Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{1-[(benzoyloxy)methyl]-1H-1,2,3benzotriazole- κN^3 (nitrato- $\kappa^2 O.O'$)silver(I)

Sen Xu* and Yingzhong Shen

Department of Applied Chemistry, School of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province 210016, People's Republic of China Correspondence e-mail: xusennuaa@163.com

Received 2 December 2011; accepted 13 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.032; wR factor = 0.067; data-to-parameter ratio = 12.2.

In the crystal structure of the title coordination compound, $[Ag(NO_3)(C_{14}H_{11}N_3O_2)_2]$, the Ag^I atom is four-coordinated in a distorted tetrahedral geometry by two O atoms from one nitrate group and two N atoms from two different 1-[(benzoyloxy)methyl]-1*H*-1,2,3-triazole ligands. In the complex, the two coordinated benzotriazole rings rings are nearly perpendicular, the dihedral angle between their planes being 87.08 (6)°.

Related literature

For related structures, see: Han et al. (2008); Zhou et al. (2011).

19832 measured reflections 4947 independent reflections

 $R_{\rm int} = 0.031$

4563 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

[Ag(NO₃)(C₁₄H₁₁N₃O₂)₂] $\gamma = 74.974 \ (2)^{\circ}$ $M_r = 676.40$ V = 1405.21 (12) Å³ Triclinic, $P\overline{1}$ Z = 2a = 9.8815 (5) Å Mo $K\alpha$ radiation b = 10.6695 (5) Å $\mu = 0.78 \text{ mm}^{-1}$ c = 15.0158 (7) Å T = 296 K $\alpha = 70.405 \ (2)^{\circ}$ $0.20 \times 0.18 \times 0.17~\mathrm{mm}$ $\beta = 73.323 (2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SABADS: Sheldrick, 1996) $T_{\min} = 0.860, T_{\max} = 0.879$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.067$	independent and constrained
S = 1.13	refinement
4947 reflections	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
404 parameters	$\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	

Table 1

Selected bond lengths (Å).

Ag1-N3	2.238 (2)	Ag1-O1	2.690 (2)
Ag1-N4	2.219 (2)	Ag1-O2	2.513 (2)

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2026).

References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Han, X. L., An, C. X. & Zhang, Z. H. (2008). Appl. Organomet. Chem. 22, 565-572.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhou, X. L., Li, W. Q., Jin, G. H., Zhao, D., Zhu, X. Q., Meng, X. R. & Hou, H. W. (2011). J. Mol. Struct. 995, 148-156.

supporting information

Acta Cryst. (2012). E68, m369 [https://doi.org/10.1107/S1600536812006368]

Bis{1-[(benzoyloxy)methyl]-1*H*-1,2,3-benzotriazole- κN^3 }(nitrato- $\kappa^2 O, O'$)silver(I)

Sen Xu and Yingzhong Shen

S1. Comment

Benzotriazol derivatives have been widely used for constructing complexes with transition metals (see *e.g.*: Han *et al.*, 2008; Zhou *et al.*, 2011). In this contribution, a new coordination compound was synthesized using (1*H*-benzo[*d*] [1,2,3]triazol-1-yl)methyl benzoate and silver nitrate and characterized by single-crystal X-ray diffraction. The crystal structure of the title compound is shown in Fig.1. The Ag^I atom is four-coordinated in a slightly distorted tetradral geometry by two O atoms from one nitrate and two N atoms from two (1*H*-benzo[*d*][1,2,3]triazol-1-yl)methyl benzoate ligands. The bond distances Ag—N (Ag1—N3=2.238 (2) Å, Ag1—N4=2.219 (2) Å), and Ag—O (Ag1—O1=2.690 (2) Å, Ag1—O2=2.513 (2) Å) are within normal ranges.

S2. Experimental

(1H-benzo[d][1,2,3]triazol-1-yl)methyl benzoate (0.25 mmol) and silver nitrate (0.25 mmol) were mixed in a round bottom flask with 10 ml absolute ethyl alcohol, and stirred for 10 hours. After the completion of the reaction a white solid was obtained from which a small amount was dissolved in absolute ethyl alcohol, and single crystals were obtained by slow evaporation.

