## metal-organic compounds



Acta Crystallographica Section E

**Structure Reports** 

**Online** 

ISSN 1600-5368

# Bromido(2,4,6-trimethylphenyl)-mercury(II)

## Frank Meyer-Wegner, Hans-Wolfram Lerner, Tanja Sinke and Michael Bolte\*

Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 6 March 2012; accepted 8 March 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma(C-C) = 0.009$  Å; R factor = 0.025; wR factor = 0.057; data-to-parameter ratio = 17.1.

Molecules of the title compound,  $[HgBr(C_0H_{11})]$ , are located on a crystallographic twofold rotation axis. Due to the molecular symmetry, the  $Hg^{II}$  atom is linearly coordinated by the *ipso-C* of the mesityl group and the Br atom. In the crystal, molecules lie in planes parallel to (001).

#### Related literature

For dimesityl-mercury, see: Hayashi *et al.* (2011). For the synthesis of Hg[Mes]<sub>2</sub>, see: Hübner *et al.* (2010).

#### **Experimental**

Crystal data

[HgBr(C<sub>9</sub>H<sub>11</sub>)]  $V = 1002.27 (14) \text{ Å}^3$   $M_r = 399.68$  Z = 4 Monoclinic, C2/c Mo  $K\alpha$  radiation  $\alpha = 10.0459 (8) \text{ Å}$   $\mu = 19.28 \text{ mm}^{-1}$   $\Delta = 15.3072 (13) \text{ Å}$   $\Delta = 1.53072 (13) \text{ Å}$   $\Delta = 1.53092 (13) \text{ Å}$   $\Delta = 1.53092 (13) \text{ Å}$   $\Delta = 1.53092 (13) \text{ Å}$ 

Data collection

Stoe IPDS II two-circle diffractometer 6756 measured reflections 942 independent reflections 892 reflections with  $I > 2\sigma(I)$  (MULABS; Spek, 2009; Blessing, 1995)  $R_{\rm int} = 0.103$ 

Refinement

 $T_{\min} = 0.107, T_{\max} = 0.595$ 

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.025 & 55 \ \text{parameters} \\ WR(F^2) = 0.057 & \text{H-atom parameters constrained} \\ S = 1.05 & \Delta\rho_{\text{max}} = 1.19 \ \text{e} \ \text{Å}^{-3} \\ 942 \ \text{reflections} & \Delta\rho_{\text{min}} = -0.71 \ \text{e} \ \text{Å}^{-3} \end{array}$ 

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-RED32*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5065).

## References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Hayashi, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2011). Z. Anorg. Allg. Chem. 637, 646–649.

Hübner, A., Bernert, T., Sänger, I., Alig, E., Bolte, M., Fink, L., Wagner, M. & Lerner, H.-W. (2010). *Dalton Trans.* **39**, 7528–7533.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

## supporting information

Acta Cryst. (2012). E68, m424 [https://doi.org/10.1107/S1600536812010392]

## Bromido(2,4,6-trimethylphenyl)mercury(II)

## Frank Meyer-Wegner, Hans-Wolfram Lerner, Tanja Sinke and Michael Bolte

#### S1. Comment

Very recently we have shown that Hg[Mes]<sub>2</sub> could be synthesized when HgCl<sub>2</sub> was treated with two equivalents of Li[Mes] (Hübner *et al.*, 2010) in thf at ambient temperature (Hayashi *et al.*, 2011). In addition, we have investigated the reaction of Hg[Mes]<sub>2</sub> with BBr<sub>3</sub> (Hayashi *et al.*, 2011). In this paper we report the structure of the analogous Grignard compound Hg[Mes]Br which was obtained from the 1: 1 reaction of Hg[Mes]<sub>2</sub> with BBr<sub>3</sub>.

Molecules of the title compound are located on a crystallographic twofold rotation axis with half a molecule in the asymmetric unit. Due to the molecular symmetry, the Hg centre is linearly coordinated by the *ipso-*C of the mesityl group and the Br atom. The Hg—C bond [2.053 (7) Å] is slightly shorter than that in dimesityl mercury [2.080 (6) Å] (Hübner *et al.*, 2010).

