## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Poly[bis( $\mu$-purin-9-ido- $\kappa^{2} N^{7}: N^{9}$ )zinc]

## A. Cadiau and K. Adil*

LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et des Matériaux du Mans, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France Correspondence e-mail: karim.adil@univ-lemans.fr

Received 6 March 2012; accepted 14 March 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.024 ; w R$ factor $=0.053$; data-to-parameter ratio $=13.6$.

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{4}\right)_{2}\right]$, the $\mathrm{Zn}^{\mathrm{II}}$ cation is in a nearly regular tetrahedral coordination by purinate ligands. Each purinate ligand chelates two $\mathrm{Zn}^{\text {II }}$ cations through two imidazole N atoms of the purinate anion ligand, leading to the formation of a three-dimensional network.

## Related literature

For common applications of hybrid materials, see: Cui et al. (2012); Horcajada et al. (2012); Li et al. (2012); Stock \& Biswas (2012); Suh et al. (2012); Sumida et al. (2012); Yoon et al. (2012). For characteristic zinc-nitrogen distances in metalorganic framework compounds, see: Cadiau et al. (2011).


## Experimental

## Crystal data

```
\(\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{4}\right)_{2}\right]\)
\(M_{r}=303.60\)
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
\(a=9.2332\) (5) A
\(b=10.1337\) (6) \(\AA\)
\(c=12.4186\) (6) A
\(V=1161.96(11) \AA^{3}\)
\(Z=4\)
Mo \(K \alpha\) radiation
\(\mu=2.11 \mathrm{~mm}^{-1}\)
\(T=296 \mathrm{~K}\)
\(0.45 \times 0.31 \times 0.07 \mathrm{~mm}\)
```

Data collection
Bruker APEXII Quazar CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.580, T_{\max }=0.746$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.053$
$S=1.01$
2336 reflections
172 parameters

H -atom parameters constrained
4522 measured reflections 2336 independent reflections 2129 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$
$\Delta \rho_{\text {max }}=0.42 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$
Absolute structure: Flack (1983)
Flack parameter: 0.030 (13)

Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Zn} 1-\mathrm{N} 1$ | $2.010(2)$ | $\mathrm{Zn} 1-\mathrm{N} 3$ | $1.994(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Zn} 1-\mathrm{N} 2$ | $2.006(2)$ | $\mathrm{Zn} 1-\mathrm{N} 5$ | $1.983(2)$ |

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL.

The authors are grateful to Marc Leblanc for fruitful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2034).

## References

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Cadiau, A., Martineau, C., Leblanc, M., Maisonneuve, V., Hémon-Ribaud, A., Taulelle, F. \& Adil, K. (2011). J. Mater. Chem. 21, 3949-3951.
Cui, Y., Yue, Y., Qian, G. \& Chen, B. (2012). Chem. Rev. 112, 1126-1162.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. \& Serre, C. (2012). Chem. Rev. 112, 1232-1268.

Li, J.-R., Sculley, J. \& Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stock, N. \& Biswas, S. (2012). Chem. Rev. 112, 933-969.
Suh, M. P., Park, H. J., Prasad, T. K. \& Lim, D.-W. (2012). Chem. Rev. 112, 782835.

Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H. \& Long, J. R. (2012). Chem. Rev. 112, 724-781.

Yoon, M., Srirambalaji, R. \& Kim, K. (2012). Chem. Rev. 112, 1196-1231.

## supporting information

Acta Cryst. (2012). E68, m449 [https://doi.org/10.1107/S1600536812011245]
Poly[bis( $\mu$-purin-9-ido- $\kappa^{2} N^{7}: N^{9}$ )zinc]

