Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(5-carboxy-2-ethyl-1 H-imida-zole-4-carboxylato- $\kappa^{2} N^{3}, O^{4}$)cobalt(II) trihydrate

Dong-Liang Miao, ${ }^{\text {a }}$ Shi-Jie Li, ${ }^{\text {b }}$ Wen-Dong Song, ${ }^{\text {c* }}$ Shao-Wei Tong ${ }^{\text {a }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{d}, \mathrm{e}}$

${ }^{\text {a College of Food Science and Technology, Guangdong Ocean University, Zhanjiang }}$ 524088, People's Republic of China, ${ }^{\mathbf{b}}$ School of Environment Science and Engineering, Donghua University, Shanghai 200051, People's Republic of China, ${ }^{\text {c }}$ College of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, ${ }^{\mathbf{d}}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia, and ${ }^{\text {e }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: songwd60@126.com

Received 11 February 2012; accepted 28 February 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.035 ; w R$ factor $=0.102$; data-to-parameter ratio $=15.6$.

In the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Co}^{\mathrm{II}}$ cation, located on an inversion center, is N, O-chelated by two 5-carboxy-2-ethyl-1 H -imidazole-4-carboxylate anions and further coordinated by two water molecules in a distorted octahedral geometry. Only one carboxy group of the anion is deprotonated, and the two carboxyl groups of the same anion are linked via an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. One of the lattice water molecules is located on an inversion center, its H atom equally disordered over two positions. One of H atoms of another lattice water molecules is also equally disordered over two sites. Water H atoms and the amino H atom all are involved in an intermolecular hydrogen-bonded network in the crystal.

Related literature

For related metal complexes with imidazole-4,5-dicarboxylate ligands, see: Fan et al. (2010); Li et al. (2011); Yan et al. (2010); Song et al. (2010); He et al. (2010).

Experimental

Crystal data
$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=515.30$
Triclinic, $P \overline{1}$
$a=7.1615$ (14) \AA
$b=8.8729$ (18) A
$c=9.3815$ (19) \AA
$\alpha=66.06$ (3) ${ }^{\circ}$
$\beta=88.66(3)^{\circ}$

Data collection

Bruker SMART APEXII diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.781, T_{\text {max }}=0.781$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.102$
5 restraints
H -atom parameters constrained
$\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3}$
2319 reflections
149 parameters
$\gamma=70.97$ (3) ${ }^{\circ}$
$V=511.0(3) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$

5086 measured reflections 2319 independent reflections 1578 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

Table 1
Selected bond lengths (\AA).

$\mathrm{Co1-O1}$	$2.153(2)$	$\mathrm{Co1}-\mathrm{N} 2$	$2.123(2)$
$\mathrm{Co1-O1W}$	$2.064(2)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2 W^{\text {i }}$	0.86	1.96	2.786 (4)	160
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.85	1.63	2.471 (3)	171
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 4^{\text {ii }}$	0.85	1.86	2.708 (3)	173
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{O} 3^{\text {iii }}$	0.85	1.94	2.763 (3)	161
$\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O} 1$	0.85	2.33	3.077 (4)	147
$\mathrm{O} 2 W-\mathrm{H} 3 W \cdots \mathrm{O} 3 W$	0.85	2.44	3.091 (3)	134
$\mathrm{O} 2 W-\mathrm{H} 4 W \cdots \mathrm{O} 2 W^{\text {iv }}$	0.85	2.04	2.883 (6)	172
$\mathrm{O} 2 W-\mathrm{H} 7 W \cdots \mathrm{O}^{\text {v }}$	0.85	2.35	3.120 (4)	151
$\mathrm{O} 3 W-\mathrm{H} 5 W \cdots \mathrm{O}^{\text {vi }}$	0.85	2.37	3.040 (2)	136
$\mathrm{O} 3 W-\mathrm{H} 6 W \cdots \mathrm{O} 1$	0.85	2.26	3.031 (2)	151
$\mathrm{O} 3 W-\mathrm{H} 6 W \cdots \mathrm{O} 2$	0.85	2.43	3.040 (2)	129

Symmetry codes: (i) $x, y, z+1$; (ii) $x+1, y-1, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x,-y+1,-z ;$ (v) $-x,-y+1,-z+1 ;($ vi) $-x+1,-y+1,-z$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121) and Guangdong Natural Science Fundation (No. 9252408801000002).

metal-organic compounds

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5468).

