

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridotris(2-methyl-1H-imidazole- κN^3)cadmium

Run-Qiang Zhu

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhurungiang@163.com

Received 10 March 2012; accepted 13 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.027; wR factor = 0.063; data-to-parameter ratio = 20.5.

In the title compound, $[CdCl_2(C_4H_6N_2)_3]$, the Cd^{II} atom displays a pentacoordinate CdN₃Cl₂ coordination geometry, being coordinated by an N atom of three 2-methylimidazole ligands and two Cl atoms. In the crystal, the mononuclear complexes are linked by N-H···Cl hydrogen bonds into a two-dimensional network in the ab plane.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental

Crystal data $[CdCl_2(C_4H_6N_2)_3]$

 $M_{\rm r} = 429.62$

Mo $K\alpha$ radiation

 $0.28 \times 0.26 \times 0.20 \text{ mm}$

 $\mu = 1.58 \text{ mm}^-$

reflections

intensity decay: none

T = 293 K

Z = 4

Monoclinic, $P2_1/n$ a = 8.2983 (17) Åb = 15.069 (3) Å c = 14.266 (3) Å $\beta = 104.76 \ (3)^{\circ}$ V = 1725.1 (6) Å³

Data collection

Rigaku SCXmini diffractometer 3608 reflections with $I > 2\sigma(I)$ Absorption correction: multi-scan $R_{\rm int} = 0.048$ (CrystalClear; Rigaku, 2005) 2 standard reflections every 150 $T_{\min} = 0.649, T_{\max} = 0.729$ 17235 measured reflections 3919 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	191 parameters
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
3919 reflections	$\Delta \rho_{\rm min} = -0.92 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N6-H6A\cdots Cl1^{i}$ $N4-H4B\cdots Cl2^{ii}$ $N2-H2A\cdots Cl1^{iii}$	0.86	2.60	3.387 (2)	152
	0.86	2.59	3.382 (2)	154
	0.86	2.45	3.253 (2)	156

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x - \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005): program(s) used to solve structure: SHELXS97 (Sheldrick. 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2390).

References

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.
- Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.
- Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.

supporting information

Acta Cryst. (2012). E68, m439 [https://doi.org/10.1107/S160053681201104X] Dichloridotris(2-methyl-1*H*-imidazole-κ*N*³)cadmium

Run-Qiang Zhu

S1. Comment

As part of our ongoing studies of potential ferroelectric phase change materials we have determined the structures of several chromium complexes and examined the changes in their dielectric constants with temperature, which is the usual method for detecting such behaviour, as shown by (Fu *et al.*, 2009; Ye *et al.*, 2006; Zhang *et al.*, 2008; Zhang *et al.*, 2010). The dielectric constant of the title cadmium(II) compound indicates the onset of a ferroelectric phase change over the range 80–298 K.

As shown in Fig. 1, the Cd^{II} ion adopts a pentacoordinate geometry and is coordinated by an N atom from three independent 2-methyl-imidazole ligands and by two Cl atoms. The bond length of the middle Cd1–N3 bond is 2.357 (3) Å, which is longer than the other two Cd—N bond lengths [Cd1—N1= 2.276 (3) Å and Cd1—N5= 2.289 (3) Å].

In the crystal, the mononuclear complexes are linked by N–H…Cl hydrogen bonds to form a two-dimensional network in the ab plane (Fig. 2 and Table 1).

S2. Experimental

An aqueous solution of 2-methyl-imidazole (1.64 g, 20 mmol) and hydrochloric acid (10 ml) was treated with $CdCl_2$ (1.35 g, 10 mmol). After the mixture had been stirred for a few minutes, it was left to stans for a few days. Slow evaporation of the solution yielded colourless X-ray quality crystals.

S3. Refinement

The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93 and 0.96 Å for CH, and CH₃ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(N,C)$, where k = 1.5 for CH₃ H-atoms and = 1.2 for other H-atoms.

Figure 1

- a

A view of the moolecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A view along the c axis of the two-dimensional hydrogen bonded network of the title compound. The N-H…Cl bonds are shown as dashed lines; see Table 1 for details.