In the crystal, the molecules lie in planes parallel to  $(0\ 0\ 1)$ . In a plane, the molecules are oriented parallel to each other with the Hg—Br vectors pointing in the same direction. The shortest intermolecular Hg···Br contact is 4.1270 (4) Å and the shortest intermolecular Hg···Hg contact is 5.1078 (4) Å (symmetry operator for equivalent atoms: 1 - x, 1 - y, 1 - z).

## S2. Experimental

In a round bottom flask Hg[Mes]<sub>2</sub> (0.21 g, 0.48 mmol) in 40 ml benzene was treated with one equivalent of BBr<sub>3</sub> (0.046 ml, 120 mg, 0.48 mmol) at ambient temperature. Single crystals of the title compound Hg[Mes]Br were obtained from a benzene solution after 2 days at 281 K. Yield 50 mg (26%). <sup>1</sup>H NMR (300.0 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.00 (m, 2 H, *meta*-Ph), 2.47 (br., 6 H, *ortho*-Me), 2.34 (br., 3 H, *para*-Me). <sup>13</sup>C{1H} NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  = 154.1 (*ipso*-Mes), 141.6 (*ortho*-Mes), 139.3 (*para*-Mes), 128.0 (*meta*-Mes), 25.8 (*ortho*-Me), 20.9 (*para*-Me). EI<sup>+</sup> m/z (%): 396.1 (20.0) 397.1 (32.0) 398.1 (64.0) 399.1 (60.0) 400.1 (100.0) 401.1 (32.0) 402.1 (68.0) 403.1 (6.0) 404.1 (12.0) [*M*]<sup>+</sup>, calcd. for [*M*]<sup>+</sup> 396.1 (30.8) 397.1 (54.4) 398.1 (100.0) 399.1 (93.1) 400.1 (95.5) 401.1 (45.8) 402.1 (25.5) 403.1 (11.0) 404.1 (20.9).

### S3. Refinement

H atoms were refined using a riding model, with methyl C—H = 0.98 Å and aromatic C—H = 0.95 Å and with  $U_{iso}(H)$  =  $1.5U_{eq}(C)$  for methyl-H or  $1.2U_{eq}(C)$  for aromatic-H. The methyl groups were allowed to rotate but not to tip. The methyl group in *para* position of the phenyl ring is disordered over two equally occupied positions.

Acta Cryst. (2012). E68, m424 sup-1

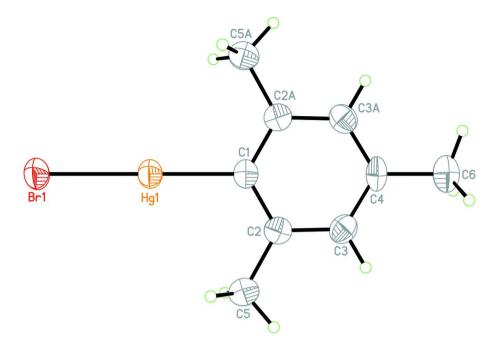



Figure 1

A perspective view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Only one set of the H atoms of the disordered methyl group is shown. Unlabelled atoms are related by the symmetry operation 1-x, y, 3/2-z.

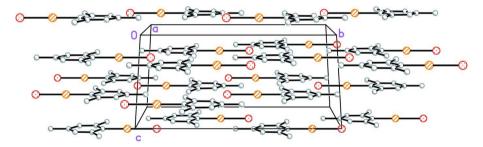



Figure 2
Packing diagram of the title compound viewed onto the *bc* plane. H atoms omitted for clarity.

## Bromido(2,4,6-trimethylphenyl)mercury(II)

## Crystal data

F(000) = 720 $[HgBr(C_9H_{11})]$  $M_r = 399.68$  $D_{\rm x} = 2.649 \; {\rm Mg \; m^{-3}}$ Monoclinic, C2/c Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8005 reflections Hall symbol: -C 2yc a = 10.0459 (8) Å  $\theta = 4.1-25.9^{\circ}$ b = 15.3072 (13) Å $\mu = 19.28 \text{ mm}^{-1}$ c = 8.1517 (7) ÅT = 173 K $\beta = 126.912 (5)^{\circ}$ Needle, colourless  $V = 1002.27 (14) \text{ Å}^3$  $0.21 \times 0.10 \times 0.03$  mm Z = 4