S3. Refinement

All H atoms were situated at idealized positions with carrier atom—H distances at 0.93Å for aryl groups, and they were treated using a riding model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bonded to methylene were refined independently with isotropic displacement parameters. The Ag1 and O2 sites were treated with a *SHELXL* DELU instruction.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Bis{1-[(benzoyloxy)methyl]-1H-1,2,3-triazole- κN^3 }(nitrato- $\kappa^2 O, O'$)silver(I)

Crystal data

 $[Ag(NO_3)(C_{14}H_{11}N_3O_2)_2]$ $M_r = 676.40$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.8815 (5) Å b = 10.6695 (5) Å c = 15.0158 (7) Å a = 70.405 (2)° $\beta = 73.323$ (2)° $\gamma = 74.974$ (2)° V = 1405.21 (12) Å³

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SABADS*; Sheldrick, 1996) $T_{\min} = 0.860, T_{\max} = 0.879$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.067$ S = 1.13 Z = 2 F(000) = 684 $D_x = 1.599 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9998 reflections $\theta = 2.7-27.7^{\circ}$ $\mu = 0.78 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.20 \times 0.18 \times 0.17 \text{ mm}$

19832 measured reflections 4947 independent reflections 4563 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -17 \rightarrow 17$

4947 reflections404 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0116P)^2 + 0.9774P]$
map	where $P = (F_0^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ag1	0.03724 (2)	0.57849 (2)	0.088297 (16)	0.05262 (8)
CI	-0.0863 (3)	0.3081 (2)	0.23322 (18)	0.0368 (5)
C2	-0.1554 (3)	0.3546 (3)	0.3143 (2)	0.0483 (7)
H2	-0.1642	0.4442	0.3128	0.058*
C3	-0.2095 (3)	0.2608 (3)	0.3964 (2)	0.0568 (8)
Н3	-0.2560	0.2877	0.4522	0.068*
C4	-0.1969 (3)	0.1258 (3)	0.3991 (2)	0.0580 (8)
H4	-0.2344	0.0658	0.4568	0.070*
C5	-0.1318 (3)	0.0794 (3)	0.32016 (19)	0.0498 (7)
Н5	-0.1249	-0.0100	0.3220	0.060*
C6	-0.0759 (3)	0.1743 (2)	0.23637 (18)	0.0366 (5)
C7	0.0367 (3)	0.0503 (3)	0.1079 (2)	0.0426 (6)
C8	0.2437 (3)	-0.0951 (2)	0.16086 (19)	0.0395 (6)
C9	0.2897 (3)	-0.2079 (3)	0.24241 (19)	0.0421 (6)
C10	0.4303 (3)	-0.2301 (3)	0.2521 (2)	0.0560 (8)
H10	0.4928	-0.1740	0.2085	0.067*
C11	0.4774 (4)	-0.3351 (3)	0.3264 (3)	0.0682 (9)
H11	0.5709	-0.3485	0.3336	0.082*
C12	0.3867 (4)	-0.4196 (3)	0.3893 (2)	0.0690 (10)
H12	0.4191	-0.4911	0.4387	0.083*
C13	0.2474 (4)	-0.3988 (3)	0.3796 (2)	0.0666 (9)
H13	0.1865	-0.4570	0.4224	0.080*
C14	0.1973 (3)	-0.2923 (3)	0.3070 (2)	0.0544 (7)
H14	0.1027	-0.2776	0.3015	0.065*
C15	0.3679 (3)	0.6112 (2)	0.06858 (18)	0.0373 (6)
