

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Nitrobenzylidene)malononitrile

Ming-Jen Chang, Tzu-Chien Fang, Hsing-Yang Tsai, Ming-Hui Luo and Kew-Yu Chen*

Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan

Correspondence e-mail: kyuchen@fcu.edu.tw

Received 13 January 2012; accepted 28 February 2012

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.091; data-to-parameter ratio = 11.2.

In the title compound, $C_{10}H_5N_3O_2$, the benzylidenemalononitrile unit is nearly planar, with a maximum deviation of 0.129 (2) Å for a terminal N atom; the nitro group is approximately coplanar with the benzene ring [dihedral angle = 8.8 (3)°]. An intramolecular $C-H \cdots N$ hydrogen bond stabilizes the molecular conformation.

Related literature

For the preparation of the title compound, see: Baheti *et al.* (2011). For the spectroscopy and applications of benzylidenemalononitrile derivatives, see: Cao *et al.* (2010); Ding & Zhao (2010); Elinson *et al.* (2010); Herbivo *et al.* (2010); Shigemitsu *et al.* (2011); Ye *et al.* (2010). For related structures, see: El Brahmi *et al.* (2011); Karthikeyan *et al.* (2011); Mehdi *et al.* (2010); Ouzidan *et al.* (2011); Raza *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{10}H_5N_3O_2\\ M_r = 199.17\\ Orthorhombic, Pna2_1\\ a = 19.5557 \ (9) \ \text{\AA}\\ b = 3.8732 \ (2) \ \text{\AA}\\ c = 11.9823 \ (5) \ \text{\AA} \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.674, T_{max} = 1.000 $V = 907.58 (7) \text{ Å}^{3}$ Z = 4Cu K\alpha radiation $\mu = 0.89 \text{ mm}^{-1}$ T = 297 K $0.76 \times 0.60 \times 0.18 \text{ mm}$

3111 measured reflections 1517 independent reflections 1420 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.016$

Refinement

- 2 . 2	
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.091$	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
1517 reflections	Absolute structure: Flack (1983),
136 parameters	582 Friedel pairs
1 restraint	Flack parameter: -0.2 (2)

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1A\cdots N3$	0.93	2.58	3.431 (3)	152

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the National Science Council (grant No. NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5449).

References

- Baheti, A., Singh, P. & Thomas, K. R. J. (2011). Dyes Pigm. 88, 195–203.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, X., Wen, Y., Guo, Y., Yu, G., Liu, Y. & Yang, L.-M. (2010). Dyes Pigm. 84, 203–207.
- Ding, D. & Zhao, C.-G. (2010). Tetrahedron Lett. 51, 1322-1325.
- El Brahmi, N., Benchidmi, M., Essassi, E. M., Ladeira, S. & Ng, S. W. (2011). *Acta Cryst.* E67, 03260.
- Elinson, M. N., Vereshchagin, A. N., Stepanov, N. O., Zaimovskaya, T. A., Merkulova, V. M. & Nikishin, G. I. (2010). *Tetrahedron Lett.* 51, 428–431.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Herbivo, C., Comel, A., Kirsch, G., Fonseca, A. M. C., Belsley, M. & Raposo, M. M. M. (2010). Dyes Pigm. 86, 217–226.
- Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2011). Acta Cryst. E67, 03469.
- Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). *Acta Cryst.* E66, o1845.
- Ouzidan, Y., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). *Acta Cryst.* E67, 0558.
- Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shigemitsu, Y., Wang, B.-C., Nishimura, Y. & Tominaga, Y. (2011). *Dyes Pigm.* **92**, 580–587.
- Ye, Z., Xu, R., Shao, X., Xu, X. & Li, Z. (2010). Tetrahedron Lett. 51, 4991–4994.

supporting information

Acta Cryst. (2012). E68, o957 [https://doi.org/10.1107/S1600536812008896]

2-(4-Nitrobenzylidene)malononitrile

Ming-Jen Chang, Tzu-Chien Fang, Hsing-Yang Tsai, Ming-Hui Luo and Kew-Yu Chen

S1. Comment

Organic compounds bearing benzylidenemalononitrile moieties have attracted considerable attention due to their potential applications in the design of molecular devices (Cao *et al.*, 2010; Herbivo *et al.*, 2010; Shigemitsu *et al.*, 2011). In addition, the title compound and its derivatives have been used as potential precursors to prepare 5,7-diazaspiro-[2,5]octane (Elinson *et al.*, 2010), 2-amino-4*H*-chromene-3-carbonitrile (Ding *et al.*, 2010) and 4*H*-pyran derivatives (Ye *et al.*, 2010).

