## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## 2,2'-Dichloro- $N, N^{\prime}$-[1,3-phenylenebis(methylene)]diacetamide

## Hong-Xin Cai and Wei-Na Wu*

Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000, People's Republic of China
Correspondence e-mail: wuwn08@hpu.edu.cn

Received 24 February 2012; accepted 27 February 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; $R$ factor $=0.055 ; w R$ factor $=0.157$; data-to-parameter ratio $=19.0$.

The complete molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, is generated by a crystallographic twofold axis with two C atoms of the central benzene ring lying on the axis. In the crystal, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains parallel to the $c$ axis.

## Related literature

For the synthesis of lanthanide complexes with amide-type ligands, see: Wu et al. (2008). For a related structure, see: Yuan et al. (2010).


## Experimental

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=289.15$
Monoclinic, $C 2 / c$

$$
\begin{aligned}
& a=20.62(2) \AA \\
& b=7.464(8) \AA \\
& c=9.485(11) \AA
\end{aligned}
$$

$$
\begin{aligned}
& \beta=110.362(11)^{\circ} \\
& V=1369(3) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Data collection
Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{\text {min }}=0.881, T_{\text {max }}=0.902$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055 \quad 83$ parameters
$w R\left(F^{2}\right)=0.157$
$S=1.06$
1574 reflections
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.27 \times 0.23 \times 0.22 \mathrm{~mm}$

6996 measured reflections 1574 independent reflections 1288 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.080$

Table 1
Hydrogen-bond geometry ( $\mathrm{A},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{i}}$ | 0.86 | 2.03 | $2.864(3)$ | 163 |

Symmetry code: (i) $x,-y, z-\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL).

The authors are grateful for financial support from the Doctoral Foundation of Henan Polytechnic University (B2009-65 648359 and B2009-70 648364).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2160).

## References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wu, W.-N., Cheng, F.-X., Yan, L. \& Tang, N. (2008). J. Coord. Chem. 61, $2207-$ 2215.

Yuan, M.-S., Li, Z. \& Wang, Q. (2010). Acta Cryst. E66, o2017.

## supporting information

Acta Cryst. (2012). E68, o933 [https://doi.org/10.1107/S1600536812008653]

## $2,2^{\prime}$-Dichloro- ${ }^{\prime}, N^{\prime}$-[1,3-phenylenebis(methylene)]diacetamide

## Hong-Xin Cai and Wei-Na Wu

## S1. Comment

The luminescent properties of the lanthanide complexes with amide type ligands have been investigated in our previous work (Wu et al., 2008). As part of our ongoing studies of the amide type ligands, the title compound was synthesized and characterized by X-ray diffraction.
The complete molecule of the title compound (Fig. 1) is generated by a crystallographic twofold axis with atoms C5 and C 7 of the central phenyl group lying on the axis. All the bond lengths are comparable with those observed in a similar compound (Yuan et al., 2010). In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains parallel to the $c$ axis (Table 1).

## S2. Experimental

A chloroform solution containing chloroacetyl chloride ( $2.26 \mathrm{~g}, 0.02 \mathrm{~mol}$ ) was added dropwise to a solution of (3-(aminomethyl)phenyl)methanamine $(1.36 \mathrm{~g}, 0.01 \mathrm{~mol})$ and pyridine $(1.60 \mathrm{~g}, 0.02 \mathrm{~mol})$ in chloroform $(20 \mathrm{ml})$ under stirring on a ice-water bath. Then, the reaction mixture was stirred at room temperature for 3.5 h . A solid product was separated from the solution by suction filtration, purified by washing with water, $0.5 \mathrm{~mol} / L \mathrm{HCl}, 0.5 \mathrm{~mol} / L \mathrm{NaOH}$ and distilled water, respectively. Colourless prism crystals were obtained by slow evaporation of the acetone solution at room temperature.

## S3. Refinement

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom-H distances $=0.93 \AA$ for aryl, $0.97 \AA$ for methylene and $0.86 \AA$ for the secondary amine H atoms. The $U_{\text {iso }}$ values were constrained to be $1.2 U_{\text {eq }}$ of the carrier atom for the H atoms.