C16	0.4652 (3)	0.6949 (2)	0.01166 (17)	0.0351 (5)
C17	0.6031 (3)	0.6754 (3)	0.0275 (2)	0.0469 (7)
H17	0.6678	0.7326	-0.0104	0.056*
C18	0.6355 (3)	0.5662 (3)	0.1026 (2)	0.0567 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H18	0.7259	0.5482	0.1161	0.068*
C19	0.5382 (4)	0.4799 (3)	0.1604 (2)	0.0557 (8)
H19	0.5666	0.4066	0.2103	0.067*
C20	0.4033 (3)	0.5004 (3)	0.1457 (2)	0.0483 (7)
H20	0.3384	0.4440	0.1848	0.058*
C21	0.4355 (3)	0.9080 (3)	-0.1274 (2)	0.0441 (6)
C22	0.6299 (3)	0.8467 (3)	-0.2501 (2)	0.0446 (6)
C23	0.6691 (3)	0.8206 (3)	-0.34636 (19)	0.0462 (7)
C24	0.5683 (4)	0.8326 (3)	-0.3974 (2)	0.0638 (9)
H24	0.4712	0.8594	-0.3725	0.077*
C25	0.6129 (5)	0.8043 (4)	-0.4860 (3)	0.0789 (11)
H25	0.5456	0.8125	-0.5210	0.095*
C26	0.7561 (5)	0.7642 (4)	-0.5223 (2)	0.0769 (11)
H26	0.7854	0.7444	-0.5815	0.092*
C27	0.8553 (5)	0.7534 (4)	-0.4723 (3)	0.0802 (11)
H27	0.9523	0.7267	-0.4974	0.096*
C28	0.8126 (4)	0.7820 (4)	-0.3842 (2)	0.0660 (9)
H28	0.8808	0.7752	-0.3504	0.079*
H1A	0.356 (3)	0.977 (3)	-0.1326 (17)	0.037 (7)*
H2A	0.510(3)	0.935 (3)	-0.1106 (19)	0.047 (8)*
H3A	-0.054 (3)	0.029 (3)	0.1051 (18)	0.041 (7)*
H4A	0.102 (3)	0.072 (3)	0.048 (2)	0.045 (8)*
N1	0.3925 (2)	0.7905 (2)	-0.05326 (14)	0.0363 (5)
N2	0.2574 (2)	0.7682 (2)	-0.03701 (16)	0.0408 (5)
N3	0.2419 (2)	0.6601 (2)	0.03592 (15)	0.0413 (5)
N4	-0.0186 (2)	0.3735 (2)	0.14134 (15)	0.0385 (5)
N5	0.0324 (2)	0.2868 (2)	0.09009 (14)	0.0374 (5)
N6	-0.0017 (2)	0.1661 (2)	0.14623 (14)	0.0357 (5)
N7	-0.1525 (3)	0.7667 (2)	0.20292 (16)	0.0459 (5)
01	-0.0939 (3)	0.6566 (2)	0.24968 (17)	0.0739 (7)
O2	-0.1332 (3)	0.7897 (2)	0.11432 (15)	0.0781 (7)
O3	-0.2257 (3)	0.8530 (2)	0.24265 (16)	0.0714 (7)
O4	0.3217 (2)	-0.0385 (2)	0.08958 (14)	0.0524 (5)
05	0.7136 (2)	0.8368 (3)	-0.20369 (16)	0.0681 (6)
06	0.09795 (19)	-0.06300 (17)	0.17626 (13)	0.0451 (4)
07	0.48595 (19)	0.8807 (2)	-0.21973 (13)	0.0483 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.05344 (14)	0.04608 (14)	0.05684 (15)	-0.02381 (11)	0.00015 (10)	-0.01177 (10)
C1	0.0334 (13)	0.0346 (13)	0.0404 (13)	-0.0081 (11)	-0.0092 (11)	-0.0056 (11)
C2	0.0501 (16)	0.0422 (15)	0.0543 (17)	-0.0074 (13)	-0.0074 (13)	-0.0199 (13)
C3	0.0606 (19)	0.062 (2)	0.0452 (16)	-0.0159 (16)	0.0030 (14)	-0.0198 (15)
C4	0.068 (2)	0.0533 (18)	0.0432 (16)	-0.0226 (16)	0.0033 (14)	-0.0060 (14)
C5	0.0619 (18)	0.0394 (15)	0.0448 (15)	-0.0181 (14)	-0.0049 (14)	-0.0067 (12)
C6	0.0354 (13)	0.0365 (14)	0.0379 (13)	-0.0088 (11)	-0.0095 (11)	-0.0075 (11)
C7	0.0488 (17)	0.0329 (14)	0.0429 (15)	-0.0027 (12)	-0.0124 (13)	-0.0083 (12)

