

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis(4-dimethylamino-1-ethylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S,S'$ )nickelate(II)

# Shan-Shan Yu,<sup>a</sup> Hong Zhou<sup>b</sup> and Xiao-Ming Ren<sup>a</sup>\*

<sup>a</sup>College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and <sup>b</sup>School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China Correspondence e-mail: yushanshan\_2005@163.com

Received 21 February 2012; accepted 23 February 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.037; wR factor = 0.128; data-to-parameter ratio = 15.6.

The asymmetric unit of the title complex,  $(C_9H_{15}N_2)_2$ -[Ni $(C_4N_2S_2)_2$ ], comprises one 4-dimethylamino-1-ethylpyridinium cation and one half of a  $[Ni(mnt)_2]^{2-}$  (mnt<sup>2-</sup> = maleonitriledithiolate) anion; the complete anion is generated by the application of a centre of inversion. The Ni<sup>II</sup> ion is coordinated by four S atoms of two mnt<sup>2-</sup> ligands and exhibits a square-planar coordination geometry.

## **Related literature**

For the magnetic and conducting properties of related complexes, see: Belo & Almedia (2010); Nishijo *et al.* (2000); Duan *et al.* (2010); Ni *et al.* (2005). For novel magnetic behaviour, see: Ni *et al.* (2004); Ren *et al.* (2004). For a related  $[Ni(mnt)_2]^{2-}$  complex, see: Yao *et al.* (2008). For the synthesis of the starting materials, see: Davison & Holm (1967); Duan *et al.* (2011).



## Experimental

Crystal data (C<sub>9</sub>H<sub>15</sub>N<sub>2</sub>)<sub>2</sub>[Ni(C<sub>4</sub>N<sub>2</sub>S<sub>2</sub>)<sub>2</sub>]

 $M_r = 641.55$ 

| $a = 8.1468 (14) \text{ Å} b = 9.3305 (16) \text{ Å} c = 11.663 (3) \text{ Å} a = 108.243 (3)^{\circ} \beta = 100.034 (3)^{\circ} \gamma = 107.830 (2)^{\circ}$             | Z = 1<br>Mo Ka radiation<br>$\mu = 0.94 \text{ mm}^{-1}$<br>T = 296  K<br>$0.3 \times 0.1 \times 0.1 \text{ mm}$                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection<br>Bruker SMART CCD area-detector<br>diffractometer<br>Absorption correction: multi-scan<br>(SADABS; Sheldrick, 2002)<br>$T_{min} = 0.894, T_{max} = 0.910$ | 5798 measured reflections<br>2827 independent reflections<br>2371 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.031$                                 |
| Refinement<br>$R[F^2 > 2\sigma(F^2)] = 0.037$<br>$wR(F^2) = 0.128$<br>S = 0.95<br>2827 reflections                                                                          | 181 parameters<br>H-atom parameters constrained<br>$\Delta \rho_{\rm max} = 0.25$ e Å <sup>-3</sup><br>$\Delta \rho_{\rm min} = -0.34$ e Å <sup>-3</sup> |

## Table 1

Selected geometric parameters (Å, °).

| Ni1-S2      | 2.1776 (8) | Ni1-S1 | 2.1794 (8) |
|-------------|------------|--------|------------|
| \$2-Ni1-\$1 | 88.00 (3)  |        |            |

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank Nanjing Xiaozhuang College of Jiangsu Province, People's Republic of China, for financial support (grant No. 2010KYQN28).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5062).

## References

- Belo, B. & Almedia, M. (2010). *Coord. Chem. Rev.* **254**, 1479–1492. Bruker (2000). *SAINT* and *SMART*. Bruker AXS Inc. Madison. Wis
- Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8-26.
- Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509– 1522.
- Duan, H. B., Ren, X. M., Shen, L. J., Jin, W. Q., Tian, Z. F. & Zhou, S. M. (2011). Dalton Trans. 40, 3622–3630.
- Ni, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). *Chem. Phys. Lett.* **396**, 353–358.
- Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.
- Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). *Solid State Commun.* **116**, 661–664.
- Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). *Inorg. Chem.* 43, 2569–2576.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833–2844.

