Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Azido-1-(4-fluorophenyl)ethanone

Sammer Yousuf, ${ }^{\mathbf{a} *}$ Muhammad Arshad, ${ }^{\text {a,b }}$ Hafiza Madiha Butt, ${ }^{\text {a }}$ Sumayya Saeed ${ }^{\text {b }}$ and Fatima Z. Basha ${ }^{\text {a }} \ddagger$

${ }^{\text {a }}$ H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan, and ${ }^{\text {b }}$ Department of Chemistry, University of Karachi 75270, Pakistan
Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 22 March 2012; accepted 28 March 2012

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=12.5$.

The crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{O}$, is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the molecules into chains running parallel to the a axis.

Related literature

The title compound is an intermediate obtained during an attempt to synthesize biologically active triazoles. For the biological activity of triazoles, see: Genin et al. (2000); Parmee et al. (2000); Koble et al. (1995); Moltzen et al. (1994). For standard bond lengths: Allen et al. (1987).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{O}$
$V=1585.5(4) \AA^{3}$
$M_{r}=179.16$
Orthorhombic, Pbca
$a=10.7985$ (16) A
$b=8.3971$ (12) \AA
$c=17.485$ (3) A
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
$0.35 \times 0.28 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.959, T_{\text {max }}=0.976$
8606 measured reflections 1476 independent reflections 1239 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad 118$ parameters
$w R\left(F^{2}\right)=0.090 \quad$ H-atom parameters constrained
$S=1.06$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
1476 reflections

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.45	$3.3722(17)$	174
Symmetry code: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2}$.				

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2730).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. \& Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.
Koble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. \& Cooper, B. R. (1995). J. Med. Chem. 38, 4131-4134.

Moltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. \& Lemboel, H. L. (1994). J. Med. Chem. 37, 4085-4099.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Parmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. \& Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111-2114.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[^0]
supporting information

Acta Cryst. (2012). E68, o1268 [https://doi.org/10.1107/S1600536812013426]

2-Azido-1-(4-fluorophenyl)ethanone

Sammer Yousuf, Muhammad Arshad, Hafiza Madiha Butt, Sumayya Saeed and Fatima Z. Basha

S1. Comment

The synthesis of 1,2,3-trizoles via click chemistry approach has gained much attention by synthetic chemists due to their immensely known medicinal importance (Genin et al., 2000, Parmee et al., 2000, Koble et al., 1995, Moltzen et al., 1994). In our quest for the synthesis of therapeutically active triazoles starting from commercially available acetophenone derivatives, a number of azides including the title compound, whose crystal structure is reported herein, have been prepared as an intermediate.
In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal structure (Fig. 2) is stabilized by intermolecular hydrogen bonds (Table 1) linking the m olecules to form chains parallel to the a axis.

S2. Experimental

1-(4-Fluorophenyl)ethanone ($7.239 \mathrm{mmol}, 1.0$ equiv.) was dissolved in acetonitrile (18 ml) in a round bottom flask. To the stirred mixture, p-toluenesulphonic acid ($10.858 \mathrm{mmol}, 1.5$ equiv.) and N-bromosuccinimide ($10.134 \mathrm{mmol}, 1.4$ equiv.) were added, and the solution was heated to reflux for 1 to 1.5 h until completion of the reaction as monitored by TLC analysis. The reaction mixture was cooled to room temperature and sodium azide ($21.717 \mathrm{mmol}, 3.0$ equiv.) was added. After additional stirring for 2 to 3 h , ice cooled water was added to quench the reaction. The reaction mixture was extracted with diethyl ether $(2 \times 25 \mathrm{ml})$ and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuum to get the crude product. The crude product was purified by flash silica gel chromatography (EtOAc/hexane, 1:9-3:7 v/v) to afford the title compound in 65% yield. Recrystallization by slow evaporation of an ethanol solution afforded crystals suitable for single-crystal X-ray studies. All chemicals were purchased from SigmaAldrich.

S3. Refinement

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Figure 2
Crystal packing of the title compound viewed along the b axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted.

2-Azido-1-(4-fluorophenyl)ethanone

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{FN}_{3} \mathrm{O}$
$M_{r}=179.16$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=10.7985$ (16) \AA
$b=8.3971(12) \AA$
$c=17.485$ (3) \AA
$V=1585.5(4) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& F(000)=736 \\
& D_{\mathrm{x}}=1.501 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2831 \text { reflections } \\
& \theta=2.3-27.8^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=273 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.35 \times 0.28 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.959, T_{\text {max }}=0.976$
8606 measured reflections
1476 independent reflections
1239 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-10 \rightarrow 13$
$k=-10 \rightarrow 10$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.090$
$S=1.06$
1476 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.61761(8)$	$0.03188(12)$	$0.73973(5)$	$0.0358(3)$
N1	$0.77319(12)$	$-0.13811(15)$	$0.83252(7)$	$0.0361(3)$
N2	$0.68380(11)$	$-0.09577(14)$	$0.87237(7)$	$0.0336(3)$
N3	$0.60363(13)$	$-0.07646(17)$	$0.91283(7)$	$0.0451(4)$
C1	$0.89336(12)$	$0.19093(16)$	$0.64990(8)$	$0.0305(3)$