supporting information

C8	0.0449 (15)	0.0325 (13)	0.0442 (15)	-0.0059 (12)	-0.0091 (12)	-0.0161 (11)
C9	0.0491 (16)	0.0340 (14)	0.0447 (15)	-0.0022 (12)	-0.0129 (12)	-0.0147 (11)
C10	0.0554 (18)	0.0443 (17)	0.070 (2)	-0.0069 (14)	-0.0224 (16)	-0.0125 (15)
C11	0.068 (2)	0.057 (2)	0.084 (2)	0.0001 (17)	-0.0385 (19)	-0.0165 (18)
C12	0.090 (3)	0.053 (2)	0.059 (2)	0.0075 (19)	-0.0331 (19)	-0.0116 (16)
C13	0.079 (2)	0.0532 (19)	0.0505 (18)	-0.0085 (17)	-0.0120 (17)	0.0020 (15)
C14	0.0580 (18)	0.0485 (17)	0.0489 (16)	-0.0069 (14)	-0.0115 (14)	-0.0061 (14)
C15	0.0380 (14)	0.0325 (13)	0.0404 (14)	-0.0050 (11)	-0.0066 (11)	-0.0117 (11)
C16	0.0364 (13)	0.0337 (13)	0.0341 (13)	-0.0031 (11)	-0.0072 (10)	-0.0111 (10)
C17	0.0364 (14)	0.0519 (17)	0.0514 (16)	-0.0054 (12)	-0.0105 (12)	-0.0146 (13)
C18	0.0496 (17)	0.0618 (19)	0.0608 (19)	-0.0003 (15)	-0.0267 (15)	-0.0150 (16)
C19	0.070 (2)	0.0445 (17)	0.0494 (17)	0.0031 (15)	-0.0252 (15)	-0.0085 (14)
C20	0.0600 (18)	0.0347 (14)	0.0448 (15)	-0.0086 (13)	-0.0081 (13)	-0.0069 (12)
C21	0.0386 (15)	0.0361 (15)	0.0483 (16)	-0.0064 (13)	-0.0051 (13)	-0.0043 (12)
C22	0.0413 (15)	0.0431 (15)	0.0450 (15)	-0.0094 (12)	-0.0100 (13)	-0.0051 (12)
C23	0.0511 (17)	0.0435 (15)	0.0378 (14)	-0.0125 (13)	-0.0101 (12)	-0.0003 (12)
C24	0.065 (2)	0.076 (2)	0.0505 (18)	-0.0199 (18)	-0.0161 (16)	-0.0107 (16)