# supporting information

Acta Cryst. (2012). E68, m395 [https://doi.org/10.1107/S1600536812008161]

# Bis(4-dimethylamino-1-ethylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S, S'$ )nickelate(II)

# Shan-Shan Yu, Hong Zhou and Xiao-Ming Ren

# S1. Comment

Bis-1,2-dithiolene complexes of transition metals have been widely studied due to their novel properties in the areas of magnetic and conducting materials for example (Belo & Almedia, 2010; Nishijo *et al.*, 2000; Duan *et al.*, 2010; Ni *et al.*, 2005). The mesomorphous neutral nickel-dithiolene complexes, with a focus on aspects of crystalline to liquid crystal transition behaviour has attracted attention and our research focus has been to try to design and assemble ionic and planar nickel-dithiolene mesogens with novel magnetic behaviour (Ni *et al.*, 2004; Ren *et al.*, 2004). Herein, we report the crystal structure of the title complex (I).

The molecular structure of (I) is illustrated in Fig. 1. and selected bond lengths and bond angles are given in Table 1. Complex (I) crystallizes in the triclinic space group  $P\overline{1}$  at 293 K and the asymmetric units comprises one half of a  $[Ni(mnt)_2]^{2-}$  anion and one 1-ethyl-4-*N*,*N*-dimethylpyridinium cation. The Ni<sup>II</sup> ion in the centrosymmetric  $[Ni(mnt)_2]^{2-}$  anion is coordinated by four sulfur atoms of two mnt<sup>2-</sup> ligands, and exhibits square-planar coordination geometry. Bond lengths and angles of the anion are in good agreement with the other  $[Ni(mnt)_2]^{2-}$  compounds (*e.g.* Yao *et al.*, 2008). In the crystal packing, the cations and anions are arranged in alternate layers, which are parallel to *bc* plane.

# **S2. Experimental**

All reagents and chemicals were purchased from commercial sources and used without further purification. The staring materials disodium maleonitriledithiolate, and 1-ethyl-4-*N*,*N*-dimethylpyridinium bromide were synthesized following the literature procedures (Davison & Holm, 1967; Duan *et al.*, 2011). Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) at room temperature. Subsequently, a solution of 1-ethyl-4-*N*,*N*-dimethylpyridinium bromide (2.5 mmol) in water (10 ml) was added to the mixture, and the red precipitate that was immediately formed was filtered off and washed with water. The crude product was recrystallized in acetone to give red blocks.

# S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93 to 0.97 Å,  $U_{iso}$ (H) 1.2 to 1.5 $U_{eq}$ (C)] and were included in the refinement in the riding model approximation.



# Figure 1

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Unlabelled atoms are related by the symmetry operation 2-x, 1-y, 1-z.

Bis(4-dimethylamino-1-ethylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato- $\kappa^2 S_r S'$ )nickelate(II)

