Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Cyano-2-methylpropanamide

Jia-Ying Xu ${ }^{\text {a }}$ and Wei-Hua Cheng ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemical Engineering, Yancheng College of Textile Technology, People's Republic of China
Correspondence e-mail: xujiaying-1984@163.com
Received 21 March 2012; accepted 27 March 2012
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.050 ; w R$ factor $=0.143$; data-to-parameter ratio $=12.8$.

In the crystal structure of the title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$, molecules are linked via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming inversion dimers. These dimers are linked via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{H}$ hydrogen bonds into zigzag chains propagating along [101].

Related literature

For the synthesis of the title compound, see: Zhang et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$
$M_{r}=112.13$
Triclinic, $P \overline{1}$
$a=5.8916$ (12) \AA
$b=6.4349$ (14) \AA
$c=9.1263$ (19) A
$\alpha=95.659(4)^{\circ}$
$\beta=102.379(4)^{\circ}$
$\gamma=109.859$ (4)
$V=312.27$ (11) \AA^{3}
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.18 \times 0.15 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.983, T_{\text {max }}=0.987$
1699 measured reflections
1077 independent reflections 1000 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
3 standard reflections every 200 reflections intensity decay: 1%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.143$
$S=1.05$
1077 reflections
84 parameters

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.92(2)$	$2.07(2)$	$2.9714(18)$	$168.2(18)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 2^{\text {ii }}$	$0.874(18)$	$2.328(18)$	$3.166(2)$	$160.8(19)$

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$.
Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection. They also thank the Foundation of Yancheng Institute of Technology (XKR2010055) and the National Natural Science Foundation of China (No. 31000142) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2395).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, W. L., Wang, P. \& Gan, L. X. (2011). Patent Pub. No. WO/2011/091677; Int. Appl. No. PCT/CN2010/078549.

supporting information

Acta Cryst. (2012). E68, o1250 [https://doi.org/10.1107/S1600536812013360]

2-Cyano-2-methylpropanamide

Jia-Ying Xu and Wei-Hua Cheng

S1. Comment

The title compound has attracted considerable attention in drug research because of its outstanding biological activity. In recent years it has been used as an imtermediate in the synthesis of the high blood pressure rennin inhibitor, Aliskiren (Zhang et al., 2011).
The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges.
In the crystal, molecules are connected via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form inversion dimers (Table 1 and Fig. 2). These dimers are connected via pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds resulting in the formation of zigzag chains (Table 1 and Fig. 2), propagating along direction [101].

S2. Experimental

The title compound was prepared by the literature procedure (Zhang et al., 2011). To a solution of methyl 2-cyano-2methylpropanoate ($5 \mathrm{~g}, 39.3 \mathrm{mmol}$) in methanol (20 ml), ammonia was added slowly at room temperature. After being stirred for 18 h at the room tempreature, a yellow solid was obtained. It was dissolved in ethanol and colourless blocklike crystals of the title compound, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solvent over 7 days.

S3. Refinement

The $\mathrm{NH}_{2} \mathrm{H}$ atoms were located in a difference electron density map and refined freely. The methyl H atoms were positioned geometrically and constrained to ride on their parent atoms: $\mathrm{C}-\mathrm{H}=0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of the title molecule, with atom-numbering. Displacement ellipsoids are drawn at the 35\% probability level.

Figure 2
A view along the b axis of the crystal packing of the title compound. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as dashed lines (see Table 1 for details).

2-Cyano-2-methylpropanamide

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$

$M_{r}=112.13$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.8916$ (12) \AA
$b=6.4349(14) \AA$
$c=9.1263(19) \AA$
$\alpha=95.659(4)^{\circ}$
$\beta=102.379(4)^{\circ}$
$\gamma=109.859(4)^{\circ}$
$V=312.27(11) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& F(000)=120 \\
& D_{\mathrm{x}}=1.193 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1603 \text { reflections } \\
& \theta=2.3-30.1^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.20 \times 0.18 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.983, T_{\text {max }}=0.987$
1699 measured reflections