C25	0.104 (3)	0.089 (3)	0.054 (2)	-0.032 (2)	-0.029 (2)	-0.0114 (19)
C26	0.122 (4)	0.064 (2)	0.0398 (17)	-0.028 (2)	-0.006 (2)	-0.0104 (16)
C27	0.087 (3)	0.087 (3)	0.053 (2)	-0.010 (2)	0.003 (2)	-0.0227 (19)
C28	0.058 (2)	0.081 (2)	0.0524 (18)	-0.0049 (18)	-0.0115 (16)	-0.0174 (17)
N1	0.0310 (11)	0.0339 (11)	0.0402 (11)	-0.0085 (9)	-0.0055 (9)	-0.0058 (9)
N2	0.0325 (11)	0.0382 (12)	0.0486 (13)	-0.0078 (9)	-0.0095 (10)	-0.0070 (10)
N3	0.0381 (12)	0.0376 (12)	0.0467 (12)	-0.0120 (10)	-0.0071 (10)	-0.0079 (10)
N4	0.0384 (12)	0.0321 (11)	0.0425 (12)	-0.0091 (9)	-0.0098 (9)	-0.0046 (9)
N5	0.0387 (12)	0.0328 (11)	0.0380 (11)	-0.0083 (9)	-0.0102 (9)	-0.0038 (9)
N6	0.0391 (11)	0.0308 (11)	0.0355 (11)	-0.0080 (9)	-0.0105 (9)	-0.0040 (9)
N7	0.0522 (14)	0.0410 (13)	0.0445 (13)	-0.0126 (11)	-0.0101 (11)	-0.0095 (11)
01	0.0951 (18)	0.0394 (12)	0.0766 (15)	-0.0012 (12)	-0.0284 (14)	-0.0034 (11)
O2	0.107 (2)	0.0733 (14)	0.0446 (12)	0.0052 (11)	-0.0174 (13)	-0.0211 (11)
03	0.0898 (17)	0.0583 (14)	0.0629 (14)	0.0131 (12)	-0.0205 (12)	-0.0298 (12)
O4	0.0490 (11)	0.0503 (12)	0.0503 (11)	-0.0117 (9)	-0.0046 (9)	-0.0078 (9)
05	0.0436 (12)	0.1073 (19)	0.0633 (13)	-0.0018 (12)	-0.0169 (11)	-0.0413 (13)
O6	0.0439 (11)	0.0348 (10)	0.0467 (10)	-0.0026 (8)	-0.0100 (8)	-0.0023 (8)
O7	0.0395 (10)	0.0584 (12)	0.0406 (10)	-0.0123 (9)	-0.0082 (8)	-0.0037 (9)