## A. Cadiau and K. Adil

## S1. Comment

The emerging class of hybrids materials known as Metal-Organic Frameworks (MOFs) has attracted much attention because of their enormous variety of interesting structural topologies (Stock \& Biswas, 2012) and wide potential applications as functional materials, such as gas storage (Suh et al., 2012; Sumida et al., 2012), separation (Li et al., 2012), catalysis (Yoon et al., 2012) and luminescence (Cui et al., 2012). Moreover, there is a growing interest in MOFs for biological application (Horcajada et al., 2012) such as the drug controlled release or using MOFs based on endogenous linkers (nucleobases and amino acids). We report here on the synthesis and crystal structure of a new threedimensional zinc MOFs material elaborated from purinate linkers.
The asymmetric unit of the title compound consists of one $\mathrm{Zn}^{\text {II }}$ cation and two non-equivalent purine molecules. Fig. 1 displays in a symmetry-expanded view the full coordination sphere of the Zn atom. Selected geometric parameters are given in Table $1 . \mathrm{Zn}^{\mathrm{II}}$ are linked to four N atoms from two purinate anions to form quite regular tetrahedra. The coordination $\mathrm{Zn}-\mathrm{N}$ bond lengths range from 1.983 (2) to 2.009 (3) $\AA$ which are in a good agreement with the literature (Cadiau et al., 2011). The structure of $\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{4}\right)_{2}$ compound can be described as originating from deprotonated purinate anions $\left(\mathrm{C}_{5} \mathrm{~N}_{4} \mathrm{H}_{3}{ }^{-}\right)$linked to $\mathrm{Zn}^{\text {II }}$ cations in order to generate a three-dimensional network as is shown in Fig.2.

## S2. Experimental

Chemicals have been purchased from commercial sources and were used as received without further purification. The title compound was prepared under hydrothermal conditions at 393 K for 48 h using Teflon-lined autoclaves from a started mixture of zinc fluoride (Alfa Aesar), purine (Sigma-Aldrich) and deionized water under the following conditions: $\mathrm{ZnF}_{2}(0.067 \mathrm{~g}, 0.65 \mathrm{mmol}), \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4}(0.480 \mathrm{~g}, 4 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The resulting crystalline product was washed with water and dried in air. Needle yellow crystals suitable for single-crystal X-ray diffraction were selected using an optical microscope.

## S3. Refinement

Hydrogen atoms bonded to the ligands were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93$ $\AA$. These hydrogen atoms were assigned isotropic thermal parameters and $U_{\text {iso }}(\mathrm{H})=1.2 \times U_{\text {eq }}(\mathrm{C})$.


Figure 1
A view of the structure of the title compound showing the coordination environment of the Zn atom; displacement ellipsoids are drawn at the $50 \%$ probability level. Symmetry codes: (i) $-x,-0.5+y, 1.5-z$; (ii) $-0.5+x, 1.5-y, 1-z$; (iii) $0.5+x, 1.5-y, 1-z$; (iv) $-x, 0.5+y, 1.5-z$


Figure 2
Projection of the structure along the $a$ axis showing the three-dimensional network. The numbers refer to the $x$ coordinates of the $\mathrm{Zn}^{\mathrm{II}}$ cations.

## Poly[bis $\left(\mu\right.$-purin-9-ido- $\left.\kappa^{2} N^{\top}: N^{9}\right)$ zinc $]$

## Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=303.60$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=9.2332$ (5) $\AA$
$b=10.1337$ (6) $\AA$
$c=12.4186$ (6) $\AA$
$V=1161.96(11) \AA^{3}$
$Z=4$

## Data collection

Bruker APEXII Quazar CCD
diffractometer
Radiation source: ImuS microsource
Mirror monochromator
$\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.580, T_{\text {max }}=0.746$
$F(000)=608$
$D_{\mathrm{x}}=1.735 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 896 reflections
$\theta=2-11^{\circ}$
$\mu=2.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, yellow
$0.45 \times 0.31 \times 0.07 \mathrm{~mm}$