| Crystal data                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(C_{9}H_{15}N_{2})_{2}[Ni(C_{4}N_{2}S_{2})_{2}]$ $M_{r} = 641.55$ Triclinic, <i>P</i> 1<br>Hall symbol: -P 1<br>a = 8.1468 (14)  Å<br>b = 9.3305 (16)  Å<br>c = 11.663 (3)  Å<br>$a = 108.243 (3)^{\circ}$<br>$\beta = 100.034 (3)^{\circ}$<br>$\gamma = 107.830 (2)^{\circ}$ | $V = 765.0 (3) Å^{3}$<br>Z = 1<br>F(000) = 334<br>$D_{x} = 1.393 Mg m^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 Å$<br>$\mu = 0.94 mm^{-1}$<br>T = 296 K<br>Block, red<br>$0.3 \times 0.1 \times 0.1 mm$                                                                |
| Data collection                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                           |
| Bruker SMART CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2002)<br>$T_{\min} = 0.894, T_{\max} = 0.910$      | 5798 measured reflections<br>2827 independent reflections<br>2371 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.031$<br>$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$<br>$h = -9 \rightarrow 9$<br>$k = -11 \rightarrow 11$<br>$l = -14 \rightarrow 14$ |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier     |
|-------------------------------------------------|------------------------------------------------------|
| Least-squares matrix: full                      | map                                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.037$                 | Hydrogen site location: inferred from                |
| $wR(F^2) = 0.128$                               | neighbouring sites                                   |
| S = 0.95                                        | H-atom parameters constrained                        |
| 2827 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.091P)^2 + 0.1169P]$     |
| 181 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                       |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                  |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.25$ e Å <sup>-3</sup>       |
| direct methods                                  | $\Delta  ho_{\min} = -0.34 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                      |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|--------------|-------------|-------------|-----------------------------|
| Ni1  | 1.0000       | 0.5000      | 0.5000      | 0.04490 (19)                |
| S1   | 0.82193 (11) | 0.48140 (9) | 0.32858 (7) | 0.0569 (2)                  |
| S2   | 0.98454 (10) | 0.73406 (8) | 0.59749 (7) | 0.0544 (2)                  |
| N1   | 0.6004 (5)   | 0.2159 (4)  | -0.0092 (3) | 0.0933 (10)                 |
| N2   | 1.1487 (5)   | 1.0752 (4)  | 0.9081 (3)  | 0.1059 (12)                 |
| N3   | 0.4538 (3)   | 0.6143 (3)  | 0.2736 (2)  | 0.0612 (6)                  |
| С9   | 0.6202 (4)   | 0.8572 (3)  | 0.5178 (3)  | 0.0537 (6)                  |
| C1   | 0.6864 (5)   | 0.2485 (4)  | 0.0912 (3)  | 0.0653 (8)                  |
| C2   | 0.7958 (4)   | 0.2948 (3)  | 0.2175 (3)  | 0.0524 (6)                  |
| C3   | 1.1208 (4)   | 0.7989 (3)  | 0.7514 (3)  | 0.0514 (6)                  |
| C4   | 1.1395 (4)   | 0.9529 (4)  | 0.8407 (3)  | 0.0664 (8)                  |
| C5   | 0.1777 (5)   | 0.4619 (5)  | 0.0912 (4)  | 0.0947 (12)                 |
| H5A  | 0.1089       | 0.4361      | 0.1461      | 0.142*                      |
| H5B  | 0.1256       | 0.3745      | 0.0089      | 0.142*                      |
| H5C  | 0.1762       | 0.5614      | 0.0844      | 0.142*                      |
| C6   | 0.3668 (5)   | 0.4828 (4)  | 0.1439 (3)  | 0.0798 (10)                 |
| H6A  | 0.4360       | 0.5097      | 0.0884      | 0.096*                      |
| H6B  | 0.3682       | 0.3805      | 0.1468      | 0.096*                      |
| C7   | 0.4085 (4)   | 0.5897 (4)  | 0.3731 (3)  | 0.0648 (8)                  |
| H7   | 0.3215       | 0.4893      | 0.3593      | 0.078*                      |
| C8   | 0.4840 (4)   | 0.7048 (4)  | 0.4930 (3)  | 0.0634 (8)                  |
| H8   | 0.4462       | 0.6834      | 0.5589      | 0.076*                      |
| N4   | 0.7030 (4)   | 0.9716 (3)  | 0.6353 (2)  | 0.0637 (6)                  |
| C10  | 0.6603 (6)   | 0.9431 (5)  | 0.7439 (3)  | 0.0926 (11)                 |
| H10A | 0.5331       | 0.9145      | 0.7325      | 0.139*                      |