Dichloridotris(2-methyl-1*H*-imidazole-*κN*³)cadmium

Crystal data

$[CdCl_2(C_4H_6N_2)_3]$
$M_r = 429.62$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.2983 (17) Å
<i>b</i> = 15.069 (3) Å
<i>c</i> = 14.266 (3) Å
$\beta = 104.76 \ (3)^{\circ}$
V = 1725.1 (6) Å ³
Z = 4

F(000) = 856 $D_x = 1.654 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3960 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 1.58 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.28 \times 0.26 \times 0.20 \text{ mm}$ Data collection

Rigaku SCXmini diffractometer	3919 independent reflections 3608 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.048$
Graphite monochromator	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.1^{\circ}$
CCD_Profile_fitting scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -19 \longrightarrow 19$
(CrystalClear; Rigaku, 2005)	$l = -18 \rightarrow 18$
$T_{\min} = 0.649, \ T_{\max} = 0.729$	2 standard reflections every 150 reflections
17235 measured reflections	intensity decay: none
Graphite monochromator CCD_Profile_fitting scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.649, T_{max} = 0.729$ 17235 measured reflections	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -19 \rightarrow 19$ $l = -18 \rightarrow 18$ 2 standard reflections every 150 reflections intensity decay: none

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 0.8231P]$
S = 1.12	where $P = (F_o^2 + 2F_c^2)/3$
3919 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
191 parameters	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.92 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0486 (9)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.1137 (4)	0.0341 (2)	0.8747 (2)	0.0599 (9)	
H1A	-0.0482	0.0869	0.8922	0.090*	
H1B	-0.0430	-0.0171	0.8899	0.090*	
H1C	-0.1975	0.0317	0.9102	0.090*	
C2	-0.1954 (3)	0.03544 (17)	0.76864 (19)	0.0370 (6)	
C3	-0.2860 (3)	0.07277 (18)	0.6168 (2)	0.0416 (6)	
H3A	-0.3038	0.1050	0.5595	0.050*	
C4	-0.3544 (4)	-0.0069 (2)	0.6266 (2)	0.0533 (8)	
H4A	-0.4262	-0.0396	0.5783	0.064*	
C5	0.1447 (5)	0.0007 (2)	0.6192 (2)	0.0643 (10)	
H5A	0.0755	0.0510	0.5950	0.096*	
H5B	0.0777	-0.0520	0.6102	0.096*	
H5C	0.2295	-0.0049	0.5847	0.096*	
C6	0.2248 (3)	0.01344 (17)	0.72517 (18)	0.0366 (6)	

