organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Benzoyl-2-(1H-indol-3-yl)-4-(4-methylphenyl)-4,5-dihydrofuran-3-carbonitrile

J. Suresh,^a R. Vishnupriya,^a P. Gunasekaran,^b S. Perumal^b and P. L. Nilantha Lakshman^{c*}

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamarai University, Madurai 625 021, India, and ^cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: plakshmannilantha@ymail.com

Received 12 March 2012; accepted 14 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.133; data-to-parameter ratio = 16.4.

The furan ring in the title compound, C₂₇H₂₀N₂O₂, adopts a twisted conformation about the $sp^3 - sp^3$ bond. The molecular structure is stabilized by an intramolecular C-H···O interaction which generates an S(6) ring motif. The crystal packing is stabilized by $N-H\cdots O$ and $C-H\cdots O$ interactions generating centrosymmetric $R_2^2(18)$ and C(6) chain motifs, respectively. A weak $C-H \cdot \cdot \pi$ interaction is also observed.

Related literature

For the biological importance of furan derivatives, see: Auvin & Chabrier De Lassauniere (2005). For hydrogen-bonding graph-set notation, see: Bernstein et al. (1995). For additional conformation analysis, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{27}H_{20}N_2O_2$

 $M_r = 404.45$

Monoclinic, $P2_1/n$ a = 9.8084 (4) Å b = 15.9553 (7) Å c = 13.8782 (7) Å $\beta = 107.185 \ (2)^{\circ}$ V = 2074.92 (16) Å³

Data collection

Bruker Kappa APEXII	21144 measured reflections
diffractometer	4647 independent reflections
Absorption correction: multi-scan	3017 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.967, \ T_{\max} = 0.974$	

Z = 4

Mo $K\alpha$ radiation

 $0.19 \times 0.15 \times 0.12 \text{ mm}$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.133$	independent and constrained
S = 1.02	refinement
4647 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
284 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C51-C56 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C33-H33···O1	0.93	2.52	3.032 (2)	115
$N2-H2 \cdot \cdot \cdot O2^{i}$	0.91(2)	2.04 (2)	2.880 (2)	154
C44-H44···O2 ⁱⁱ	0.93	2.55	3.329 (3)	142
$C34-H34\cdots Cg1^{iii}$	0.93	2.69	3.556 (3)	156
Symmetry codes: $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}.$	(i) $-x+2$,	-y, -z + 1;	(ii) $x - \frac{1}{2}, -y +$	$\frac{1}{2}, z - \frac{1}{2};$ (iii)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

JS thanks the UGC for the FIST support. JS and RV thank the management of Madura College for their encouragement and support. PG thanks the CSIR for a Junior and Senior Research Fellowship. SP thanks the Department of Science and Technology, New Delhi, for funding the Indo-Spanish collaborative major research project (grant No. DST/INT/ SPAIN/09).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5068).

References

Auvin, S. & Chabrier De Lassauniere, P. (2005). US Patent No. 222045.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, o1124 [https://doi.org/10.1107/S1600536812011105]

5-Benzoyl-2-(1H-indol-3-yl)-4-(4-methylphenyl)-4,5-dihydrofuran-3-carbonitrile

J. Suresh, R. Vishnupriya, P. Gunasekaran, S. Perumal and P. L. Nilantha Lakshman

S1. Comment

Furanyl derivatives have calplain-inhibiting activity and are used in the preparation of medicaments for the treatment of inflammatory and immunological diseases, cardiovascular and cerebro-vascular diseases, disorders of the central or peripheral nervous system, cachexia, osteoporosis, muscular dystrophy, proliferative diseases, cataracts, rejection reactions following organ transplants and auto-immune and viral diseases (Auvin *et al.*, 2005). The high medicinal value of these compounds in conjunction with our research interests prompted us to synthesize and report the X-ray structure of the title compound.

In the title compound (Fig 1), the five-membered furanyl ring adopts a twisted conformation as evident from the puckering parameters (Cremer & Pople, 1975) Q = 0.192 (2) Å and $\varphi = 129.0$ (6)°. The five-(N2/C38/C31/C32/C37) and six-membered (C32—C37) rings in the indole group are planar, with a dihedral angle of 0.74 (1)° between them. The dihedral angle between the phenyl rings (C42—C47 and C51—C56) is 15.24 (1)°.