# supporting information

| H10B | 0.7268     | 1.0406     | 0.8190     | 0.139*     |  |
|------|------------|------------|------------|------------|--|
| H10C | 0.6925     | 0.8554     | 0.7523     | 0.139*     |  |
| C11  | 0.8478 (5) | 1.1248 (4) | 0.6603 (3) | 0.0776 (9) |  |
| H11A | 0.9461     | 1.1030     | 0.6341     | 0.116*     |  |
| H11B | 0.8891     | 1.1914     | 0.7493     | 0.116*     |  |
| H11C | 0.8042     | 1.1815     | 0.6142     | 0.116*     |  |
| C12  | 0.6630 (4) | 0.8805 (3) | 0.4110 (3) | 0.0567 (7) |  |
| H12  | 0.7490     | 0.9796     | 0.4213     | 0.068*     |  |
| C13  | 0.5803 (4) | 0.7602 (4) | 0.2938 (3) | 0.0599 (7) |  |
| H13  | 0.6116     | 0.7786     | 0.2252     | 0.072*     |  |
|      |            |            |            |            |  |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Ni1        | 0.0457 (3)  | 0.0453 (3)  | 0.0501 (3)  | 0.0200 (2)  | 0.0176 (2)  | 0.0227 (2)  |
| <b>S</b> 1 | 0.0658 (5)  | 0.0571 (4)  | 0.0549 (4)  | 0.0324 (4)  | 0.0152 (3)  | 0.0238 (3)  |
| S2         | 0.0605 (4)  | 0.0485 (4)  | 0.0584 (4)  | 0.0259 (3)  | 0.0153 (3)  | 0.0228 (3)  |
| N1         | 0.105 (2)   | 0.106 (2)   | 0.0599 (18) | 0.047 (2)   | 0.0083 (17) | 0.0229 (17) |
| N2         | 0.119 (3)   | 0.070 (2)   | 0.105 (3)   | 0.0448 (19) | 0.021 (2)   | 0.0028 (18) |
| N3         | 0.0563 (14) | 0.0638 (15) | 0.0696 (16) | 0.0287 (12) | 0.0214 (12) | 0.0273 (13) |
| C9         | 0.0549 (16) | 0.0583 (15) | 0.0637 (17) | 0.0323 (13) | 0.0240 (13) | 0.0302 (14) |
| C1         | 0.072 (2)   | 0.0681 (18) | 0.0600 (19) | 0.0303 (16) | 0.0212 (16) | 0.0262 (15) |
| C2         | 0.0498 (15) | 0.0568 (15) | 0.0490 (15) | 0.0174 (12) | 0.0174 (12) | 0.0205 (12) |
| C3         | 0.0507 (15) | 0.0496 (14) | 0.0544 (16) | 0.0160 (12) | 0.0209 (12) | 0.0215 (12) |
| C4         | 0.0656 (19) | 0.0556 (17) | 0.075 (2)   | 0.0259 (14) | 0.0180 (16) | 0.0202 (16) |
| C5         | 0.072 (2)   | 0.079 (2)   | 0.096 (3)   | 0.0212 (19) | 0.001 (2)   | 0.008 (2)   |
| C6         | 0.079 (2)   | 0.069 (2)   | 0.081 (2)   | 0.0338 (18) | 0.0181 (18) | 0.0127 (17) |
| C7         | 0.0547 (17) | 0.0584 (17) | 0.086 (2)   | 0.0189 (14) | 0.0233 (16) | 0.0355 (16) |
| C8         | 0.0620 (18) | 0.0736 (19) | 0.073 (2)   | 0.0286 (15) | 0.0327 (16) | 0.0427 (17) |
| N4         | 0.0721 (16) | 0.0657 (15) | 0.0679 (16) | 0.0372 (13) | 0.0305 (13) | 0.0289 (13) |
| C10        | 0.113 (3)   | 0.110 (3)   | 0.065 (2)   | 0.051 (2)   | 0.041 (2)   | 0.032 (2)   |
| C11        | 0.082 (2)   | 0.0630 (19) | 0.078 (2)   | 0.0297 (17) | 0.0146 (18) | 0.0192 (17) |
| C12        | 0.0554 (16) | 0.0566 (15) | 0.0668 (18) | 0.0200 (13) | 0.0229 (14) | 0.0341 (14) |
| C13        | 0.0572 (17) | 0.0734 (18) | 0.0645 (18) | 0.0293 (15) | 0.0264 (14) | 0.0380 (16) |

Geometric parameters (Å, °)

| Nil—S2              | 2.1776 (8) | C5—H5A   | 0.9600    |  |
|---------------------|------------|----------|-----------|--|
| Ni1—S2 <sup>i</sup> | 2.1776 (8) | C5—H5B   | 0.9600    |  |
| Ni1-S1 <sup>i</sup> | 2.1794 (8) | C5—H5C   | 0.9600    |  |
| Ni1—S1              | 2.1794 (8) | C6—H6A   | 0.9700    |  |
| S1—C2               | 1.738 (3)  | C6—H6B   | 0.9700    |  |
| S2—C3               | 1.742 (3)  | C7—C8    | 1.358 (4) |  |
| N1-C1               | 1.147 (4)  | С7—Н7    | 0.9300    |  |
| N2-C4               | 1.136 (4)  | C8—H8    | 0.9300    |  |
| N3—C7               | 1.342 (4)  | N4—C11   | 1.452 (4) |  |
| N3—C13              | 1.351 (4)  | N4—C10   | 1.451 (4) |  |
| N3—C6               | 1.493 (4)  | C10—H10A | 0.9600    |  |
|                     |            |          |           |  |

