organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Anilino-1-(isopropylamino)propan-2-ol

Xuehui Hou, Ping Hu and Quanjian Lv*

Department of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China Correspondence e-mail: jyzhang2004@126.com

Received 5 March 2012: accepted 27 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.116; data-to-parameter ratio = 9.7.

The title compound, $C_{12}H_{20}N_2O$, was obtained by the reaction of N-(oxiran-2-ylmethyl)aniline and propan-2-amine. In the crystal, molecules are linked by O-H···N and N-H···O hydrogen bonds into chains parallel to the b axis.

Related literature

For applications of the amino alcohols and their derivatives, see: Ellison & Gandhi (2005); Li et al. (2004).

Experimental

Crystal data

C12H20N2O $M_r = 208.30$ Monoclinic, P2 a = 8.7676 (8) Å b = 6.4662 (6) Å c = 11.1677(12) Å $\beta = 105.290 (1)^{\circ}$

 $V = 610.72 (10) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K $0.50 \times 0.49 \times 0.40 \mbox{ mm}$

Data collection

Siemens SMART CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.965, T_{\max} = 0.971$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.116$	independent and constrained
S = 0.94	refinement
1449 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
150 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \text{O1} - \text{H1}O \cdots \text{N1}^{\text{i}} \\ \text{N2} - \text{H2}N \cdots \text{O1}^{\text{i}} \end{array}$	0.79 (4) 0.89 (3)	2.09 (4) 2.26 (3)	2.878 (3) 3.141 (3)	173 (3) 170 (3)

3608 measured reflections

 $R_{\rm int} = 0.049$

1449 independent reflections

990 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + 1$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the National Natural Science Foundation of P. R. China (No. 20572103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2719).

References

- Ellison, K. E. & Gandhi, G. (2005). Drugs, pp. 787-797.
- Li, Y., He, B., Qin, B., Feng, X. M. & Zhang, G. L. (2004). J. Org. Chem. pp. 7910-7913.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2012). E68, o1264 [https://doi.org/10.1107/S1600536812013256]

3-Anilino-1-(isopropylamino)propan-2-ol

Xuehui Hou, Ping Hu and Quanjian Lv

S1. Comment

Amino alcohols are important structural elements for asymmetric catalysis (Li *et al.*, 2004) as well as in biologically active compounds (Ellison & Gandhi, 2005). In order to develop new applications for amino alcohols and their derivatives, structural modifications of these compounds have been extensively investigated. As a contribution in this field, we report here the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. A l l bond lengths and angles are not unexceptional. In the crystal structure (Fig. 2), intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link molecules into chains running parallel to the b axis.

S2. Experimental

To a solution of *N*-(oxiran-2-ylmethyl)aniline (14.9 g, 0.1 mol) in acetone (200 ml), propan-2-amine (86.7 ml, 1.0 mol) was added. The mixture was stirred at room temperature for 6 h, then it was concentrated under reduced pressure and purified by crystallization from ethyl acetate, giving colourless single crystals of the title compound suitablu for X-ray analysis.

S3. Refinement

The amine and hydroxy H atoms were located in a difference Fourier map and refined freely. All other H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms. In the absence of significant anomalous scattering, 464 Friedel pairs were merged.

Figure 1

The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids.

Figure 2

Crystal packing of the title compound viewed along the b axis, showing the molecular chains formed by intermolecular hydrogen bonds (dashed lines).

3-Anilino-1-(isopropylamino)propan-2-ol

Crystal data

 $C_{12}H_{20}N_2O$ $M_r = 208.30$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 8.7676 (8) Å b = 6.4662 (6) Å c = 11.1677 (12) Å $\beta = 105.290 (1)^{\circ}$ $V = 610.72 (10) \text{ Å}^3$ Z = 2

Data collection

Siemens SMART CCD area-detector	3608 measured reflections
Radiation source: fine-focus sealed tube	990 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.049$
phi and ω scans	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 4$
$T_{\min} = 0.965, \ T_{\max} = 0.971$	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.116$ neighbouring sites S = 0.941449 reflections and constrained refinement 150 parameters $w = 1/[\sigma^2(F_o^2) + (0.0624P)^2]$ 1 restraint where $P = (F_0^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$

F(000) = 228 $D_{\rm x} = 1.133 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1130 reflections $\theta = 3.4 - 22.5^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.50 \times 0.49 \times 0.40 \text{ mm}$

Secondary atom site location: difference Fourier Hydrogen site location: inferred from H atoms treated by a mixture of independent