Geometric parameters (Å, °)

Ag1—N3	2.238 (2)	C15—C20	1.400 (4)
Ag1—N4	2.219 (2)	C16—N1	1.364 (3)
Ag101	2.690 (2)	C16—C17	1.401 (4)
Ag1—O2	2.513 (2)	C17—C18	1.366 (4)
C1—N4	1.380 (3)	C17—H17	0.9300
C1—C6	1.391 (3)	C18—C19	1.403 (4)
C1—C2	1.395 (4)	C18—H18	0.9300
C2—C3	1.371 (4)	C19—C20	1.364 (4)
С2—Н2	0.9300	C19—H19	0.9300
C3—C4	1.402 (4)	C20—H20	0.9300

supporting information

С3—Н3	0.9300	C21—O7	1.433 (3)
C4—C5	1.362 (4)	C21—N1	1.435 (3)
C4—H4	0.9300	C21—H1A	0.93 (3)
C5—C6	1.396 (3)	C21—H2A	0.98 (3)
С5—Н5	0.9300	C22—O5	1.191 (3)
C6—N6	1.361 (3)	C22—O7	1.354 (3)
C7—O6	1.423 (3)	C22—C23	1.486 (4)
C7—N6	1.452 (3)	C23—C28	1.377 (4)
С7—НЗА	1.00 (3)	C23—C24	1.379 (4)
С7—Н4А	0.94 (3)	C24—C25	1.386 (5)
C8—O4	1,200 (3)	C24—H24	0.9300
C8—O6	1.200(3) 1.361(3)	C_{25} C_{26}	1 372 (5)
C8—C9	1.301(3) 1 484(4)	C25—H25	0.9300
C9-C14	1.101(1) 1 385(4)	$C_{26}^{}C_{27}^{}$	1 359 (5)
C9-C10	1.385(4)	C26—H26	0.9300
C10-C11	1.381(4)	$C_{20} = 1120$	1 379 (5)
C10 H10	0.0300	C27 H27	0.0300
C_{11} C_{12}	1.367(5)	C_2^{-1127}	0.9300
$C_{11} = C_{12}$	1.307 (3)	C26—H28	0.9300
	0.9300	N1	1.333(3)
C12—C13	1.379 (3)	N2	1.304(3)
	0.9500	IN4—IN3	1.310(3)
C13—C14	1.383 (4)	N5N6	1.348 (3)
	0.9300	N/	1.226 (3)
C14—H14	0.9300	N/	1.235 (3)
C15—N3	1.381 (3)	N/01	1.239 (3)
C15—C16	1.384 (3)		
N4—Ag1—N3	135.16 (8)	C18—C17—H17	122.5
N4 - Ag1 - O2	124.85 (8)	С16—С17—Н17	122.5
$N_3 - Ag_1 - O_2$	98.41 (8)	C17-C18-C19	122.9 (3)
$N_3 - A_g 1 - O_1$	104 13 (8)	C17-C18-H18	118.6
N4— $Ag1$ — $O1$	97 67 (7)	C19-C18-H18	118.6
$\Omega_1 - Ag_1 - \Omega_2$	48 14 (7)	C_{20} C_{19} C_{18}	122.0(3)
N4-C1-C6	107.6(2)	C_{20} C_{19} H_{19}	119.0
N4-C1-C2	131.2(2)	C_{18} C_{19} H_{19}	119.0
C6-C1-C2	121.2(2) 121.1(2)	$C_{19} - C_{20} - C_{15}$	116.3 (3)
$C_{3} - C_{2} - C_{1}$	121.1(2) 1163(3)	$C_{19} - C_{20} - H_{20}$	121.9
C_{3} C_{2} H_{2}	121.9	$C_{15} - C_{20} - H_{20}$	121.9
$C_1 - C_2 - H_2$	121.9	0.12 - 0.20 - 1120	1104(2)
$C_2 - C_3 - C_4$	121.9 122 1 (3)	$07 - C^{21} - H^{1A}$	106.5(15)
C2_C3_H3	119.0	N1_C21_H1A	100.3(15) 109.1(15)
C4—C3—H3	119.0	07 - C21 - H2A	110.9 (16)
$C_{7} = C_{5} = 115$	122 3 (3)	$\frac{1}{127}$ N1 C21 H2A	100.9(10) 100.2(16)
$C_{5} - C_{4} - H_{4}$	122.5 (5)	$H1\Delta - C21 - H2\Delta$	109.2(10) 111(2)
$C_3 = C_4 = H_4$	118.8	$05 C^{22} 07$	111(2) 123 / (2)
C_{3}	115.0 (3)	05 - 022 - 07	123.4(3) 124.7(3)
$C_{4} = C_{5} = C_{6}$	122.0	03 - 022 - 023	127.7(3) 1110(2)
C_{+} C_{5} U_{5}	122.0	$C_{1} = C_{22} = C_{23}$	111.9(2)
Со-Со-по	122.0	$U_{20} - U_{23} - U_{24}$	119.0 (3)