Fig. 2 shows the partial packing of molecules in the crystal structure. The C—H…O and N—H…O intermolecular interactions generate $C_1^{1}(6)$ chain and centrosymmetric $R_2^{2}(18)$ motifs, respectively (Bernstein *et al.*, 1995). In addition, there is a weak C—H… π interaction, *viz*, C34—H34… $Cg1^{ii}$, Table 1.

S2. Experimental

To a stirred mixture of 2-(1*H*-indole-3-carbonyl)-3-*p*-tolylacrylonitrile (1.0 molar eq.) and phenacylpyridinium bromide (1.0 molar eq.) in water (10 ml) was added drop wise triethylamine (0.25 molar eq.) at room temperature. The resulting clear solution, that slowly became turbid, was stirred at room temperature for 1 h. Then, the separated free flowing solid was filtered and washed with methanol (3 ml) to afford the title compound as a pale-yellow solid. The product thus obtained was recrystallized from an EtOH-EtOAc mixture (1:1 ratio v/v ml) to the give pure compound as pale-yellow crystals. Yield: 92%. *M*.pt: 502 K.

S3. Refinement

The H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å, and with $U_{iso} = 1.2-1.5U_{eq}(C)$. The N-bound H atom was located in a difference Fourier map and refined freely.

Figure 1

The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The partial packing diagram of (I). The C-H···O and N-H···O interactions are shown as blue lines.

5-Benzoyl-2-(1H-indol-3-yl)-4-(4-methylphenyl)-4,5-dihydrofuran- 3-carbonitrile

F(000) = 848

 $\theta = 2 - 31^{\circ}$

T = 293 K

 $\mu = 0.08 \text{ mm}^{-1}$

 $D_{\rm x} = 1.295 {\rm Mg} {\rm m}^{-3}$

Block, pale-yellow

 $0.19 \times 0.15 \times 0.12 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2000 reflections

Crystal data

 $C_{27}H_{20}N_2O_2$ $M_r = 404.45$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.8084 (4) Å b = 15.9553 (7) Å c = 13.8782 (7) Å $\beta = 107.185$ (2)° V = 2074.92 (16) Å³ Z = 4

Data collection

Bruker Kappa APEXII	21144 measured reflections
diffractometer	4647 independent reflections
Radiation source: fine-focus sealed tube	3017 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.038$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 27.3^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
ω and φ scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -20 \rightarrow 20$
(SADABS; Sheldrick, 1996)	$l = -17 \rightarrow 17$
$T_{\min} = 0.967, \ T_{\max} = 0.974$	
Refinement	
Definement on E^2	Secondary storn site location: difference

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.133$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
4647 reflections	and constrained refinement
284 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.5454P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.25$ e Å $^{-3}$
	$\Delta \rho_{\rm min} = -0.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
H2	1.231 (2)	-0.0946 (12)	0.5116 (14)	0.044 (5)*
C1	0.7913 (2)	-0.08013 (11)	0.21842 (13)	0.0408 (4)
C2	0.78765 (18)	0.00744 (10)	0.23169 (12)	0.0331 (4)

