 - C_7$	-69.3(3)
N4—Cd— $N1$ —C16	46.13 (16)	C_{5} C_{4} C_{6} C_{7}	58.0 (4)
Ω^2 —Cd—N1—C16	-60.06(17)	C10-N3-C7-C8	-166.0(2)
01 - Cd - N1 - C16	-106.07(16)	Cd - N3 - C7 - C8	70.6 (2)
N_3 —Cd— N_2 —C2	179 50 (17)	C10-N3-C7-C9	-49.2(3)
N1 - Cd - N2 - C2	15 96 (16)	Cd = N3 = C7 = C9	-172.55(18)
N4— Cd — $N2$ — $C2$	100 78 (16)	C10-N3-C7-C6	70 1 (3)
Ω^2 —Cd—N2—C2	-100.7(2)	Cd = N3 = C7 = C6	-533(3)
$O_2 = Cd = N_2 = C_2$	$-64\ 60\ (17)$	C4 - C6 - C7 - N3	654(3)
$N_3 - C_d - N_2 - C_4$	-48.61(17)	C4 - C6 - C7 - C8	-540(3)
N1 - Cd - N2 - C4	147 85 (18)	C4-C6-C7-C9	-1732(3)
N4-Cd-N2-C4	-127 33 (17)	C7-N3-C10-C11	-172.6(2)
$\Omega^2 - Cd - N^2 - C4$	311(3)	Cd = N3 = C10 = C11	-443(2)
01 - Cd - N2 - C4	67 29 (17)	C_{13} N4 $-C_{11}$ C12	-538(3)
N1 Cd N3 C10	-350(3)	Cd = Nd = C11 = C12	78.1(2)
m - cu - m - c = 0	55.0 (5)	$U_{11} - U_{11} - U_{12}$	/0.1 (2)

N2-Cd-N3-C10	-85.27 (16)	C13—N4—C11—C10	-178.0 (2)
N4-Cd-N3-C10	13.51 (16)	Cd—N4—C11—C10	-46.1 (2)
O2-Cd-N3-C10	120.70 (16)	N3-C10-C11-N4	64.2 (3)
O1—Cd—N3—C10	166.73 (15)	N3-C10-C11-C12	-59.6 (3)
N1—Cd—N3—C7	93.9 (3)	C11—N4—C13—C14	-53.7 (3)
N2—Cd—N3—C7	43.65 (17)	Cd—N4—C13—C14	179.69 (16)
N4—Cd—N3—C7	142.43 (18)	C11—N4—C13—C15	-175.2 (2)
O2—Cd—N3—C7	-110.38 (17)	Cd—N4—C13—C15	58.1 (2)
O1—Cd—N3—C7	-64.35 (18)	N4-C13-C15-C16	-67.4 (3)
N3-Cd-N4-C11	18.04 (15)	C14—C13—C15—C16	169.3 (2)
N1-Cd-N4-C11	-177.69 (16)	C1—N1—C16—C17	-175.4 (2)
N2-Cd-N4-C11	104.73 (16)	Cd—N1—C16—C17	60.3 (2)
O2-Cd-N4-C11	-65.50 (16)	C1—N1—C16—C18	-58.0 (3)
O1-Cd-N4-C11	-105.02 (18)	Cd—N1—C16—C18	177.63 (16)
N3-Cd-N4-C13	149.51 (18)	C1—N1—C16—C15	63.1 (3)
N1-Cd-N4-C13	-46.22 (17)	Cd—N1—C16—C15	-61.2 (2)
N2-Cd-N4-C13	-123.81 (17)	C13-C15-C16-N1	70.9 (3)
O2-Cd-N4-C13	65.97 (18)	C13—C15—C16—C17	-47.8 (3)
O1-Cd-N4-C13	26.4 (3)	C13—C15—C16—C18	-167.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
01 <i>w</i> —H1 <i>w</i> ····O5	0.85(1)	2.04 (2)	2.836 (3)	156 (5)
N1—H1 n ···O1 ⁱ	0.88	2.42	3.242 (3)	155
N2—H2 <i>n</i> ···O4	0.88	2.30	3.133 (4)	157
N4—H4 <i>n</i> ···O5	0.88	2.11	2.991 (3)	175
C5—H5 <i>B</i> ···O6 ⁱⁱ	0.98	2.58	3.539 (5)	168
C11—H11···O4 ⁱⁱⁱ	1.00	2.44	3.358 (3)	152
C9—H9 B ····O1 w^{iv}	0.98	2.51	3.451 (4)	162

Symmetry codes: (i) -x+1/2, -y+3/2, -z+1; (ii) -x+1/2, y+1/2, -z+3/2; (iii) -x+1/2, y-1/2, -z+3/2; (iv) x-1/2, y+1/2, z.