N6—C6—C1	104.6 (2)	C28—C23—C22	117.5 (3)
N6—C6—C5	133.1 (2)	C24—C23—C22	122.7(3)
C1 - C6 - C5	122.3 (2)	C_{23} C_{24} C_{25}	1194(3)
06—C7—N6	1081(2)	C23—C24—H24	120.3
06—C7—H3A	106.1(2) 106.2(15)	$C_{25} = C_{24} = H_{24}$	120.3
N6—C7—H3A	107.7(15)	$C_{26} = C_{25} = C_{24}$	120.3 120.1(4)
06-C7-H4A	111 9 (16)	$C_{26} = C_{25} = C_{24}$	119.9
N6-C7-H4A	108.1(17)	$C_{20} = C_{25} = H_{25}$	119.9
$H_{3} = C_{7} = H_{4} A$	115(2)	$C_{24} = C_{25} = H_{25}$	120.3 (3)
04-C8-06	113(2) 1231(2)	$C_{27} = C_{26} = C_{25}$	110.8
04 $C8$ $C9$	125.1(2) 126.0(2)	$C_{27} = C_{20} = H_{20}$	119.8
04 - 08 - 09	120.0(2) 111.0(2)	$C_{25} = C_{20} = H_{20}$	119.8
$C_{14} = C_{9} = C_{10}$	111.0(2) 110.8(2)	$C_{20} = C_{27} = C_{28}$	120.1 (4)
C14 - C9 - C10	119.0(3)	$C_{20} = C_{27} = H_{27}$	119.9
C14 - C9 - C8	121.7(3)	$C_{28} = C_{27} = H_{27}$	119.9
C10 - C9 - C8	118.5 (3)	$C_{23} = C_{28} = C_{27}$	120.2 (3)
	120.2 (3)	C23—C28—H28	119.9
C11—C10—H10	119.9	С27—С28—Н28	119.9
С9—С10—Н10	119.9	N2—N1—C16	110.71 (19)
C12—C11—C10	120.1 (3)	N2—N1—C21	119.2 (2)
C12—C11—H11	120.0	C16—N1—C21	129.9 (2)
C10—C11—H11	120.0	N3—N2—N1	107.9 (2)
C11—C12—C13	120.1 (3)	N2—N3—C15	109.0 (2)
C11—C12—H12	120.0	N2—N3—Ag1	121.42 (16)
C13—C12—H12	120.0	C15—N3—Ag1	129.61 (16)
C12—C13—C14	120.7 (3)	N5—N4—C1	108.88 (19)
C12—C13—H13	119.7	N5—N4—Ag1	121.83 (15)
C14—C13—H13	119.7	C1—N4—Ag1	128.42 (17)
C13—C14—C9	119.2 (3)	N4—N5—N6	108.24 (19)
C13—C14—H14	120.4	N5—N6—C6	110.6 (2)
C9—C14—H14	120.4	N5—N6—C7	120.9 (2)
N3—C15—C16	108.2 (2)	C6—N6—C7	128.4 (2)
N3—C15—C20	130.6 (2)	O3—N7—O2	120.0 (2)
C16—C15—C20	121.2 (2)	O3—N7—O1	121.2 (2)
N1—C16—C15	104.3 (2)	O2—N7—O1	118.7 (3)
N1—C16—C17	133.0 (2)	N7—O2—Ag1	100.98 (17)
C15—C16—C17	122.7 (2)	C8—O6—C7	117.8 (2)
C18—C17—C16	115.0 (3)	C22—O7—C21	116.8 (2)
N4—C1—C2—C3	-178.6(3)	07—C21—N1—C16	98.7 (3)
C6-C1-C2-C3	1.0 (4)	C16-N1-N2-N3	-0.6(3)
C1 - C2 - C3 - C4	-0.2(5)	$C_{21} N_{1} N_{2} N_{3}$	-1771(2)
$C_2 - C_3 - C_4 - C_5$	-0.8(5)	N1 - N2 - N3 - C15	04(3)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	10(5)	$N1 N2 N3 \Delta g1$	-17842(15)
N4-C1-C6-N6	0.3(3)	C16-C15-N3-N2	-0.1(3)
C_{2} C_{1} C_{6} N6	-1793(2)	$C_{10} - C_{15} - N_{3} - N_{2}$	1783(3)
$N_{1} = C_{1} = C_{0} = 100$	179.3(2) 1780(2)	$C_{20} - C_{13} - M_{3} - M_{2}$	178 64 (16)
111 - 01 - 00 - 03	-0.8(4)	$C_{10} = C_{15} = M_{3} = M_{3}$	-20(4)
$C_{2} = C_{1} = C_{0} = C_{3}$	-0.8(4)	C_{20} — C_{13} — N_{3} — Ag_{1}	-2.9 (4)
C4-C3-C0-N0	177.9(3)	N4—Ag1—N3—N2	140.36 (18)