References

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. \& Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.
He, L.-Z., Li, S.-J., Song, W.-D. \& Miao, D.-L. (2010). Acta Cryst. E66, m896. Li, S.-J., Ma, X.-T., Song, W.-D., Li, X.-F. \& Liu, J.-H. (2011). Acta Cryst. E67, m295-m296
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. \& Li, X.-F. (2010). Acta Cryst. E66, m53
Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. \& Miao, D.-L. (2010). Acta Cryst. E66, m99.

supporting information

Acta Cryst. (2012). E68, m373-m374 [https://doi.org/10.1107/S1600536812008902]

Diaquabis(5-carboxy-2-ethyl-1 H-imidazole-4-carboxylato- $\kappa^{2} N^{3}, O^{4}$)cobalt(II) trihydrate

Dong-Liang Miao, Shi-Jie Li, Wen-Dong Song, Shao-Wei Tong and Seik Weng Ng

S1. Comment

Crystal engineering of mental-organic complexes is a very active research field. It is well known that organic ligands play a crucial role in the design and construction of desirable frameworks. In recent years, multifunctional ligands containing N - and O-donors have attracted great attention due to the fact that they may induce diversity in the coordination modes and interesting properties. In our previous work, we have done a lot of research on the design and synthesis of new compounds built from the imidazole derivatives (Fan et al., 2010; Li et al., 2011; He et al., 2010; Song et al., 2010; Yan et al., 2010). To continue our study, we report here the structure of the title Co (II) complex.
As illustrated in Fig. 1, The $\mathrm{Co}^{\text {II }}$ ion adopts a slightly distorted octahedral geometry, with two N,O-bidentate ligands ($[\mathrm{Co}-\mathrm{O}=2.155(3) \AA$ and $\mathrm{Co}-\mathrm{N}=2.128(2) \AA$) from the imidazoledicarboxylic group at the equatorial positions, the other two oxygen atoms $(\mathrm{Co}-\mathrm{O}=2.060(2) \AA$) from two water molecules occupied the axial position. In the crystal structure, the complex molecules and solvent molecules are linked by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming the final three-dimensional supra-molecular network. A lattice water molecule is located on an inversion center, and one H atom of another water molecule was split into two positions with half occupancy.

S2. Experimental

A mixture of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{mmol}, 0.07 \mathrm{~g})$ and 2-ethyl-1 H-imidazole-4,5-dicarboxylic acid $(0.5 \mathrm{mmol}, 0.09 \mathrm{~g})$ in 10 ml of water solution was sealed in an autoclave equipped with a Teflon liner (25 ml) and then heated at 393 K for 2 d . Red crystals were obtained by slow evaporation of the solvent at room temperature with the yeild of 32% based on Co.

S3. Refinement

H atoms of the water molecule were located in a difference Fourier map and refined as riding with an $\mathrm{O}-\mathrm{H}$ distance restraint of $0.82(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. The $\mathrm{H} \cdots \mathrm{H}$ distances within the water molecules were restraint to 1.30 (1) \AA. Carboxyl H atoms were located in a difference map but were refined as riding on the parent O atoms with $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with $\mathrm{C}-\mathrm{H}=0.96$ (methyl), 0.97 (methylene) and $\mathrm{N}-\mathrm{H}=0.86 \AA, U_{\text {iso }}(\mathrm{H})=$ 1.2 or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The O 3 w is located on an inversion center, its H atoms were equally disordered over two positions. One of H atoms of O 2 w water molecules is also equally disordered over two sites.

Figure 1
The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. (symmetry codes: $\mathrm{i}=1-x,-y, 1-z$).

Diaquabis(5-carboxy-2-ethyl-1 H -imidazole-4-carboxylato- $\kappa^{2} N^{3}, O^{4}$)cobalt(II) trihydrate

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=515.30$
Triclinic, $P 1$
Hall symbol: -P 1
$a=7.1615$ (14) \AA
$b=8.8729$ (18) \AA
$c=9.3815(19) \AA$
$\alpha=66.06(3)^{\circ}$
$\beta=88.66(3)^{\circ}$
$\gamma=70.97(3)^{\circ}$
$V=511.0(3) \AA^{3}$