C7	0.3032 (4)	0.06615 (18)	0.8714 (2)	0.0445 (7)
H7A	0.3141	0.1037	0.9244	0.053*
C8	0.3793 (4)	-0.0136 (2)	0.8729 (2)	0.0550 (8)
H8A	0.4512	-0.0409	0.9258	0.066*
С9	0.4629 (4)	0.2488 (3)	0.7356 (2)	0.0603 (9)
H9A	0.4012	0.2419	0.7836	0.090*
H9B	0.5201	0.3047	0.7447	0.090*
H9C	0.5426	0.2015	0.7418	0.090*
C10	0.3461 (3)	0.24599 (18)	0.63706 (19)	0.0359 (6)
C11	0.2578 (3)	0.2484 (2)	0.4767 (2)	0.0496 (8)
H11A	0.2551	0.2511	0.4112	0.060*
C12	0.1267 (3)	0.23813 (19)	0.51574 (19)	0.0400 (6)
H12A	0.0161	0.2333	0.4806	0.048*
N1	-0.1852 (2)	0.09900 (13)	0.70559 (15)	0.0347 (5)
N2	-0.2963 (3)	-0.02975 (15)	0.72257 (17)	0.0468 (6)
H2A	-0.3202	-0.0777	0.7488	0.056*
N3	0.2063 (3)	0.08299 (13)	0.77834 (15)	0.0341 (5)
N4	0.3283 (3)	-0.04584 (15)	0.78021 (18)	0.0483 (6)
H4B	0.3577	-0.0958	0.7605	0.058*
N5	0.1816 (2)	0.23594 (14)	0.61610 (14)	0.0319 (4)
N6	0.3953 (3)	0.25409 (17)	0.55365 (16)	0.0443 (6)
H6A	0.4962	0.2615	0.5498	0.053*
Cd1	0.021838 (19)	0.201370 (10)	0.720480 (12)	0.02453 (8)
C11	-0.19805 (7)	0.31401 (4)	0.62092 (4)	0.03134 (14)
C12	0.10468 (9)	0.29333 (4)	0.87083 (4)	0.03570 (15)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.078 (2)	0.0542 (18)	0.0454 (17)	-0.0181 (17)	0.0111 (15)	0.0106 (15)
C2	0.0358 (13)	0.0310 (12)	0.0454 (14)	-0.0048 (10)	0.0125 (11)	0.0063 (11)
C3	0.0385 (14)	0.0369 (14)	0.0437 (15)	-0.0061 (11)	0.0002 (11)	0.0096 (12)
C4	0.0529 (18)	0.0442 (16)	0.0543 (17)	-0.0205 (14)	-0.0020 (14)	0.0016 (14)
C5	0.081 (2)	0.0572 (19)	0.0457 (17)	0.0264 (18)	0.0005 (16)	-0.0192 (16)
C6	0.0410 (14)	0.0294 (12)	0.0389 (13)	0.0107 (11)	0.0096 (11)	-0.0039 (11)
C7	0.0497 (16)	0.0404 (14)	0.0371 (14)	0.0117 (12)	-0.0005 (12)	-0.0032 (12)
C8	0.0583 (19)	0.0482 (17)	0.0493 (17)	0.0240 (15)	-0.0033 (14)	0.0036 (14)
C9	0.0354 (15)	0.097 (3)	0.0478 (17)	-0.0058 (17)	0.0094 (13)	0.0041 (19)
C10	0.0255 (12)	0.0451 (15)	0.0395 (14)	0.0032 (10)	0.0129 (10)	0.0050 (12)
C11	0.0423 (16)	0.074 (2)	0.0365 (15)	0.0036 (15)	0.0170 (12)	0.0099 (15)
C12	0.0305 (13)	0.0520 (16)	0.0368 (14)	0.0021 (12)	0.0075 (10)	0.0060 (13)
N1	0.0347 (11)	0.0240 (10)	0.0451 (12)	-0.0059 (8)	0.0099 (9)	0.0046 (9)
N2	0.0512 (14)	0.0315 (11)	0.0560 (14)	-0.0151 (10)	0.0104 (11)	0.0104 (11)
N3	0.0384 (11)	0.0271 (10)	0.0360 (11)	0.0091 (9)	0.0081 (9)	-0.0033 (9)
N4	0.0541 (15)	0.0296 (11)	0.0577 (15)	0.0193 (10)	0.0076 (12)	-0.0048 (11)
N5	0.0235 (10)	0.0402 (11)	0.0339 (11)	0.0018 (8)	0.0106 (8)	0.0050 (9)
N6	0.0265 (11)	0.0644 (16)	0.0465 (13)	0.0029 (10)	0.0175 (10)	0.0086 (12)
Cd1	0.02507 (11)	0.01824 (11)	0.03208 (12)	0.00024 (6)	0.01061 (7)	-0.00117 (6)

supporting information

Cl1	0.0265 (3)	0.0266 (3)	0.0400 (3)	0.0036 (2)	0.0068 (2)	0.0002 (2)
Cl2	0.0493 (4)	0.0285 (3)	0.0308 (3)	-0.0028 (2)	0.0130 (3)	-0.0049 (2)

Geometric parameters (Å, °)