C3	0.88408 (17)	0.05202 (10)	0.30178 (12)	0.0301 (4)
C4	0.71584 (17)	0.14707 (10)	0.22283 (12)	0.0318 (4)
H4	0.7178	0.1947	0.1787	0.038*
C5	0.68263 (18)	0.06474 (10)	0.15994 (12)	0.0314 (4)
Н5	0.5848	0.0465	0.1531	0.038*
C6	0.7683 (3)	0.09390 (17)	-0.23642 (17)	0.0734 (7)
H6A	0.8681	0.0883	-0.2296	0.110*
H6B	0.7350	0.1474	-0.2658	0.110*
H6C	0.7163	0.0501	-0.2791	0.110*
C31	1.01403 (17)	0.02910 (10)	0.37695 (12)	0.0310 (4)
C32	1.12543 (17)	0.08399 (11)	0.43391 (12)	0.0325 (4)
C33	1.14643 (19)	0.17039 (11)	0.44071 (14)	0.0405 (4)
H33	1.0781	0.2066	0.4014	0.049*
C34	1.2696 (2)	0.20113 (13)	0.50646 (16)	0.0535 (5)
H34	1.2841	0.2588	0.5116	0.064*
C35	1.3735 (2)	0.14808 (14)	0.56565 (17)	0.0615 (6)
H35	1 4558	0.1709	0.6097	0.074*
C36	1.3567 (2)	0.06253 (14)	0.56019 (15)	0.071
H36	1.3367 (2)	0.0255 (14)	0.50017 (15)	0.0527 (5)
C37	1.4205	0.0200	0.3991 0.40441(13)	0.005
C38	1.25169 (18)	-0.05104(11)	0.49441(13) 0.40606(13)	0.0307(4)
U28	1.00730 (18)	-0.0002	0.40000 (15)	0.0337 (4)
П30 С41	1.0032	-0.0992 0.16108 (10)	0.3619 0.27650 (12)	0.043°
C41 C42	0.00527(18)	0.10108(10)	0.27039(13)	0.0337(4)
C42	0.45/10(18)	0.18082 (11)	0.21108 (13)	0.0372(4)
C43	0.4312 (2)	0.21107 (12)	0.11489 (14)	0.0463 (5)
H43	0.5073	0.2244	0.0906	0.056*
C44	0.2925 (2)	0.22178 (14)	0.05363 (17)	0.0619 (6)
H44	0.2753	0.2419	-0.0118	0.074*
C45	0.1806 (3)	0.20254 (16)	0.0902 (2)	0.0759 (8)
H45	0.0873	0.2089	0.0490	0.091*
C46	0.2051 (3)	0.17414 (18)	0.1867 (2)	0.0786 (8)
H46	0.1287	0.1622	0.2112	0.094*
C47	0.3427 (2)	0.16313 (14)	0.24769 (17)	0.0574 (6)
H47	0.3589	0.1437	0.3133	0.069*
C51	0.70509 (18)	0.07130 (10)	0.05677 (12)	0.0320 (4)
C52	0.59093 (19)	0.08565 (11)	-0.02828 (13)	0.0380 (4)
H52	0.4993	0.0900	-0.0222	0.046*
C53	0.6116 (2)	0.09362 (12)	-0.12209 (14)	0.0447 (5)
H53	0.5334	0.1032	-0.1782	0.054*
C54	0.7455 (2)	0.08765 (12)	-0.13439 (15)	0.0465 (5)
C55	0.8592 (2)	0.07429 (13)	-0.04929 (16)	0.0503 (5)
H55	0.9509	0.0707	-0.0555	0.060*
C56	0.8396 (2)	0.06610(12)	0.04483 (14)	0.0426 (4)
Н56	0.9181	0.0570	0.1009	0.051*
N1	0.7928 (2)	-0.15113 (11)	0.20826 (15)	0.0670 (6)
N2	1.18746 (16)	-0.04969 (10)	0.47495 (11)	0.0387 (4)
01	0.85398 (12)	0.13585 (7)	0.29520 (9)	0.0369 (3)
02	0.62895(14)	0.14959 (8)	0.36623 (9)	0.0452(3)