Data collection

Bruker SMART APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min }=0.781, T_{\text {max }}=0.781$

$$
Z=1
$$

$$
F(000)=267
$$

$D_{\mathrm{x}}=1.675 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7174 reflections
$\theta=2.4-28.4^{\circ}$
$\mu=0.92 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, red
$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$

5086 measured reflections
2319 independent reflections
1578 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-8 \rightarrow 9$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.102$
$S=1.01$
2319 reflections
149 parameters
5 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Col	0.5000	0.0000	0.5000	0.02833 (18)	
N1	0.2254 (4)	0.2967 (3)	0.7643 (3)	0.0306 (6)	
H1	0.1776	0.3183	0.8417	0.037*	
N2	0.3637 (4)	0.1497 (3)	0.6265 (3)	0.0265 (5)	
O1	0.4459 (3)	0.2642 (3)	0.3267 (3)	0.0350 (5)	
O2	0.3296 (4)	0.5449 (3)	0.2860 (3)	0.0446 (6)	
O3	0.1803 (4)	0.7116 (3)	0.4415 (3)	0.0431 (6)	
H3	0.2224	0.6487	0.3911	0.065*	
O4	0.0657 (4)	0.6633 (3)	0.6723 (3)	0.0439 (6)	
O1W	0.7752 (3)	-0.0183 (3)	0.5820 (3)	0.0461 (7)	
H1W	0.8718	-0.1140	0.6044	0.069*	
H2W	0.8118	0.0689	0.5646	0.069*	
C1	0.3196 (4)	0.3266 (4)	0.5348 (4)	0.0264 (6)	
C2	0.2335 (4)	0.4198 (4)	0.6198 (4)	0.0276 (6)	
C3	0.3052 (4)	0.1352 (4)	0.7653 (4)	0.0287 (7)	
C4	0.3683 (5)	0.3806 (4)	0.3732 (4)	0.0304 (7)	
C5	0.1529 (5)	0.6106 (4)	0.5789 (4)	0.0322 (7)	
C6	0.3153 (5)	-0.0299 (4)	0.9003 (4)	0.0359 (7)	
H6A	0.2973	-0.0090	0.9943	0.043*	
H6B	0.4462	-0.1174	0.9166	0.043*	
C7	0.1579 (7)	-0.1010 (6)	0.8754 (5)	0.0565 (11)	
H7A	0.0285	-0.0125	0.8537	0.085*	
H7B	0.1633	-0.2030	0.9686	0.085*	
H7C	0.1827	-0.1323	0.7883	0.085*	
O2W	0.1678 (5)	0.3395 (5)	0.0422 (4)	0.0726 (10)	

supporting information

H3W	0.2620	0.3480	0.0885	0.109^{*}	
H4W	0.0694	0.4355	0.0084	0.109^{*}	0.50
H7W	0.0730	0.3366	0.0983	0.109^{*}	0.50
O3W	0.5000	0.5000	0.0000	$0.282(8)$	
H5W	0.5935	0.4424	-0.0352	0.423^{*}	0.50
H6W	0.5155	0.4487	0.0998	0.423^{*}	0.50