Acta Cryst. (2012). E68, m424 sup-2

Data collection

Stoe IPDS II two-circle

diffractometer

Radiation source: Genix 3D I $\mu$ S microfocus X-

ray source

Genix 3D multilayer optics monochromator

 $\omega$  scans

Absorption correction: multi-scan

(MULABS; Spek, 2009; Blessing, 1995)

 $T_{\min} = 0.107, T_{\max} = 0.595$ 

892 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.103$   $\theta_{\text{max}} = 25.6^{\circ}$ ,  $\theta_{\text{min}} = 4.1^{\circ}$   $h = -12 \rightarrow 12$   $k = -18 \rightarrow 18$  $l = -9 \rightarrow 9$ 

6756 measured reflections

942 independent reflections

Refinement

Refinement on  $F^2$ 

Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.025$ 

 $wR(F^2) = 0.057$ 

S = 1.05

942 reflections

55 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.024P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\text{max}} = 0.001$ 

 $\Delta \rho_{\rm max} = 1.19 \text{ e Å}^{-3}$ 

 $\Delta \rho_{\min} = -0.71 \text{ e Å}^{-3}$ 

Special details

Experimental.;

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | X          | у             | Z          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1)   |  |
|-----|------------|---------------|------------|-----------------------------|-------------|--|
| Hg1 | 0.5000     | 0.600559 (17) | 0.7500     | 0.03814 (13)                |             |  |
| Br1 | 0.5000     | 0.44177 (5)   | 0.7500     | 0.0531(3)                   |             |  |
| C1  | 0.5000     | 0.7347 (5)    | 0.7500     | 0.0336 (15)                 | 0.0336 (15) |  |
| C2  | 0.6166 (6) | 0.7798 (4)    | 0.7414 (7) | 0.0331 (10)                 |             |  |
| C3  | 0.6142 (7) | 0.8712 (4)    | 0.7429 (8) | 0.0375 (12)                 | 0.0375 (12) |  |
| Н3  | 0.6940     | 0.9024        | 0.7389     | 0.045*                      | 0.045*      |  |
| C4  | 0.5000     | 0.9178 (5)    | 0.7500     | 0.0369 (18)                 | 69 (18)     |  |
| C5  | 0.7411 (7) | 0.7320 (4)    | 0.7278 (9) | 0.0422 (13)                 | 0422 (13)   |  |
| H5A | 0.7982     | 0.6875        | 0.8359     | 0.063*                      | 3*          |  |
| H5B | 0.8229     | 0.7736        | 0.7453     | 0.063*                      | *           |  |
| H5C | 0.6831     | 0.7037        | 0.5933     | 0.063*                      | 3*          |  |
| C6  | 0.5000     | 1.0155 (5)    | 0.7500     | 0.048(2)                    | 0.048 (2)   |  |
| H6A | 0.6116     | 1.0368        | 0.8599     | 0.073*                      | 0.073* 0.50 |  |
| Н6В | 0.4202     | 1.0368        | 0.7726     | 0.073*                      | 0.50        |  |

## supporting information

-179.6 (4)