# supporting information

| C9—N4                                | 1.339 (4)   | C10—H10B      | 0.9600    |
|--------------------------------------|-------------|---------------|-----------|
| С9—С8                                | 1.415 (4)   | C10—H10C      | 0.9600    |
| C9—C12                               | 1.412 (4)   | C11—H11A      | 0.9600    |
| C1—C2                                | 1.435 (4)   | C11—H11B      | 0.9600    |
| C2—C3 <sup>i</sup>                   | 1.354 (4)   | C11—H11C      | 0.9600    |
| C3—C2 <sup>i</sup>                   | 1.354 (4)   | C12—C13       | 1.356 (4) |
| C3—C4                                | 1.431 (4)   | C12—H12       | 0.9300    |
| C5—C6                                | 1.483 (5)   | C13—H13       | 0.9300    |
|                                      |             |               |           |
| S2—Ni1—S2 <sup>i</sup>               | 180.0       | C5—C6—H6B     | 109.2     |
| S2—Ni1—S1 <sup>i</sup>               | 92.00 (3)   | N3—C6—H6B     | 109.2     |
| S2 <sup>i</sup> —Ni1—S1 <sup>i</sup> | 88.00 (3)   | H6A—C6—H6B    | 107.9     |
| S2—Ni1—S1                            | 88.00 (3)   | N3—C7—C8      | 122.9 (3) |
| S2 <sup>i</sup> —Ni1—S1              | 92.00 (3)   | N3—C7—H7      | 118.5     |
| S1 <sup>i</sup> —Ni1—S1              | 180.000(1)  | С8—С7—Н7      | 118.5     |
| C2—S1—Ni1                            | 103.04 (10) | C7—C8—C9      | 120.0 (3) |
| C3—S2—Ni1                            | 103.41 (10) | C7—C8—H8      | 120.0     |
| C7—N3—C13                            | 118.5 (3)   | С9—С8—Н8      | 120.0     |
| C7—N3—C6                             | 120.5 (3)   | C9—N4—C11     | 121.5 (3) |
| C13—N3—C6                            | 121.0 (3)   | C9—N4—C10     | 121.3 (3) |
| N4—C9—C8                             | 121.9 (3)   | C11—N4—C10    | 117.0 (3) |
| N4—C9—C12                            | 122.3 (3)   | N4            | 109.5     |
| C8—C9—C12                            | 115.8 (3)   | N4—C10—H10B   | 109.5     |
| N1—C1—C2                             | 178.1 (3)   | H10A-C10-H10B | 109.5     |
| C3 <sup>i</sup> —C2—C1               | 122.2 (3)   | N4—C10—H10C   | 109.5     |
| C3 <sup>i</sup> —C2—S1               | 121.3 (2)   | H10A-C10-H10C | 109.5     |
| C1—C2—S1                             | 116.5 (2)   | H10B-C10-H10C | 109.5     |
| C2 <sup>i</sup> —C3—C4               | 122.6 (3)   | N4—C11—H11A   | 109.5     |
| $C2^{i}$ — $C3$ — $S2$               | 120.3 (2)   | N4—C11—H11B   | 109.5     |
| C4—C3—S2                             | 117.2 (2)   | H11A-C11-H11B | 109.5     |
| N2—C4—C3                             | 177.2 (4)   | N4—C11—H11C   | 109.5     |
| С6—С5—Н5А                            | 109.5       | H11A—C11—H11C | 109.5     |
| С6—С5—Н5В                            | 109.5       | H11B—C11—H11C | 109.5     |
| H5A—C5—H5B                           | 109.5       | C13—C12—C9    | 120.8 (3) |
| С6—С5—Н5С                            | 109.5       | C13—C12—H12   | 119.6     |
| H5A—C5—H5C                           | 109.5       | C9—C12—H12    | 119.6     |
| H5B—C5—H5C                           | 109.5       | N3—C13—C12    | 122.0 (3) |
| C5—C6—N3                             | 112.0 (3)   | N3—C13—H13    | 119.0     |
| С5—С6—Н6А                            | 109.2       | C12—C13—H13   | 119.0     |
| N3—C6—H6A                            | 109.2       |               |           |

Symmetry code: (i) -x+2, -y+1, -z+1.