	/		
C4—C5—C6—C1	-0.2 (4)	O2—Ag1—N3—N2	-54.18 (19)
O4—C8—C9—C14	-161.0 (3)	O1—Ag1—N3—N2	-103.01 (19)
O6—C8—C9—C14	18.4 (3)	N4—Ag1—N3—C15	-38.2 (3)
O4—C8—C9—C10	17.5 (4)	O2—Ag1—N3—C15	127.2 (2)
O6—C8—C9—C10	-163.0 (2)	O1—Ag1—N3—C15	78.4 (2)
C14—C9—C10—C11	-0.6 (4)	C6-C1-N4-N5	-0.6 (3)
C8—C9—C10—C11	-179.2 (3)	C2-C1-N4-N5	179.0 (3)
C9—C10—C11—C12	1.5 (5)	C6-C1-N4-Ag1	-169.87 (16)
C10-C11-C12-C13	-1.0 (5)	C2-C1-N4-Ag1	9.7 (4)
C11—C12—C13—C14	-0.4 (5)	N3—Ag1—N4—N5	-55.2 (2)
C12—C13—C14—C9	1.3 (5)	O2—Ag1—N4—N5	142.44 (17)
C10-C9-C14-C13	-0.8 (4)	O1—Ag1—N4—N5	-174.17 (18)
C8—C9—C14—C13	177.7 (3)	N3—Ag1—N4—C1	112.9 (2)
N3—C15—C16—N1	-0.3 (3)	O2—Ag1—N4—C1	-49.5 (2)
C20-C15-C16-N1	-178.9 (2)	O1—Ag1—N4—C1	-6.1 (2)
N3-C15-C16-C17	178.2 (2)	C1—N4—N5—N6	0.6 (3)
C20-C15-C16-C17	-0.4 (4)	Ag1-N4-N5-N6	170.76 (14)
N1—C16—C17—C18	178.9 (3)	N4—N5—N6—C6	-0.4 (3)
C15—C16—C17—C18	0.9 (4)	N4—N5—N6—C7	177.9 (2)
C16—C17—C18—C19	-0.4 (4)	C1-C6-N6-N5	0.1 (3)
C17—C18—C19—C20	-0.6 (5)	C5—C6—N6—N5	-178.3 (3)
C18—C19—C20—C15	1.1 (4)	C1—C6—N6—C7	-178.2 (2)
N3—C15—C20—C19	-178.8 (3)	C5—C6—N6—C7	3.5 (5)
C16—C15—C20—C19	-0.6 (4)	O6—C7—N6—N5	133.5 (2)
O5—C22—C23—C28	0.2 (5)	O6—C7—N6—C6	-48.4 (3)
O7—C22—C23—C28	-178.6 (3)	O3—N7—O1—Ag1	-176.1 (2)
O5—C22—C23—C24	179.6 (3)	O2—N7—O1—Ag1	2.3 (3)
O7—C22—C23—C24	0.9 (4)	N4—Ag1—O1—N7	-132.13 (17)
C28—C23—C24—C25	0.6 (5)	N3—Ag1—O1—N7	87.37 (17)
C22—C23—C24—C25	-178.9 (3)	02—Ag1—O1—N7	-1.32 (16)
C23—C24—C25—C26	0.3 (5)	O3—N7—O2—Ag1	175.9 (2)
C24—C25—C26—C27	-0.7 (6)	O1—N7—O2—Ag1	-2.5 (3)
C25—C26—C27—C28	0.4 (6)	N4—Ag1—O2—N7	67.4 (2)
C24—C23—C28—C27	-1.0(5)	N3—Ag1—O2—N7	-100.12 (19)
C22—C23—C28—C27	178.5 (3)	O1—Ag1—O2—N7	1.35 (16)
C26—C27—C28—C23	0.5 (6)	O4—C8—O6—C7	-5.3 (4)
C15—C16—N1—N2	0.6 (3)	C9—C8—O6—C7	175.3 (2)
C17—C16—N1—N2	-177.7 (3)	N6—C7—O6—C8	-97.7 (3)
C15—C16—N1—C21	176.5 (2)	O5—C22—O7—C21	1.2 (4)
C17—C16—N1—C21	-1.8 (5)	C23—C22—O7—C21	179.9 (2)
07—C21—N1—N2	-85.7 (3)	N1—C21—O7—C22	-97.4 (3)