| Н6С                                       | 0.4682               | 1.0368       | 0.61       | 75                         | 0.073*       | 0.50                  |  |
|-------------------------------------------|----------------------|--------------|------------|----------------------------|--------------|-----------------------|--|
| Atomic                                    | displacement paran   | neters (Ų)   |            |                            |              |                       |  |
|                                           | $U^{11}$             | $U^{22}$     | $U^{33}$   | $U^{12}$                   | $U^{13}$     | $U^{23}$              |  |
| Hg1                                       | 0.03770 (18)         | 0.02853 (18) | 0.0464 (2) | 0.000                      | 0.02430 (15) | 0.000                 |  |
| Br1                                       | 0.0503 (5)           | 0.0291 (5)   | 0.0834 (7) | 0.000                      | 0.0419 (5)   | 0.000                 |  |
| C1                                        | 0.038 (4)            | 0.029(3)     | 0.032 (4)  | 0.000                      | 0.020(3)     | 0.000                 |  |
| C2                                        | 0.030(2)             | 0.038(3)     | 0.026(2)   | -0.001(2)                  | 0.014(2)     | -0.003 (2)            |  |
| C3                                        | 0.037(3)             | 0.038(3)     | 0.034(3)   | -0.007(2)                  | 0.019(2)     | -0.004(2)             |  |
| C4                                        | 0.043 (4)            | 0.021 (3)    | 0.032 (4)  | 0.000                      | 0.014(3)     | 0.000                 |  |
| C5                                        | 0.038(3)             | 0.045 (3)    | 0.044(3)   | -0.003 (2)                 | 0.025 (3)    | -0.001 (2)            |  |
| C6                                        | 0.060 (6)            | 0.033 (4)    | 0.045 (5)  | 0.000                      | 0.028 (4)    | 0.000                 |  |
| Geomet                                    | ric parameters (Å, ' | °)           |            |                            |              |                       |  |
| Hg1—(                                     | <br>C1               | 2.053 (7)    | C4         |                            | 1.           | .381 (7)              |  |
| Hg1—Br1                                   |                      | 2.4307 (8)   | C4—C6      |                            | 1.495 (10)   |                       |  |
| C1—C2 <sup>i</sup>                        |                      | 1.397 (6)    | C5—H5A     |                            |              | 0.9800                |  |
| C1—C2                                     |                      | 1.397 (6)    | C5—H5B     |                            |              | 0.9800                |  |
| C2—C3                                     | 3                    | 1.400 (8)    |            | —Н5С                       |              | .9800                 |  |
| C2—C5                                     |                      | 1.510 (7)    | C6—H6A     |                            |              | 0.9800                |  |
| C3—C4                                     |                      | 1.381 (7)    | C6—H6B     |                            |              | 0.9800                |  |
| C3—H3                                     |                      | 0.9500       | C6—H6C     |                            | 0.           | 0.9800                |  |
| C1—H                                      | g1—Br1               | 180.000 (1)  | C2         | .—С5—Н5А                   | 10           | 09.5                  |  |
| C2 <sup>i</sup> —C1—C2                    |                      | 120.8 (7)    | C2—C5—H5B  |                            | 109.5        |                       |  |
| C2 <sup>i</sup> —C1—Hg1                   |                      | 119.6 (3)    | H5A—C5—H5E |                            |              | 109.5                 |  |
| C2—C1—Hg1                                 |                      | 119.6 (3)    | C2—C5—H5C  |                            | 109.5        |                       |  |
| C1—C2—C3                                  |                      | 118.3 (5)    | H5A—C5—H   |                            |              | 109.5                 |  |
| C1—C2—C5                                  |                      | 121.4 (5)    | ` /        |                            | 109.5        |                       |  |
| C3—C2—C5                                  |                      | 120.3 (5)    | <b>\</b> / |                            |              | 109.5                 |  |
| C4—C3—C2                                  |                      | 122.4 (5)    | * *        |                            |              | 109.5                 |  |
| C4—C3—H3                                  |                      | 118.8        |            | H6A—C6—H6B                 |              | 109.5                 |  |
| C2—C3—H3                                  |                      | 118.8        |            | —C6—H6C                    |              | 109.5                 |  |
| C3—C4—C3 <sup>i</sup>                     |                      | 117.8 (7)    |            | H6A—C6—H6C                 |              | 109.5                 |  |
| C3—C4—C6                                  |                      | 121.1 (3)    |            | H6B—C6—H6C                 |              | 09.5                  |  |
| C3 <sup>i</sup> —C4—C6                    |                      | 121.1 (3)    |            |                            | _            |                       |  |
| C2 <sup>i</sup> —C                        | 1—C2—C3              | 0.4(3)       | C1         | —C2—C3—C                   | 4 -          | 0.8 (7)               |  |
| C2 <sup>i</sup> —C1—C2—C3<br>Hg1—C1—C2—C3 |                      | -179.6 (3)   |            | C5—C2—C3—C4<br>C5—C2—C3—C4 |              | -0.8 (7)<br>178.4 (4) |  |
| _                                         | 1—C2—C5              | -178.8 (5)   |            | —C2—C3—C<br>2—C3—C4—C      |              | .4 (4)                |  |
| C2 —C                                     | 1—02—03              | 1/0.0(3)     | CZ         | — <del>UJ—U4—U</del>       | <i>J</i>     | -T ( <del>T</del> )   |  |

Symmetry code: (i) -x+1, y, -z+3/2.

Hg1—C1—C2—C5

Acta Cryst. (2012). E68, m424 sup-4

1.2 (5)

C2—C3—C4—C6