Figure 1
The molecular structure shown with $50 \%$ probability displacement ellipsoids. Unlabelled atoms are related with the labelled ones by symmetry operation ( $-x, y,-z-1 / 2$ ).

## 2,2'-Dichloro- $N, N^{\prime}$-[1,3-phenylenebis(methylene)]diacetamide

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=289.15$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=20.62$ (2) $\AA$
$b=7.464$ (8) $\AA$
$c=9.485(11) \AA$
$\beta=110.362(11)^{\circ}$
$V=1369(3) \AA^{3}$
$Z=4$

## Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.881, T_{\max }=0.902$
$F(000)=600$
$D_{\mathrm{x}}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1673 reflections
$\theta=2.1-27.5^{\circ}$
$\mu=0.47 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colorless
$0.27 \times 0.23 \times 0.22 \mathrm{~mm}$

6996 measured reflections
1574 independent reflections
1288 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-26 \rightarrow 26$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.157$
$S=1.06$
1574 reflections
83 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
$\quad$ map
Hydrogen site location: inferred from
$\quad$ neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0746 P)^{2}+0.9706 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.46$ e $\AA^{-3}$
$\Delta \rho_{\min }=-0.31$ e $\AA^{-3}$

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\hat{A}^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| C1 | $0.28959(11)$ | $-0.0305(3)$ | $0.6316(2)$ | $0.0460(5)$ |
| H1A | 0.2913 | 0.0011 | 0.5338 | $0.055^{*}$ |
| H1B | 0.2936 | -0.1597 | 0.6422 | $0.055^{*}$ |
| C2 | $0.22101(10)$ | $0.0300(3)$ | $0.6421(2)$ | $0.0399(5)$ |
| C3 | $0.10062(11)$ | $0.1072(4)$ | $0.4959(3)$ | $0.0635(8)$ |
| H3A | 0.0938 | 0.2349 | 0.4780 | $0.076^{*}$ |
| H3B | 0.0931 | 0.0795 | 0.5889 | $0.076^{*}$ |
| C4 | $0.04867(10)$ | $0.0058(3)$ | $0.3676(2)$ | $0.0443(5)$ |
| C5 | 0.0000 | $0.0960(4)$ | 0.2500 | $0.0429(7)$ |
| H5 | 0.0000 | 0.2206 | 0.2500 | $0.052^{*}$ |
| C6 | $0.04839(12)$ | $-0.1788(4)$ | $0.3656(3)$ | $0.0599(7)$ |
| H6 | 0.0810 | -0.2418 | 0.4427 | $0.072^{*}$ |
| C7 | 0.0000 | $-0.2710(5)$ | 0.2500 | $0.0701(11)$ |
| H7 | 0.0000 | -0.3956 | 0.2500 | $0.084^{*}$ |
| N1 | $0.17173(9)$ | $0.0598(3)$ | $0.51078(19)$ | $0.0526(6)$ |
| H1C | 0.1819 | 0.0510 | 0.4305 | $0.063^{*}$ |
| O1 | $0.21270(9)$ | $0.0449(3)$ | $0.76351(17)$ | $0.0564(5)$ |
| C11 | $0.35925(3)$ | $0.07271(11)$ | $0.77441(8)$ | $0.0728(3)$ |

Atomic displacement parameters ( $\AA^{2}$ )

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C1 | $0.0388(11)$ | $0.0610(13)$ | $0.0346(10)$ | $-0.0002(9)$ | $0.0081(8)$ | $-0.0056(9)$ |
| C2 | $0.0372(10)$ | $0.0537(12)$ | $0.0294(9)$ | $-0.0106(8)$ | $0.0123(8)$ | $-0.0037(8)$ |
| C3 | $0.0341(11)$ | $0.113(2)$ | $0.0410(11)$ | $0.0022(12)$ | $0.0095(9)$ | $-0.0225(13)$ |