4522 measured reflections
2336 independent reflections
2129 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=29.0^{\circ}, \theta_{\text {min }}=3.3^{\circ}$
$h=-12 \rightarrow 11$
$k=-10 \rightarrow 13$
$l=-15 \rightarrow 11$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.053$
$S=1.01$
2336 reflections
172 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.014 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.42$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.26$ e $\AA^{-3}$
Absolute structure: Flack (1983)
Absolute structure parameter: 0.030 (13)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Zn1 | $0.05827(3)$ | $0.83956(3)$ | $0.63470(2)$ | $0.01682(8)$ |
| N 1 | $0.2523(2)$ | $0.7592(2)$ | $0.60162(16)$ | $0.0211(5)$ |
| N 2 | $-0.0615(2)$ | $0.81227(19)$ | $0.50179(15)$ | $0.0202(5)$ |
| N 3 | $-0.0333(2)$ | $0.7247(2)$ | $0.74592(16)$ | $0.0200(5)$ |
| N 4 | $0.0678(3)$ | $0.9343(2)$ | $0.3640(2)$ | $0.0310(5)$ |
| N 5 | $0.0775(2)$ | $1.0294(2)$ | $0.67090(16)$ | $0.0198(5)$ |
| N 6 | $0.1801(3)$ | $1.3634(2)$ | $0.63818(19)$ | $0.0335(6)$ |
| N 7 | $0.3055(3)$ | $1.2441(3)$ | $0.4986(2)$ | $0.0356(6)$ |
| C1 | $0.3147(3)$ | $0.7551(3)$ | $0.5048(2)$ | $0.0216(6)$ |
| H1 | 0.2743 | 0.7967 | 0.4452 | $0.026^{*}$ |
| C2 | $-0.0407(3)$ | $0.8578(2)$ | $0.39896(19)$ | $0.0189(5)$ |
| C3 | $0.3449(3)$ | $0.6859(2)$ | $0.66539(19)$ | $0.0214(6)$ |
| C4 | $-0.1555(3)$ | $0.8505(4)$ | $0.2285(2)$ | $0.0337(7)$ |
| H4 | -0.2284 | 0.8209 | 0.1827 | $0.040^{*}$ |
| C5 | $0.1262(3)$ | $1.2481(3)$ | $0.6690(2)$ | $0.0214(6)$ |
| C6 | $0.0102(3)$ | $1.0927(3)$ | $0.7501(2)$ | $0.0201(6)$ |
| H6 | -0.0487 | 1.0494 | 0.7995 | $0.024^{*}$ |
| C7 | $0.0542(4)$ | $0.9665(3)$ | $0.2603(3)$ | $0.0399(8)$ |
| H7 | 0.1256 | 1.0216 | 0.2324 | $0.048^{*}$ |
| N10 | $-0.0503(4)$ | $0.9289(3)$ | $0.19110(19)$ | $0.0436(7)$ |
| C9 | $0.2668(4)$ | $1.3533(3)$ | $0.5524(2)$ | $0.0386(8)$ |
| H9 | 0.3052 | 1.4321 | 0.5267 | $0.046^{*}$ |
| C10 | $0.2476(3)$ | $1.1293(3)$ | $0.5314(2)$ | $0.0275(7)$ |
|  |  |  |  |  |


| H 10 | 0.2709 | 1.0512 | 0.4961 | $0.033^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| C 11 | $0.1542(3)$ | $1.1274(2)$ | $0.61731(19)$ | $0.0197(6)$ |