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Zv N1 -0.0180(3)0.3886 (4) 0.30241 (18) 0.0486 (6) N2 0.2976(3)-0.1975(4)0.0607(7)0.5341(2)01 -0.00479(19)0.0345(3)0.4500(2)0.0517(5)C1 0.1036 (3) 0.2296 (5) 0.3115 (2) 0.0567 (8) H1A 0.1998 0.2945 0.3028 0.068* H1B 0.0686 0.1324 0.2437 0.068* C2 0.1394 (3) 0.4333 (2) 0.0478(7)0.1128 (4) H2 0.1871 0.2073 0.5015 0.057* C3 0.2559(3)-0.0607(5)0.4288(2)0.0571 (8) H3A 0.2115 -0.14340.3554 0.069* H3B 0.0016 0.4185 0.069* 0.3523 C4 0.4017(3)-0.1471(5)0.6467(2)0.0531(7) C5 0.0390(5)0.6669(2)0.4858(3)0.0568(7)H5 0.4746 0.1334 0.6023 0.068* 0.5857 (3) C6 0.0842 (6) 0.7822(3)0.0689(9)0.6395 0.7945 0.083* H6 0.2096 C7 0.6063 (4) -0.0521(7)0.8776 (3) 0.0781 (11) -0.01980.094* H7 0.6733 0.9548 C8 0.5280(4)-0.2371(8)0.8595(3)0.0839(11)H8 0.101* 0.5430 -0.33110.9245 C9 0.4260(3)-0.2863(6)0.7449(3)0.0683 (9) Н9 -0.41290.082* 0.3739 0.7339 C10 -0.0414(3)0.5221(5)0.1919 (2) 0.0523 (7) H10 0.1933 0.063* 0.0609 0.5847 C11 -0.0983(4)0.4051 (6) 0.0701(2)0.0785 (10) H11A -0.19400.3324 0.0691 0.118* -0.01870.3080 0.118* H11B 0.0621 H11C -0.11790.5011 0.0021 0.118* C12 -0.1543(4)0.6954(5)0.1993(3)0.0667(9)-0.25790.1915 0.100* H12A 0.6394 H12B -0.15830.7922 0.1334 0.100* H12C -0.11840.7645 0.2778 0.100* H10 0.010(4) -0.007(6)0.076 (12)* 0.519(4)H1N -0.107(4)0.331 (5) 0.299(3) 0.068 (10)* H2N 0.222(4)-0.286(6)0.539(3)0.075 (11)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0497 (13)	0.0528 (15)	0.0470 (11)	-0.0033 (12)	0.0195 (10)	0.0038 (11)
N2	0.0601 (15)	0.0547 (17)	0.0713 (16)	0.0032 (14)	0.0240 (13)	0.0041 (14)
01	0.0544 (10)	0.0537 (11)	0.0498 (11)	-0.0009 (10)	0.0186 (8)	0.0034 (10)
C1	0.0639 (16)	0.057 (2)	0.0563 (15)	0.0040 (16)	0.0289 (13)	0.0024 (14)
C2	0.0505 (15)	0.0513 (17)	0.0448 (13)	0.0020 (13)	0.0184 (10)	-0.0016 (13)
C3	0.0598 (17)	0.062 (2)	0.0536 (15)	0.0069 (15)	0.0215 (12)	-0.0056 (14)
C4	0.0434 (14)	0.058 (2)	0.0618 (16)	0.0088 (14)	0.0213 (13)	0.0101 (15)
C5	0.0485 (13)	0.0629 (19)	0.0636 (16)	0.0053 (16)	0.0226 (13)	0.0152 (16)
C6	0.0469 (15)	0.086 (3)	0.0747 (19)	0.0013 (17)	0.0180 (14)	0.005 (2)
C7	0.0604 (19)	0.105 (3)	0.0686 (19)	0.004 (2)	0.0158 (15)	0.006 (2)
C8	0.073 (2)	0.112 (3)	0.069(2)	0.025 (2)	0.0243 (17)	0.037 (2)
C9	0.0603 (18)	0.064 (2)	0.088 (2)	0.0063 (16)	0.0320 (16)	0.0212 (18)
C10	0.0546 (14)	0.0559 (17)	0.0490 (14)	-0.0103 (15)	0.0181 (11)	0.0042 (14)
C11	0.103 (2)	0.084 (3)	0.0494 (15)	0.000(2)	0.0210 (15)	0.0005 (17)
C12	0.0734 (19)	0.065 (2)	0.0615 (16)	0.0042 (17)	0.0174 (14)	0.0097 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C1	1.465 (3)	С5—Н5	0.9300	
N1-C10	1.476 (3)	C6—C7	1.358 (5)	
N1—H1N	0.85 (3)	С6—Н6	0.9300	
N2—C4	1.384 (4)	C7—C8	1.368 (6)	
N2—C3	1.440 (4)	С7—Н7	0.9300	
N2—H2N	0.89 (3)	C8—C9	1.390 (5)	
O1—C2	1.419 (3)	C8—H8	0.9300	
01—H10	0.79 (4)	С9—Н9	0.9300	
C1—C2	1.514 (3)	C10—C12	1.512 (4)	
C1—H1A	0.9700	C10—C11	1.521 (4)	
C1—H1B	0.9700	C10—H10	0.9800	
С2—С3	1.527 (4)	C11—H11A	0.9600	
С2—Н2	0.9800	C11—H11B	0.9600	
С3—НЗА	0.9700	C11—H11C	0.9600	
С3—Н3В	0.9700	C12—H12A	0.9600	
С4—С9	1.391 (4)	C12—H12B	0.9600	
C4—C5	1.399 (4)	C12—H12C	0.9600	
C5—C6	1.384 (4)			
C1—N1—C10	114.0 (2)	C7—C6—C5	120.9 (3)	
C1—N1—H1N	110 (2)	С7—С6—Н6	119.5	
C10—N1—H1N	107 (2)	С5—С6—Н6	119.5	
C4—N2—C3	124.2 (3)	C6—C7—C8	119.6 (3)	
C4—N2—H2N	115.0 (19)	С6—С7—Н7	120.2	
C3—N2—H2N	114 (2)	C8—C7—H7	120.2	
C2-01-H10	109 (2)	C7—C8—C9	120.8 (3)	
N1-C1-C2	112.8 (2)	С7—С8—Н8	119.6	