H1B	0.9536	0.1521	0.6830	0.037^{*}
C2	$0.92779(14)$	$0.28254(17)$	$0.58742(8)$	$0.0348(4)$
H2A	1.0106	0.3060	0.5782	0.042^{*}
C3	$0.83684(14)$	$0.33759(17)$	$0.53966(8)$	$0.0342(3)$
C4	$0.71318(14)$	$0.30861(18)$	$0.55138(8)$	$0.0366(4)$
H4A	0.6536	0.3492	0.5182	0.044^{*}
C5	$0.67981(13)$	$0.21777(17)$	$0.61363(8)$	$0.0333(3)$
H5A	0.5965	0.1968	0.6227	0.040^{*}
C6	$0.76889(12)$	$0.15677(16)$	$0.66330(7)$	$0.0273(3)$
C7	$0.72692(12)$	$0.05618(16)$	$0.72799(7)$	$0.0277(3)$
C8	$0.82354(13)$	$-0.01705(17)$	$0.78080(8)$	$0.0313(3)$
H8A	0.8882	-0.0650	0.7499	0.038^{*}
H8B	0.8611	0.0669	0.8110	0.038^{*}
F1	$0.87045(9)$	$0.42468(11)$	$0.47751(5)$	$0.0478(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0225(6)$	$0.0481(6)$	$0.0370(5)$	$-0.0033(4)$	$-0.0003(4)$	$-0.0021(5)$
N1	$0.0337(7)$	$0.0341(7)$	$0.0405(7)$	$0.0037(5)$	$0.0029(6)$	$0.0004(5)$
N2	$0.0346(7)$	$0.0329(7)$	$0.0333(6)$	$-0.0019(5)$	$-0.0049(6)$	$0.0031(5)$
N3	$0.0413(8)$	$0.0548(9)$	$0.0392(7)$	$0.0024(7)$	$0.0065(6)$	$0.0069(6)$
C1	$0.0248(7)$	$0.0338(8)$	$0.0328(7)$	$0.0029(6)$	$-0.0019(6)$	$-0.0054(6)$
C2	$0.0293(8)$	$0.0374(8)$	$0.0376(7)$	$-0.0015(6)$	$0.0049(6)$	$-0.0064(6)$
C3	$0.0414(9)$	$0.0314(7)$	$0.0299(7)$	$-0.0013(6)$	$0.0036(6)$	$-0.0031(6)$
C4	$0.0355(9)$	$0.0378(8)$	$0.0366(8)$	$0.0021(6)$	$-0.0068(6)$	$-0.0006(6)$
C5	$0.0260(7)$	$0.0343(8)$	$0.0394(8)$	$0.0003(6)$	$-0.0025(6)$	$-0.0041(6)$
C6	$0.0241(7)$	$0.0274(7)$	$0.0304(7)$	$0.0011(6)$	$0.0005(5)$	$-0.0075(5)$
C7	$0.0232(7)$	$0.0287(7)$	$0.0313(7)$	$0.0004(5)$	$-0.0009(5)$	$-0.0098(5)$
C8	$0.0254(7)$	$0.0336(7)$	$0.0348(7)$	$-0.0004(6)$	$0.0003(6)$	$-0.0012(6)$
F1	$0.0544(6)$	$0.0501(6)$	$0.0389(5)$	$-0.0045(4)$	$0.0040(4)$	$0.0089(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 7$	$1.2154(16)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.373(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.2425(17)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.377(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.4652(19)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{~N} 2-\mathrm{N} 3$	$1.1296(17)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3936(19)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.387(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{C} 1-\mathrm{C} 6$	$1.3942(19)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.4826(19)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9300	$\mathrm{C} 7-\mathrm{C} 8$	$1.5229(19)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.370(2)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{~A}$	0.9300	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 3 — \mathrm{~F} 1$	$1.3591(16)$		
		$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.5
$\mathrm{~N} 2-\mathrm{N} 1-\mathrm{C} 8$	$115.85(12)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.5
$\mathrm{~N} 3-\mathrm{N} 2-\mathrm{N} 1$	$170.98(14)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$119.02(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$120.33(13)$		

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	119.8	C5-C6-C7	118.29 (12)
C6-C1-H1B	119.8	C1-C6-C7	122.69 (12)
C3-C2-C1	118.38 (13)	O1-C7-C6	121.43 (12)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.8	O1-C7-C8	119.67 (12)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.8	C6-C7-C8	118.90 (11)
F1-C3-C2	118.53 (13)	N1-C8-C7	113.59 (12)
F1-C3-C4	118.33 (13)	N1-C8-H8A	108.8
C2-C3-C4	123.14 (14)	C7-C8-H8A	108.8
C3-C4-C5	118.09 (14)	N1-C8-H8B	108.8
C3-C4-H4A	121.0	C7-C8-H8B	108.8
C5-C4-H4A	121.0	H8A-C8-H8B	107.7
C4-C5-C6	121.04 (13)		
C6-C1-C2-C3	-0.2 (2)	C2-C1-C6-C7	178.42 (12)
C1-C2-C3-F1	-178.68 (12)	C5-C6-C7-O1	-2.87 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	1.1 (2)	C1-C6-C7-O1	177.86 (12)
F1-C3-C4-C5	178.78 (12)	C5-C6-C7-C8	177.46 (12)
C2-C3-C4-C5	-1.0 (2)	C1-C6-C7-C8	-1.81 (18)
C3-C4-C5-C6	-0.1 (2)	N2-N1-C8-C7	-54.22 (16)
C4-C5-C6-C1	1.0 (2)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	11.84 (17)
C4-C5-C6-C7	-178.34 (12)	C6-C7-C8-N1	-168.49 (11)
C2-C1-C6-C5	-0.84 (19)		

Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 B \cdots 1^{\mathrm{i}}$	0.93	2.45	$3.3722(17)$	174

Symmetry code: (i) $x+1 / 2, y,-z+3 / 2$.

[^0]: \ddagger Additional corresponding author, e-mail: bashafz@gmail.com.