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
C1	0.0479 (11)	0.0332 (10)	0.0347 (10)	0.0026 (8)	0.0019 (8)	-0.0008 (8)
C2	0.0382 (9)	0.0284 (8)	0.0297 (9)	0.0029 (7)	0.0054 (7)	0.0004 (7)
C3	0.0333 (9)	0.0274 (8)	0.0293 (9)	0.0050 (7)	0.0086 (7)	0.0024 (7)
C4	0.0329 (9)	0.0289 (9)	0.0287 (9)	0.0038 (6)	0.0014 (7)	0.0007 (7)
C5	0.0322 (9)	0.0284 (8)	0.0306 (9)	0.0002 (6)	0.0047 (7)	-0.0014 (7)
C6	0.0889 (19)	0.0920 (19)	0.0465 (14)	0.0128 (14)	0.0310 (13)	0.0068 (12)
C31	0.0336 (9)	0.0323 (9)	0.0273 (9)	0.0033 (7)	0.0093 (7)	0.0010 (7)
C32	0.0326 (9)	0.0384 (9)	0.0272 (9)	0.0009 (7)	0.0099 (7)	0.0021 (7)
C33	0.0412 (10)	0.0380 (10)	0.0403 (11)	-0.0008 (8)	0.0091 (8)	0.0031 (8)
C34	0.0522 (13)	0.0450 (12)	0.0566 (13)	-0.0126 (9)	0.0057 (10)	-0.0017 (10)
C35	0.0471 (13)	0.0626 (15)	0.0604 (15)	-0.0160 (10)	-0.0061 (11)	0.0037 (11)
C36	0.0389 (11)	0.0599 (13)	0.0495 (12)	-0.0012 (9)	-0.0021 (9)	0.0106 (10)
C37	0.0345 (10)	0.0417 (10)	0.0328 (9)	0.0018 (7)	0.0083 (8)	0.0054 (7)
C38	0.0385 (10)	0.0363 (9)	0.0306 (9)	0.0027 (7)	0.0075 (8)	0.0002 (7)
C41	0.0402 (10)	0.0257 (8)	0.0306 (9)	0.0035 (7)	0.0031 (7)	-0.0009 (7)
C42	0.0365 (10)	0.0361 (9)	0.0343 (10)	0.0075 (7)	0.0030 (8)	-0.0048 (7)
C43	0.0479 (11)	0.0472 (11)	0.0369 (11)	0.0155 (9)	0.0020 (9)	-0.0002 (8)
C44	0.0636 (15)	0.0593 (14)	0.0459 (13)	0.0249 (11)	-0.0098 (11)	-0.0050 (10)
C45	0.0428 (13)	0.0837 (18)	0.081 (2)	0.0188 (12)	-0.0127 (13)	-0.0223 (15)
C46	0.0410 (13)	0.105 (2)	0.085 (2)	0.0046 (13)	0.0114 (13)	-0.0088 (16)
C47	0.0429 (12)	0.0740 (15)	0.0535 (13)	0.0057 (10)	0.0115 (10)	0.0012 (11)
C51	0.0358 (9)	0.0263 (8)	0.0310 (9)	0.0028 (7)	0.0052 (7)	-0.0013 (7)
C52	0.0342 (10)	0.0407 (10)	0.0360 (10)	-0.0023 (7)	0.0054 (8)	-0.0015 (8)
C53	0.0501 (12)	0.0482 (11)	0.0300 (10)	-0.0001 (9)	0.0029 (9)	0.0024 (8)
C54	0.0597 (13)	0.0430 (11)	0.0390 (11)	0.0073 (9)	0.0180 (10)	0.0016 (8)
C55	0.0473 (12)	0.0582 (13)	0.0499 (12)	0.0167 (9)	0.0210 (10)	0.0063 (10)
C56	0.0373 (10)	0.0482 (11)	0.0391 (11)	0.0107 (8)	0.0062 (8)	0.0030 (8)
N1	0.0830 (14)	0.0337 (10)	0.0688 (13)	0.0048 (9)	-0.0014 (11)	-0.0071 (8)
N2	0.0395 (8)	0.0369 (8)	0.0357 (8)	0.0085 (7)	0.0051 (7)	0.0084 (7)
01	0.0331 (6)	0.0279 (6)	0.0415 (7)	0.0036 (5)	-0.0016 (5)	-0.0029 (5)
O2	0.0515 (8)	0.0508 (8)	0.0290 (7)	0.0095 (6)	0.0051 (6)	0.0042 (6)

Geometric parameters (Å, °)

C1—N1	1.142 (2)	C37—N2	1.370 (2)	
C1—C2	1.411 (2)	C38—N2	1.348 (2)	
С2—С3	1.343 (2)	C38—H38	0.9300	
С2—С5	1.511 (2)	C41—O2	1.208 (2)	
C3—O1	1.3670 (18)	C41—C42	1.484 (2)	
C3—C31	1.436 (2)	C42—C43	1.379 (3)	
C4—O1	1.4397 (19)	C42—C47	1.386 (3)	
C4—C41	1.521 (2)	C43—C44	1.385 (3)	
C4—C5	1.557 (2)	C43—H43	0.9300	
C4—H4	0.9800	C44—C45	1.374 (3)	
C5—C51	1.515 (2)	C44—H44	0.9300	