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0327(3)$	$0.0212(3)$	$0.0335(4)$	$-0.0056(2)$	$0.0051(3)$	$-0.0167(3)$
N1	$0.0328(14)$	$0.0297(14)$	$0.0347(15)$	$-0.0067(11)$	$0.0064(12)$	$-0.0222(12)$
N2	$0.0278(12)$	$0.0202(12)$	$0.0323(14)$	$-0.0048(10)$	$0.0029(11)$	$-0.0143(11)$
O1	$0.0459(13)$	$0.0260(12)$	$0.0322(12)$	$-0.0083(10)$	$0.0097(11)$	$-0.0149(10)$
O2	$0.0673(17)$	$0.0246(12)$	$0.0383(14)$	$-0.0143(12)$	$0.0134(13)$	$-0.0113(11)$
O3	$0.0565(15)$	$0.0228(12)$	$0.0521(16)$	$-0.0100(11)$	$0.0074(13)$	$-0.0207(12)$
O4	$0.0479(14)$	$0.0309(13)$	$0.0554(16)$	$-0.0031(11)$	$0.0060(12)$	$-0.0289(12)$
O1W	$0.0354(13)$	$0.0282(13)$	$0.081(2)$	$-0.0065(10)$	$-0.0024(13)$	$-0.0316(13)$
C1	$0.0268(14)$	$0.0211(14)$	$0.0332(16)$	$-0.0069(12)$	$0.0025(13)$	$-0.0144(13)$
C2	$0.0261(14)$	$0.0222(15)$	$0.0346(17)$	$-0.0057(12)$	$0.0007(13)$	$-0.0141(13)$
C3	$0.0279(15)$	$0.0267(16)$	$0.0335(17)$	$-0.0065(12)$	$0.0017(14)$	$-0.0168(14)$
C4	$0.0305(16)$	$0.0252(16)$	$0.0348(17)$	$-0.0075(13)$	$0.0022(14)$	$-0.0136(14)$
C5	$0.0310(16)$	$0.0248(17)$	$0.0439(19)$	$-0.0053(13)$	$-0.0010(15)$	$-0.0207(16)$
C6	$0.0412(18)$	$0.0315(17)$	$0.0328(17)$	$-0.0113(15)$	$0.0043(15)$	$-0.0125(15)$
C7	$0.071(3)$	$0.052(3)$	$0.051(2)$	$-0.034(2)$	$0.006(2)$	$-0.017(2)$
O2W	$0.0621(19)$	$0.105(3)$	$0.060(2)$	$-0.0130(18)$	$0.0094(16)$	$-0.057(2)$
O3W	$0.408(19)$	$0.198(11)$	$0.139(9)$	$-0.010(11)$	$0.100(11)$	$-0.052(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Col-O1	2.153 (2)	O1W-H2W	0.8499
Col-O1 ${ }^{\text {i }}$	2.153 (2)	C1-C2	1.371 (4)
Col-O1W ${ }^{\text {i }}$	2.064 (2)	C1-C4	1.464 (4)
Co1-O1W	2.064 (2)	C2-C5	1.481 (4)
$\mathrm{Col}-\mathrm{N} 2$	2.123 (2)	C3-C6	1.478 (4)
Col-N2 ${ }^{\text {i }}$	2.123 (2)	C6-C7	1.523 (5)
N1-C3	1.355 (4)	C6-H6A	0.9700
N1-C2	1.367 (4)	C6-H6B	0.9700
N1-H1	0.8600	C7-H7A	0.9600
N2-C3	1.327 (4)	C7-H7B	0.9600
N2-C1	1.377 (4)	C7-H7C	0.9600
O1-C4	1.244 (3)	O2W-H3W	0.8500
$\mathrm{O} 2-\mathrm{C} 4$	1.284 (4)	O2W-H4W	0.8500
O3-C5	1.292 (4)	O2W-H7W	0.8500
$\mathrm{O} 3-\mathrm{H} 3$	0.8500	O3W-H5W	0.8500
O4-C5	1.222 (4)	O3W-H6W	0.8500
O1W-H1W	0.8500		

O1W ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 1 \mathrm{~W}$	180.0
O1W ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2$	90.68 (9)
O1W-Col-N2	89.32 (9)
O1W ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2^{\text {i }}$	89.32 (9)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Col}-\mathrm{N} 2^{\text {i }}$	90.68 (9)
$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 2{ }^{\text {i }}$	180.00 (9)
O1W ${ }^{\text {i }}$ - $\mathrm{Col-O1}$	88.57 (10)
O1W-Col-O1	91.43 (10)
N2-Col-O1	78.28 (9)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 1$	101.72 (9)
O1W ${ }^{\text {i }}$ - $\mathrm{Col-O1}{ }^{\text {i }}$	91.43 (10)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Col-O1}{ }^{\text {i }}$	88.57 (10)
$\mathrm{N} 2-\mathrm{Col}-\mathrm{Ol}^{1}$	101.72 (9)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Col}-\mathrm{Ol}^{\mathrm{i}}$	78.28 (9)
O1-Col- $\mathrm{Ol}^{\text {i }}$	180.0
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	108.7 (3)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	125.6
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	125.6
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1$	106.5 (2)
C3-N2-Co1	142.7 (2)
C1-N2-Co1	110.81 (19)
C4-O1-Co1	114.8 (2)
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{H} 3$	107.5
Co1-O1W-H1W	118.0
Col-O1W-H2W	124.7
H1W-O1W-H2W	113.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	109.5 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	132.4 (3)
N2-C1-C4	118.0 (2)
O1W ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 3$	91.3 (4)
O1W-Co1-N2-C3	-88.7 (4)
N 2 - $-\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 3$	-95 (100)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 3$	179.7 (4)
O 1 - $\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 3$	-0.3 (4)
$\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 2-\mathrm{C} 1$	-89.5 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 1$	90.5 (2)
$\mathrm{N} 2 \mathrm{i}-\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 1$	84 (100)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 1$	-1.06 (19)
$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 2-\mathrm{C} 1$	178.94 (19)
O1W ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 4$	92.4 (2)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Col-O1-C4}$	-87.6 (2)
N2-Co1-O1-C4	1.4 (2)
N2 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 4$	-178.6 (2)
$\mathrm{O} 1-\mathrm{Col}-\mathrm{O} 1-\mathrm{C} 4$	-137 (100)
C3-N2-C1-C2	0.1 (3)
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	-179.5 (2)
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 4$	-179.7 (3)