The molecular structure of the title compound is shown in Figure 1. The nitro group is close to being coplanar with the benzene ring (dihedral angle = $8.8 (3)^\circ$), which is consistent with previous studies (El Brahmi *et al.*, 2011; Mehdi *et al.*, 2010; Ouzidan *et al.*, 2011; Raza *et al.*, 2010). In addition, the benzylidenemalononitrile moiety is nearly planar with a maximum deviation of 0.129 (2))Å for atom N2 (Karthikeyan *et al.*, 2011). An intramolecular C—H···N hydrogen bond stabilizes the molecular conformation.

S2. Experimental

The title compound was synthesized by the Knoevenagel condensation of malononitrile with 4-nitrobenzaldehyde (Baheti *et al.*, 2011). Colorless crystals suitable for the crystallographic studies reported here were isolated over a period of four weeks by slow evaporation from a chloroform solution.

S3. Refinement

H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

F(000) = 408

 $\theta = 3.7 - 71.5^{\circ}$ $\mu = 0.89 \text{ mm}^{-1}$

T = 297 K

 $D_{\rm x} = 1.458 {\rm Mg} {\rm m}^{-3}$

Parallelepiped, colorless $0.76 \times 0.60 \times 0.18$ mm

Cu *K* α radiation, $\lambda = 1.54178$ Å

Cell parameters from 2320 reflections

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

2-(4-Nitrobenzylidene)propanedinitrile

Crystal data

 $C_{10}H_5N_3O_2$ $M_r = 199.17$ Orthorhombic, *Pna2*₁ Hall symbol: P 2c -2n a = 19.5557 (9) Å b = 3.8732 (2) Å c = 11.9823 (5) Å V = 907.58 (7) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	3111 measured reflections
diffractometer	1517 independent reflections
Radiation source: fine-focus sealed tube	1420 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
ω scans	$\theta_{\rm max} = 71.7^{\circ}, \ \theta_{\rm min} = 4.5^{\circ}$
Absorption correction: multi-scan	$h = -24 \rightarrow 15$
(SADABS; Bruker, 2001)	$k = -4 \rightarrow 3$
$T_{\min} = 0.674, \ T_{\max} = 1.000$	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.091$ S = 1.061517 reflections 136 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0621P)^2 + 0.0168P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³ Absolute structure: Flack (1983), 582 Friedel pairs

Absolute structure parameter: -0.2 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.19540 (9)	1.1888 (6)	-0.10487 (14)	0.0798 (6)	
O2	0.17348 (9)	1.4626 (5)	0.04698 (17)	0.0790 (6)	
N1	0.21000 (8)	1.2840 (4)	-0.01057 (15)	0.0530 (4)	
N2	0.61988 (11)	0.5187 (6)	0.25478 (17)	0.0672 (5)	
N3	0.53572 (10)	0.5513 (7)	-0.07973 (17)	0.0743 (6)	
C1	0.38494 (10)	0.9176 (5)	0.00650 (14)	0.0445 (4)	
H1A	0.4165	0.8120	-0.0404	0.053*	
C2	0.32231 (10)	1.0153 (5)	-0.03437 (15)	0.0449 (4)	
H2A	0.3110	0.9738	-0.1086	0.054*	
C3	0.27635 (9)	1.1752 (5)	0.03563 (14)	0.0405 (4)	
C4	0.29078 (10)	1.2411 (5)	0.14638 (16)	0.0471 (5)	
H4A	0.2591	1.3505	0.1922	0.056*	
C5	0.35351 (10)	1.1396 (5)	0.18681 (15)	0.0447 (4)	
H5A	0.3641	1.1811	0.2613	0.054*	
C6	0.40158 (9)	0.9766 (4)	0.11918 (14)	0.0387 (4)	
C7	0.46578 (10)	0.8685 (5)	0.17120 (14)	0.0415 (4)	
H7A	0.4690	0.9154	0.2471	0.050*	
C8	0.52069 (10)	0.7129 (4)	0.12720 (15)	0.0408 (4)	
C9	0.57642 (11)	0.6105 (5)	0.19838 (16)	0.0478 (5)	
C10	0.52915 (9)	0.6242 (6)	0.01095 (17)	0.0489 (5)	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U ¹²	U ¹³	U ²³
01	0.0629 (11)	0.1147 (15)	0.0617 (10)	0.0171 (10)	-0.0179 (8)	-0.0051 (10)
O2	0.0585 (9)	0.0933 (14)	0.0852 (13)	0.0283 (9)	0.0017 (9)	-0.0088 (10)
N1	0.0435 (9)	0.0578 (10)	0.0577 (12)	0.0029 (7)	0.0036 (8)	0.0085 (9)
N2	0.0659 (12)	0.0835 (14)	0.0521 (10)	0.0141 (11)	-0.0141 (10)	0.0016 (9)
N3	0.0567 (11)	0.1197 (18)	0.0464 (10)	0.0190 (11)	-0.0019 (9)	-0.0203 (11)
C1	0.0467 (9)	0.0544 (11)	0.0324 (8)	0.0064 (8)	0.0011 (7)	-0.0025 (8)
C2	0.0470 (9)	0.0543 (11)	0.0334 (8)	0.0003 (8)	-0.0011 (8)	-0.0006 (8)
C3	0.0391 (8)	0.0424 (9)	0.0399 (10)	-0.0019 (7)	0.0009 (7)	0.0045 (7)
C4	0.0480 (10)	0.0506 (11)	0.0426 (10)	0.0023 (9)	0.0106 (8)	-0.0029 (9)