C5—H5	0.9800	C45—C46	1.366 (4)
C6—C54	1.501 (3)	C45—H45	0.9300
С6—Н6А	0.9600	C46—C47	1.376 (3)
С6—Н6В	0.9600	C46—H46	0.9300
С6—Н6С	0.9600	C47—H47	0.9300
C31—C38	1 370 (2)	C51—C56	1380(2)
$C_{31} - C_{32}$	1.370(2) 1 441(2)	$C_{51} - C_{52}$	1.385(2)
C_{22} C_{23}	1.441(2) 1 202(2)	C52 C53	1.303(2)
$C_{32} = C_{33}$	1.393(2) 1.405(2)	$C_{52} = C_{55}$	1.381(3)
$C_{32} = C_{34}$	1.403(2)	C52—F152	0.9300
	1.372 (3)	C53—C54	1.377(3)
С33—Н33	0.9300	C53—H53	0.9300
C34—C35	1.391 (3)	C54—C55	1.381 (3)
C34—H34	0.9300	C55—C56	1.381 (3)
C35—C36	1.374 (3)	С55—Н55	0.9300
С35—Н35	0.9300	C56—H56	0.9300
C36—C37	1.383 (3)	N2—H2	0.91 (2)
С36—Н36	0.9300		
N1—C1—C2	179.0 (2)	N2-C38-C31	109.98 (15)
C3—C2—C1	125.41 (15)	N2-C38-H38	125.0
C_{3} $-C_{2}$ $-C_{5}$	110 74 (14)	C31-C38-H38	125.0
$C_1 - C_2 - C_5$	123.49(15)	02-C41-C42	123.0 121.82(17)
$C_1 = C_2 = C_3$	123.47(13) 112.21(14)	$O_2 = C_{41} = C_{42}$	121.02(17) 121.48(15)
$C_2 = C_3 = C_1$	112.21(14) 122.51(15)	C_{4}	121.40(13)
$C_2 = C_3 = C_3 I$	152.51 (15)	C42-C41-C4	110.40 (14)
01-03-031	115.18 (14)	C43 - C42 - C47	119.15 (18)
01	110.25 (13)	C43—C42—C41	122.17 (17)
O1—C4—C5	106.50 (12)	C47—C42—C41	118.55 (17)
C41—C4—C5	109.70 (13)	C42—C43—C44	120.4 (2)
O1—C4—H4	110.1	C42—C43—H43	119.8
C41—C4—H4	110.1	C44—C43—H43	119.8
C5—C4—H4	110.1	C45—C44—C43	119.5 (2)
C2—C5—C51	113.80 (13)	C45—C44—H44	120.2
C2—C5—C4	98.75 (12)	C43—C44—H44	120.2
C51—C5—C4	113.99 (13)	C46—C45—C44	120.5 (2)
С2—С5—Н5	109.9	C46—C45—H45	119.7
C51—C5—H5	109.9	C44—C45—H45	119.7
C4—C5—H5	109.9	C45-C46-C47	1202(2)
C54 C6 H6A	109.5	C_{45} C_{46} H_{46}	110.0
C_{54} C_{6} H_{6B}	109.5	C47 C46 H46	119.9
	109.5	$C_{4} = C_{40} = 1140$	119.9
	109.5	C40 - C47 - C42	120.2 (2)
C54—C6—H6C	109.5	C46 - C4 / - H4 / C42 - C47 - H47	119.9
H6A—C6—H6C	109.5	C42—C47—H47	119.9
Н6В—С6—Н6С	109.5	C56—C51—C52	117.94 (16)
C38—C31—C3	125.75 (15)	C56—C51—C5	121.36 (15)
C38—C31—C32	106.58 (15)	C52—C51—C5	120.67 (15)
C3—C31—C32	127.64 (15)	C53—C52—C51	120.77 (17)
C33—C32—C37	118.61 (16)	С53—С52—Н52	119.6
C33—C32—C31	135.37 (16)	С51—С52—Н52	119.6