$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$105.4(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 5$	$122.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$132.4(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$109.9(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 6$	$126.0(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 6$	$124.1(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	$122.9(3)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 1$	$118.1(3)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 1$	$119.0(3)$
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{O} 3$	$124.3(3)$
$\mathrm{O} 4-\mathrm{C} 5-\mathrm{C} 2$	$120.1(3)$
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 2$	$115.7(3)$
$\mathrm{C} 3-\mathrm{C} 6-\mathrm{C} 7$	$112.2(3)$
$\mathrm{C} 3-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.2
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	109.2
$\mathrm{C} 3-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.2
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	109.2
$\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	107.9
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
H7A-C7-H7B	109.5
C6-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
H3W-O2W-H4W	110.3
H3W-O2W-H7W	109.4
H4W-O2W-H7W	66.5
H5W-O3W-H6W	109.4

$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$179.5(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$-178.0(3)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5$	$1.8(6)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$0.1(3)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 1$	$179.4(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 6$	$177.5(3)$
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 6$	$-3.2(6)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 2$	$-0.3(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 6$	$-177.7(3)$
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{O} 2$	$178.6(2)$
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 1$	$-1.4(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 1$	$-179.3(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 1$	$0.4(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 2$	$0.7(5)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{O} 2$	$-179.5(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 4$	$-4.3(5)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 4$	$173.2(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 3$	$176.3(3)$

$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 4$	$0.8(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$0.3(3)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 5$	$178.3(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$-0.2(3)$

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 3$
N2-C3-C6-C7
-6.3 (5)
-73.9 (4)
103.1 (4)

Symmetry code: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2 W^{\text {ii }}$	0.86	1.96	$2.786(4)$	160
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2$	0.85	1.63	$2.471(3)$	171
$\mathrm{O} 1 W — \mathrm{H} 1 W \cdots \mathrm{O} 4^{\mathrm{iii}}$	0.85	1.86	$2.708(3)$	173
$\mathrm{O} 1 W — \mathrm{H} 2 W \cdots \mathrm{O} 3^{\text {iv }}$	0.85	1.94	$2.763(3)$	161
$\mathrm{O} 2 W — \mathrm{H} 3 W \cdots \mathrm{O} 1$	0.85	2.33	$3.077(4)$	147
$\mathrm{O} 2 W — \mathrm{H} 3 W \cdots \mathrm{O} 3 W$	0.85	2.44	$3.091(3)$	134
$\mathrm{O} 2 W — \mathrm{H} 4 W \cdots \mathrm{O} 2 W^{\text {v }}$	0.85	2.04	$2.883(6)$	172
$\mathrm{O} 2 W — \mathrm{H} 7 W \cdots \mathrm{O} 4^{\text {vi }}$	0.85	2.35	$3.120(4)$	151
$\mathrm{O} 3 W — \mathrm{H} 5 W \cdots \mathrm{O} 2^{\text {vii }}$	0.85	2.37	$3.040(2)$	136
$\mathrm{O} 3 W — \mathrm{H} 6 W \cdots \mathrm{O} 1$	0.85	2.26	$3.031(2)$	151
$\mathrm{O} 3 W — \mathrm{H} 6 W \cdots \mathrm{O} 2$	0.85	2.43	$3.040(2)$	129

Symmetry codes: (ii) $x, y, z+1$; (iii) $x+1, y-1, z$; (iv) $-x+1,-y+1,-z+1$; (v) $-x,-y+1,-z$; (vi) $-x,-y+1,-z+1$; (vii) $-x+1,-y+1,-z$.