| C4 | $0.0299(9)$ | $0.0698(14)$ | $0.0344(10)$ | $0.0022(9)$ | $0.0129(8)$ | $-0.0017(9)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C5 | $0.0319(14)$ | $0.0550(18)$ | $0.0414(14)$ | 0.000 | $0.0120(12)$ | 0.000 |
| C6 | $0.0376(11)$ | $0.0767(18)$ | $0.0620(14)$ | $0.0108(11)$ | $0.0133(10)$ | $0.0208(12)$ |
| C7 | $0.0496(19)$ | $0.052(2)$ | $0.108(3)$ | 0.000 | $0.027(2)$ | 0.000 |
| N1 | $0.0323(9)$ | $0.0990(17)$ | $0.0264(8)$ | $-0.0014(9)$ | $0.0101(7)$ | $-0.0088(8)$ |
| O1 | $0.0523(10)$ | $0.0911(14)$ | $0.0281(7)$ | $-0.0061(8)$ | $0.0170(7)$ | $-0.0022(7)$ |
| C11 | $0.0404(4)$ | $0.1002(6)$ | $0.0649(5)$ | $-0.0068(3)$ | $0.0021(3)$ | $-0.0226(4)$ |

Geometric parameters ( $A$, ${ }^{\circ}$ )

| C1-C2 | 1.520 (3) | C4-C6 | 1.378 (4) |
| :---: | :---: | :---: | :---: |
| C1-Cl1 | 1.771 (2) | C4-C5 | 1.388 (3) |
| C1-H1A | 0.9700 | C5-C4 ${ }^{\text {i }}$ | 1.388 (3) |
| C1-H1B | 0.9700 | C5-H5 | 0.9300 |
| C2-O1 | 1.227 (3) | C6-C7 | 1.382 (3) |
| C2-N1 | 1.324 (3) | C6-H6 | 0.9300 |
| C3-N1 | 1.467 (3) | C7- $6^{\text {i }}$ | 1.382 (3) |
| C3-C4 | 1.514 (3) | C7-H7 | 0.9300 |
| C3-H3A | 0.9700 | N1-H1C | 0.8600 |
| C3-H3B | 0.9700 |  |  |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Cl1}$ | 110.26 (16) | C6-C4-C5 | 118.4 (2) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.6 | C6-C4-C3 | 120.6 (2) |
| $\mathrm{Cl1}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$ | 109.6 | C5-C4-C3 | 121.0 (2) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.6 | C4- 4 - 5 - 4 | 122.0 (3) |
| $\mathrm{Cl1}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 109.6 | C4-C5-H5 | 119.0 |
| $\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$ | 108.1 | C4-C5-H5 | 119.0 |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$ | 123.7 (2) | C4-C6-C7 | 120.5 (2) |
| O1-C2- 1 | 121.7 (2) | C4-C6-H6 | 119.8 |
| N1-C2-C1 | 114.53 (19) | C7-C6-H6 | 119.8 |
| N1-C3-C4 | 111.2 (2) | C6-C7- $\mathrm{C}^{\text {i }}$ | 120.3 (4) |
| N1-C3-H3A | 109.4 | C6-C7-H7 | 119.9 |
| C4-C3-H3A | 109.4 | C6-- 7 - ${ }^{\text {- }} 7$ | 119.9 |
| N1-C3-H3B | 109.4 | C2-N1-C3 | 123.07 (19) |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$ | 109.4 | $\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{C}$ | 118.5 |
| H3A-C3-H3B | 108.0 | C3-N1-H1C | 118.5 |
| $\mathrm{Cl1}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$ | -41.4 (3) | C5-C4-C6-C7 | -0.9 (3) |
| $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ | 140.17 (19) | C3-C4-C6-C7 | 178.68 (18) |
| N1-C3-C4-C6 | 58.1 (3) | C4-C6-C7- $\mathrm{C}^{\text { }}$ | 0.47 (15) |
| N1-C3-C4-C5 | -122.3 (2) | $\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$ | -2.6 (4) |
| C6-C4-C5-C4 | 0.46 (14) | $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$ | 175.8 (2) |
| C3-C4-C5-C4 | -179.1 (2) | $\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$ | -137.0 (2) |

Symmetry code: (i) $-x, y,-z+1 / 2$.

## supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$ )

| $D — \mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 — \mathrm{H} 1 C \cdots \mathrm{Ol}^{\mathrm{ii}}$ | 0.86 | 2.03 | $2.864(3)$ | 163 |

Symmetry code: (ii) $x,-y, z-1 / 2$.