C37—C32—C31	106.01 (15)	C54—C53—C52	121.43 (18)
C34—C33—C32	118.84 (17)	С54—С53—Н53	119.3
С34—С33—Н33	120.6	С52—С53—Н53	119.3
С32—С33—Н33	120.6	C53—C54—C55	117.63 (18)
C33—C34—C35	121.53 (19)	C53—C54—C6	121.72 (19)
C33—C34—H34	119.2	C55—C54—C6	120.64 (19)
C35—C34—H34	119.2	C54—C55—C56	121.37 (19)
$C_{36} - C_{35} - C_{34}$	121 10 (19)	C54—C55—H55	1193
C36—C35—H35	119.4	C56—C55—H55	119.3
C34—C35—H35	119.4	$C_{51} - C_{56} - C_{55}$	120.85(17)
C_{35} C_{36} C_{37}	117 31 (18)	C51-C56-H56	119.6
C_{35} C_{36} H_{36}	121.3	C55-C56-H56	119.6
C_{37} C_{36} H_{36}	121.3	$C_{38} = N_{2} = C_{37}$	109 46 (14)
$N_{2} - C_{37} - C_{36}$	121.5	$C_{38} = N_2 = H_2$	109.40(14) 125.2(12)
$N_2 = C_37 = C_30$	107.95 (15)	$C_{37} N_2 H_2$	123.2(12) 124.4(12)
$C_{36} C_{37} C_{32}$	107.95(13) 122.60(17)	$C_3 \cap 1$ C_4	124.4(12) 107.96(12)
030-037-032	122.00(17)	01-04	107.90 (12)
N1 C1 C2 C2	106 (14)	C5 C4 C41 O2	105 79 (19)
N1 - C1 - C2 - C3	-82(14)	C_{3} C_{4} C_{41} C_{42}	103.70(10) 175.00(12)
NI = CI = C2 = C3	-62(14)	01 - 04 - 041 - 042	173.00(13)
$C_1 = C_2 = C_3 = O_1$	1/0.00(10)	C_{3} C_{4} C_{41} C_{42} C_{42}	-08.02(17)
$C_{3} = C_{2} = C_{3} = C_{1}$	3.0(2)	02-041-042-043	100.10(17)
$C_1 = C_2 = C_3 = C_{31}$	2.8(3)	C4 - C41 - C42 - C43	-20.1(2)
$C_{3} = C_{2} = C_{3} = C_{3}$	-1/0.48(1/)	02 - C41 - C42 - C47	-18.1(3)
$C_3 = C_2 = C_5 = C_5 I$	106.09 (16)	C4 - C41 - C42 - C47	155./3 (1/)
C1 - C2 - C5 - C51	-67.3(2)	C47 - C42 - C43 - C44	-1.5(3)
C3—C2—C5—C4	-15.07 (18)	C41—C42—C43—C44	174.33 (17)
C1—C2—C5—C4	171.50 (16)	C42—C43—C44—C45	0.4 (3)
01-C4-C5-C2	18.97 (16)	C43—C44—C45—C46	0.9 (4)
C41—C4—C5—C2	-100.33 (14)	C44—C45—C46—C47	-1.1(4)
O1—C4—C5—C51	-102.04 (15)	C45—C46—C47—C42	0.0 (4)
C41—C4—C5—C51	138.65 (14)	C43—C42—C47—C46	1.3 (3)
C2—C3—C31—C38	-12.6 (3)	C41—C42—C47—C46	-174.7 (2)
O1—C3—C31—C38	171.41 (15)	C2—C5—C51—C56	-32.8 (2)
C2—C3—C31—C32	165.29 (18)	C4—C5—C51—C56	79.46 (19)
O1—C3—C31—C32	-10.7 (2)	C2—C5—C51—C52	149.49 (15)
C38—C31—C32—C33	-179.13 (19)	C4—C5—C51—C52	-98.29 (18)
C3—C31—C32—C33	2.7 (3)	C56—C51—C52—C53	0.6 (3)
C38—C31—C32—C37	0.53 (18)	C5—C51—C52—C53	178.47 (16)
C3—C31—C32—C37	-177.68 (16)	C51—C52—C53—C54	0.0 (3)
C37—C32—C33—C34	-0.3 (3)	C52—C53—C54—C55	-0.7 (3)
C31—C32—C33—C34	179.29 (19)	C52—C53—C54—C6	178.30 (19)
C32—C33—C34—C35	0.3 (3)	C53—C54—C55—C56	0.8 (3)
C33—C34—C35—C36	0.2 (4)	C6—C54—C55—C56	-178.2 (2)
C34—C35—C36—C37	-0.7 (3)	C52—C51—C56—C55	-0.5 (3)
C35—C36—C37—N2	-179.33 (19)	C5—C51—C56—C55	-178.35 (16)
C35—C36—C37—C32	0.6 (3)	C54—C55—C56—C51	-0.2 (3)
C33—C32—C37—N2	179.83 (15)	C31—C38—N2—C37	1.1 (2)
C31—C32—C37—N2	0.10 (19)	C36—C37—N2—C38	179.26 (19)

C33—C32—C37—C36	-0.1 (3)	C32—C37—N2—C38	-0.7 (2)
C31—C32—C37—C36	-179.88 (17)	C2-C3-O1-C4	7.86 (18)
C3—C31—C38—N2	177.26 (15)	C31—C3—O1—C4	-175.33 (14)
C32—C31—C38—N2	-0.99 (19)	C41—C4—O1—C3	101.52 (14)
O1—C4—C41—O2	-11.2 (2)	C5—C4—O1—C3	-17.43 (17)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C51–C56 ring.

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
С33—Н33…О1	0.93	2.52	3.032 (2)	115
N2—H2···O2 ⁱ	0.91 (2)	2.04 (2)	2.880 (2)	154
C44—H44…O2 ⁱⁱ	0.93	2.55	3.329 (3)	142
C34—H34… <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.69	3.556 (3)	156

Symmetry codes: (i) -*x*+2, -*y*, -*z*+1; (ii) *x*-1/2, -*y*+1/2, *z*-1/2; (iii) *x*-1/2, -*y*-1/2, *z*-1/2.