Atomic displacement parameters $\left(A^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{\beta 3}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Zn1 | $0.01916(15)$ | $0.01367(13)$ | $0.01764(14)$ | $0.00023(14)$ | $0.00213(13)$ | $-0.00095(13)$ |
| N1 | $0.0207(12)$ | $0.0231(12)$ | $0.0196(12)$ | $0.0036(10)$ | $0.0009(10)$ | $-0.0011(10)$ |
| N2 | $0.0180(11)$ | $0.0203(12)$ | $0.0222(11)$ | $-0.0017(11)$ | $-0.0017(10)$ | $-0.0009(9)$ |
| N3 | $0.0238(14)$ | $0.0147(11)$ | $0.0215(11)$ | $0.0011(10)$ | $0.0041(11)$ | $0.0020(9)$ |
| N4 | $0.0270(13)$ | $0.0319(13)$ | $0.0342(13)$ | $-0.0027(11)$ | $0.0072(15)$ | $0.0007(12)$ |
| N5 | $0.0242(13)$ | $0.0150(11)$ | $0.0203(10)$ | $-0.0006(10)$ | $0.0010(10)$ | $-0.0004(9)$ |
| N6 | $0.0483(15)$ | $0.0243(13)$ | $0.0281(12)$ | $-0.0110(11)$ | $0.0090(13)$ | $-0.0048(12)$ |
| N7 | $0.0438(16)$ | $0.0312(14)$ | $0.0316(12)$ | $-0.0104(12)$ | $0.0115(12)$ | $-0.0034(11)$ |
| C1 | $0.0251(15)$ | $0.0198(13)$ | $0.0200(12)$ | $0.0025(11)$ | $-0.0016(12)$ | $0.0008(11)$ |
| C2 | $0.0159(14)$ | $0.0167(13)$ | $0.0241(12)$ | $0.0052(11)$ | $0.0026(11)$ | $-0.0017(11)$ |
| C3 | $0.0190(14)$ | $0.0233(15)$ | $0.0220(14)$ | $-0.0035(12)$ | $-0.0041(12)$ | $-0.0031(11)$ |
| C4 | $0.0288(17)$ | $0.052(2)$ | $0.0204(14)$ | $0.0018(17)$ | $0.0006(13)$ | $0.0007(16)$ |
| C5 | $0.0294(16)$ | $0.0172(14)$ | $0.0175(13)$ | $-0.0034(12)$ | $-0.0012(12)$ | $-0.0016(11)$ |
| C6 | $0.0212(14)$ | $0.0187(13)$ | $0.0204(13)$ | $-0.0001(11)$ | $0.0027(11)$ | $0.0000(10)$ |
| C7 | $0.0324(18)$ | $0.0397(18)$ | $0.0477(19)$ | $-0.0041(18)$ | $0.015(2)$ | $0.0052(15)$ |
| N10 | $0.0399(17)$ | $0.0639(19)$ | $0.0270(14)$ | $-0.0063(17)$ | $0.0099(15)$ | $0.0064(13)$ |
| C9 | $0.056(2)$ | $0.0285(18)$ | $0.0313(16)$ | $-0.0165(17)$ | $0.0122(16)$ | $-0.0052(14)$ |
| C10 | $0.0344(18)$ | $0.0237(17)$ | $0.0244(15)$ | $-0.0009(12)$ | $0.0039(14)$ | $-0.0061(12)$ |
| C11 | $0.0245(15)$ | $0.0180(14)$ | $0.0167(13)$ | $-0.0019(10)$ | $-0.0027(12)$ | $-0.0004(10)$ |
|  |  |  |  |  |  |  |

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

| Zn1-N1 | 2.010 (2) | $\mathrm{C} 1-\mathrm{N} 2^{\text {iii }}$ | 1.333 (4) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Zn} 1-\mathrm{N} 2$ | 2.006 (2) | C1-H1 | 0.9300 |
| Zn1-N3 | 1.994 (2) | C2-C3 ${ }^{\text {i }}$ | 1.397 (4) |
| $\mathrm{Zn} 1-\mathrm{N} 5$ | 1.983 (2) | C3-C4iii | 1.368 (3) |
| N1-C1 | 1.335 (4) | $\mathrm{C} 3-\mathrm{C} 2{ }^{\text {iii }}$ | 1.397 (4) |
| N1-C3 | 1.382 (3) | C4-N10 | 1.338 (4) |
| $\mathrm{N} 2-\mathrm{Cl}{ }^{\text {i }}$ | 1.333 (4) | $\mathrm{C} 4-\mathrm{C} 3{ }^{\text {i }}$ | 1.368 (3) |
| N2-C2 | 1.371 (3) | C4-H4 | 0.9300 |
| N3-C6 ${ }^{\text {ii }}$ | 1.356 (3) | $\mathrm{C} 5-\mathrm{N} 3{ }^{\text {iv }}$ | 1.381 (3) |
| N3-C5 ${ }^{\text {ii }}$ | 1.381 (3) | C5-C11 | 1.405 (3) |
| N4-C7 | 1.335 (4) | $\mathrm{C} 6-\mathrm{N} 3{ }^{\text {iv }}$ | 1.356 (3) |
| N4-C2 | 1.339 (3) | C6-H6 | 0.9300 |
| N5-C6 | 1.328 (3) | C7-N10 | 1.348 (4) |
| N5-C11 | 1.390 (3) | C7-H7 | 0.9300 |
| N6-C5 | 1.327 (3) | C9-H9 | 0.9300 |
| N6-C9 | 1.337 (4) | C10-C11 | 1.372 (4) |
| N7-C9 | 1.341 (4) | C10-H10 | 0.9300 |
| N7-C10 | 1.343 (3) |  |  |
| N5-Zn1-N3 | 116.54 (9) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$ | 108.7 (2) |