> 1077 independent reflections
> 1000 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.3^{\circ}$
> $h=-6 \rightarrow 6$
> $k=-6 \rightarrow 7$
> $l=-10 \rightarrow 7$
> 3 standard reflections every 200 reflections
> intensity decay: 1%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.143$
$S=1.05$
1077 reflections
84 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1061 P)^{2}+0.0265 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.26$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 2.05 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
O1	$0.29396(18)$	$0.69885(17)$	$0.01288(11)$	$0.0555(4)$
N1	$0.2126(2)$	$0.51350(19)$	$0.20281(15)$	$0.0495(5)$
N2	$0.7598(2)$	$0.6725(2)$	$0.48798(16)$	$0.0644(5)$
C1	$0.6955(2)$	$0.7399(2)$	$0.38232(15)$	$0.0448(5)$
C2	$0.6156(2)$	$0.83173(18)$	$0.24687(13)$	$0.0364(4)$
C3	$0.8132(2)$	$0.8719(2)$	$0.15614(16)$	$0.0479(5)$
H3A	0.9726	0.9721	0.2208	0.072^{*}
H3B	0.7658	0.9376	0.0703	0.072^{*}
H3C	0.8246	0.7312	0.1206	0.072^{*}
C4	$0.5862(3)$	$1.0547(2)$	$0.29886(16)$	$0.0494(5)$
H4A	0.4580	1.0266	0.3521	0.074^{*}
H4B	0.5407	1.1176	0.2112	0.074^{*}
H4C	0.7418	1.1586	0.3656	0.074^{*}
C5	$0.3573(2)$	$0.66995(19)$	$0.14359(14)$	$0.0381(4)$

H1A	$0.059(4)$	$0.429(3)$	$0.138(2)$	$0.069(5)^{*}$
H1B	$0.254(4)$	$0.491(3)$	$0.296(2)$	$0.064(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0468(7)$	$0.0567(7)$	$0.0374(6)$	$-0.0025(5)$	$-0.0094(4)$	$0.0185(5)$
N1	$0.0391(7)$	$0.0511(8)$	$0.0394(7)$	$0.0004(5)$	$-0.0051(5)$	$0.0174(5)$
N2	$0.0506(8)$	$0.0740(9)$	$0.0501(8)$	$0.0094(6)$	$-0.0086(6)$	$0.0274(7)$
C1	$0.0344(7)$	$0.0472(7)$	$0.0392(8)$	$0.0058(5)$	$-0.0033(5)$	$0.0101(6)$
C2	$0.0332(7)$	$0.0376(7)$	$0.0308(7)$	$0.0087(5)$	$-0.0002(5)$	$0.0073(5)$
C3	$0.0390(7)$	$0.0570(8)$	$0.0438(8)$	$0.0150(6)$	$0.0075(6)$	$0.0102(6)$
C4	$0.0487(8)$	$0.0470(8)$	$0.0447(8)$	$0.0170(6)$	$0.0013(6)$	$0.0001(6)$
C5	$0.0360(7)$	$0.0366(7)$	$0.0328(7)$	$0.0086(5)$	$-0.0018(5)$	$0.0087(5)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C5	1.2234 (16)	C2-C5	1.5504 (15)
N1-C5	1.3243 (17)	C3-H3A	0.9600
N1-H1A	0.92 (2)	C3-H3B	0.9600
N1-H1B	0.88 (2)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9600
N2-C1	1.1395 (18)	C4-H4A	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	1.4774 (17)	C4-H4B	0.9600
C2-C3	1.5356 (18)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
C2-C4	1.5438 (18)		
C5-N1-H1A	114.6 (12)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C5-N1-H1B	124.9 (12)	H3A-C3-H3C	109.5
H1A-N1-H1B	120.5 (18)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	178.86 (14)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	109.07 (10)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	109.37 (10)	H4A-C4-H4B	109.5
C3-C2-C4	110.22 (10)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
C1-C2-C5	111.37 (9)	H4A-C4-H4C	109.5
C3-C2-C5	109.91 (10)	$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 5$	106.88 (10)	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{N} 1$	123.35 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	O1-C5-C2	118.09 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	N1-C5-C2	118.50 (10)
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5		
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	78 (8)	C4-C2-C5-O1	76.58 (15)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	-42 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{N} 1$	18.55 (16)
N2-C1-C2-C5	-160 (8)	C3-C2-C5-N1	139.54 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 1$	-164.02 (12)	$\mathrm{C} 4-\mathrm{C} 2-\mathrm{C} 5-\mathrm{N} 1$	-100.85 (14)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 1$	-43.03 (15)		

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.92(2)$	$2.07(2)$	$2.9714(18)$	$168.2(18)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{~N} 2^{\mathrm{ii}}$	$0.874(18)$	$2.328(18)$	$3.166(2)$	$160.8(19)$

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$.