<u> </u>	1.492 (4)	C8—H8A	0.9300
C1—H1A	0.9600	C9—C10	1.491 (4)
C1—H1B	0.9600	С9—Н9А	0.9600
C1—H1C	0.9600	С9—Н9В	0.9600
C2—N1	1.331 (3)	С9—Н9С	0.9600
C2—N2	1.348 (3)	C10—N5	1.330 (3)
C3—C4	1.350 (4)	C10—N6	1.358 (3)
C3—N1	1.386 (3)	C11—C12	1.351 (4)
С3—НЗА	0.9300	C11—N6	1.370 (3)
C4—N2	1.374 (4)	C11—H11A	0.9300
C4—H4A	0.9300	C12—N5	1.388 (3)
C5—C6	1.501 (4)	C12—H12A	0.9300
С5—Н5А	0.9600	N1—Cd1	2.2781 (19)
С5—Н5В	0.9600	N2—H2A	0.8600
C5—H5C	0.9600	N3—Cd1	2.359 (2)
C6—N3	1.325 (3)	N4—H4B	0.8600
C6—N4	1.345 (3)	N5—Cd1	2.292 (2)
С7—С8	1.356 (4)	N6—H6A	0.8600
C7—N3	1.389 (3)	Cd1—Cl2	2.4984 (8)
C7—H7A	0.9300	Cd1—Cl1	2.6283 (8)
C8—N4	1.370 (4)		
C2—C1—H1A	109.5	N5-C10-C9	126.8 (2)
C2—C1—H1B	109.5	N6-C10-C9	123.7 (2)
H1A—C1—H1B	109.5	C12—C11—N6	105.7 (2)
C2—C1—H1C	109.5	C12—C11—H11A	127.1
H1A—C1—H1C	109.5	N6-C11-H11A	127.1
H1B—C1—H1C	109.5	C11—C12—N5	109.9 (2)
N1—C2—N2	109.5 (2)	C11—C12—H12A	125.0
N1-C2-C1	127.2 (2)	N5-C12-H12A	125.0
N2-C2-C1	123.4 (2)	C2—N1—C3	106.5 (2)
C4—C3—N1	109.3 (2)	C2—N1—Cd1	126.89 (17)
С4—С3—НЗА	125.3	C3—N1—Cd1	122.94 (17)
N1—C3—H3A	125.3	C2—N2—C4	108.6 (2)
C3—C4—N2	106.0 (2)	C2—N2—H2A	125.7
C3—C4—H4A	127.0	C4—N2—H2A	125.7
N2—C4—H4A	127.0	C6—N3—C7	106.2 (2)
С6—С5—Н5А	109.5	C6—N3—Cd1	123.87 (17)
C6—C5—H5B	109.5	C7—N3—Cd1	129.69 (17)
H5A—C5—H5B	109.5	C6—N4—C8	108.8 (2)
С6—С5—Н5С	109.5	C6—N4—H4B	125.6
H5A—C5—H5C	109.5	C8—N4—H4B	125.6
H5B—C5—H5C	109.5	C10—N5—C12	106.1 (2)

N3—C6—N4	109.9 (2)	C10—N5—Cd1	127.62 (17)
N3—C6—C5	126.2 (2)	C12—N5—Cd1	125.68 (16)
N4—C6—C5	123.8 (2)	C10—N6—C11	108.7 (2)
C8—C7—N3	109.3 (2)	C10—N6—H6A	125.6
С8—С7—Н7А	125.4	C11—N6—H6A	125.6
N3—C7—H7A	125.4	N1—Cd1—N5	129.84 (8)
C7—C8—N4	105.7 (2)	N1—Cd1—N3	85.82 (8)
С7—С8—Н8А	127.1	N5—Cd1—N3	88.17 (7)
N4—C8—H8A	127.1	N1—Cd1—Cl2	119.45 (6)
С10—С9—Н9А	109.5	N5—Cd1—Cl2	110.70 (6)
С10—С9—Н9В	109.5	N3—Cd1—Cl2	96.14 (6)
Н9А—С9—Н9В	109.5	N1—Cd1—Cl1	89.07 (6)
С10—С9—Н9С	109.5	N5—Cd1—Cl1	86.50 (5)
Н9А—С9—Н9С	109.5	N3—Cd1—Cl1	167.67 (5)
Н9В—С9—Н9С	109.5	Cl2—Cd1—Cl1	96.15 (3)
N5-C10-N6	109.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
N6—H6A····Cl1 ⁱ	0.86	2.60	3.387 (2)	152	
N4—H4 <i>B</i> ···Cl2 ⁱⁱ	0.86	2.59	3.382 (2)	154	
N2—H2A····Cl1 ⁱⁱⁱ	0.86	2.45	3.253 (2)	156	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1/2, *y*-1/2, -*z*+3/2; (iii) -*x*-1/2, *y*-1/2, -*z*+3/2.