| $\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 2$ | 111.68 (8) | $\mathrm{C} 4{ }^{\text {iii }}-\mathrm{C} 3-\mathrm{N} 1$ | 134.0 (3) |
| :---: | :---: | :---: | :---: |
| N3-Zn1-N2 | 104.81 (8) | C4iii-C3-C2 ${ }^{\text {iii }}$ | 117.9 (2) |
| N5-Zn1-N1 | 111.08 (9) | N1-C3-C2 ${ }^{\text {iii }}$ | 108.1 (2) |
| N3-Zn1-N1 | 106.44 (9) | N10-C4-C3 ${ }^{\text {i }}$ | 119.5 (3) |
| N2-Zn1-N1 | 105.50 (9) | N10-C4-H4 | 120.3 |
| C1-N1-C3 | 103.4 (2) | C3 - $\mathrm{C} 4-\mathrm{H} 4$ | 120.3 |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$ | 125.61 (19) | N6-C5-N3 ${ }^{\text {iv }}$ | 127.2 (2) |
| $\mathrm{C} 3-\mathrm{N} 1-\mathrm{Zn} 1$ | 130.69 (17) | N6-C5-C11 | 124.4 (2) |
| C1- ${ }^{\text {i }} 2-\mathrm{C} 2$ | 103.6 (2) | N3 ${ }^{\text {iv }}-\mathrm{C} 5-\mathrm{C} 11$ | 108.3 (2) |
| $\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{N} 2-\mathrm{Zn} 1$ | 126.39 (18) | N5-C6-N3 ${ }^{\text {iv }}$ | 115.5 (3) |
| C2-N2-Zn1 | 129.99 (18) | N5-C6-H6 | 122.3 |
| $\mathrm{C} 6{ }^{\text {ii- }}$ - 3 - $\mathrm{C}^{\text {iii }}$ | 103.8 (2) | N3 ${ }^{\text {iv }}$ - $\mathrm{C} 6-\mathrm{H} 6$ | 122.3 |
| C6 ${ }^{\text {ii- }}$ - 3 - Zn 1 | 122.31 (19) | N4-C7-N10 | 127.8 (3) |
| $\mathrm{C} 5{ }^{\text {ii- }}$-N3-Zn1 | 133.86 (17) | N4-C7-H7 | 116.1 |
| $\mathrm{C} 7-\mathrm{N} 4-\mathrm{C} 2$ | 112.6 (3) | N10-C7-H7 | 116.1 |
| C6-N5-C11 | 104.3 (2) | C4-N10-C7 | 117.8 (2) |
| C6-N5-Zn1 | 126.50 (18) | N6-C9-N7 | 128.3 (3) |
| C11-N5-Zn1 | 129.08 (17) | N6-C9-H9 | 115.9 |
| C5-N6-C9 | 112.8 (2) | N7-C9—H9 | 115.9 |
| C9-N7-C10 | 117.2 (3) | N7-C10-C11 | 119.9 (2) |
| $\mathrm{N} 2{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{N} 1$ | 116.2 (3) | N7-C10-H10 | 120.1 |
| $\mathrm{N} 2 \mathrm{iii}-\mathrm{C} 1-\mathrm{H} 1$ | 121.9 | C11-C10-H10 | 120.1 |
| N1-C1-H1 | 121.9 | C10-C11-N5 | 134.6 (2) |
| N4-C2-N2 | 127.0 (2) | C10-C11-C5 | 117.4 (2) |
| $\mathrm{N} 4-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$ | 124.4 (2) | N5-C11-C5 | 108.0 (2) |

[^0]
[^0]:    Symmetry codes: (i) $x-1 / 2,-y+3 / 2,-z+1$; (ii) $-x, y-1 / 2,-z+3 / 2$; (iii) $x+1 / 2,-y+3 / 2,-z+1$; (iv) $-x, y+1 / 2,-z+3 / 2$.