supporting information

05	0.0501 (10)	0.0500 (11)	0.0212 (0)	0.0022 (0)	0.0007 (0)	0.0000 (0)
C5	0.0501 (10)	0.0529 (11)	0.0312 (8)	-0.0032(8)	0.0027 (8)	-0.0009 (8)
C6	0.0447 (9)	0.0394 (9)	0.0321 (8)	-0.0029 (7)	0.0016 (7)	0.0030 (7)
C7	0.0515 (10)	0.0439 (11)	0.0290 (7)	-0.0038 (8)	-0.0023 (7)	0.0013 (7)
C8	0.0447 (9)	0.0407 (9)	0.0370 (9)	-0.0041 (8)	-0.0039 (7)	0.0024 (8)
C9	0.0502 (10)	0.0520 (11)	0.0413 (10)	0.0009 (9)	-0.0029 (9)	0.0011 (9)
C10	0.0401 (9)	0.0618 (12)	0.0449 (10)	0.0041 (8)	-0.0009 (8)	-0.0037 (9)

Geometric parameters (Å, °)

01—N1	1.222 (2)	C3—C4	1.381 (3)
O2—N1	1.210 (2)	C4—C5	1.376 (3)
N1—C3	1.472 (2)	C4—H4A	0.9300
N2—C9	1.143 (3)	C5—C6	1.393 (3)
N3—C10	1.130 (3)	C5—H5A	0.9300
C1—C2	1.372 (3)	C6—C7	1.463 (3)
C1—C6	1.407 (2)	С7—С8	1.339 (3)
C1—H1A	0.9300	C7—H7A	0.9300
C2—C3	1.377 (3)	C8—C10	1.444 (3)
C2—H2A	0.9300	С8—С9	1.440 (3)
02—N1—O1	124.15 (19)	C4—C5—C6	121.76 (17)
O2—N1—C3	118.00 (17)	С4—С5—Н5А	119.1
O1—N1—C3	117.85 (17)	С6—С5—Н5А	119.1
C2—C1—C6	120.27 (17)	C5—C6—C1	118.41 (17)
C2—C1—H1A	119.9	C5—C6—C7	117.46 (17)
C6—C1—H1A	119.9	C1—C6—C7	124.11 (16)
C3—C2—C1	119.29 (17)	C8—C7—C6	130.47 (17)
C3—C2—H2A	120.4	С8—С7—Н7А	114.8
C1—C2—H2A	120.4	С6—С7—Н7А	114.8
C2—C3—C4	122.37 (17)	C7—C8—C10	125.34 (17)
C2—C3—N1	118.37 (15)	C7—C8—C9	119.85 (17)
C4—C3—N1	119.25 (16)	C10—C8—C9	114.78 (16)
C5—C4—C3	117.89 (18)	N2—C9—C8	177.8 (2)
C5—C4—H4A	121.1	N3—C10—C8	179.3 (3)
C3—C4—H4A	121.1		
C6—C1—C2—C3	0.8 (3)	C3—C4—C5—C6	0.2 (3)
C1—C2—C3—C4	-0.2 (3)	C4—C5—C6—C1	0.4 (3)
C1—C2—C3—N1	178.79 (16)	C4—C5—C6—C7	-177.94 (17)
O2—N1—C3—C2	-170.72 (19)	C2—C1—C6—C5	-0.9 (3)
O1—N1—C3—C2	9.0 (3)	C2-C1-C6-C7	177.29 (17)
O2—N1—C3—C4	8.3 (3)	C5—C6—C7—C8	-179.0 (2)
O1—N1—C3—C4	-172.0 (2)	C1—C6—C7—C8	2.8 (3)
C2—C3—C4—C5	-0.3 (3)	C6—C7—C8—C10	2.3 (3)
N1—C3—C4—C5	-179.30 (17)	C6—C7—C8—C9	-175.70 (17)

supporting information

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1A···N3	0.93	2.58	3.431 (3)	152