N1—C1—H1A	109.0	С9—С8—Н8	119.6
C2—C1—H1A	109.0	C8—C9—C4	120.3 (3)
N1—C1—H1B	109.0	С8—С9—Н9	119.8
C2—C1—H1B	109.0	С4—С9—Н9	119.8
H1A—C1—H1B	107.8	N1-C10-C12	109.6 (2)
O1—C2—C1	108.4 (2)	N1—C10—C11	113.4 (3)
O1—C2—C3	111.7 (2)	C12—C10—C11	110.7 (2)
C1—C2—C3	108.6 (2)	N1—C10—H10	107.6
O1—C2—H2	109.4	C12—C10—H10	107.6
C1—C2—H2	109.4	C11—C10—H10	107.6
C3—C2—H2	109.4	C10-C11-H11A	109.5
N2—C3—C2	116.9 (2)	C10-C11-H11B	109.5
N2—C3—H3A	108.1	H11A—C11—H11B	109.5
С2—С3—НЗА	108.1	C10—C11—H11C	109.5
N2—C3—H3B	108.1	H11A—C11—H11C	109.5
С2—С3—Н3В	108.1	H11B—C11—H11C	109.5
H3A—C3—H3B	107.3	C10—C12—H12A	109.5
N2—C4—C9	119.4 (3)	C10—C12—H12B	109.5
N2—C4—C5	122.9 (3)	H12A—C12—H12B	109.5
C9—C4—C5	117.7 (3)	C10—C12—H12C	109.5
C6—C5—C4	120.6 (3)	H12A—C12—H12C	109.5
С6—С5—Н5	119.7	H12B—C12—H12C	109.5
С4—С5—Н5	119.7		
C10—N1—C1—C2	172.8 (2)	C9—C4—C5—C6	-2.0(4)
N1—C1—C2—O1	53.6 (3)	C4—C5—C6—C7	1.1 (4)
N1—C1—C2—C3	175.0 (2)	C5—C6—C7—C8	0.4 (5)
C4—N2—C3—C2	-76.6 (3)	C6—C7—C8—C9	-0.8 (5)
O1—C2—C3—N2	-57.1 (3)	C7—C8—C9—C4	-0.2(5)
C1—C2—C3—N2	-176.5 (3)	N2—C4—C9—C8	-178.9(3)
C3—N2—C4—C9	176.0 (2)	C5—C4—C9—C8	1.6 (4)
C3—N2—C4—C5	-4.5 (4)	C1—N1—C10—C12	-173.3 (2)
N2—C4—C5—C6	178.5 (2)	C1-N1-C10-C11	62.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A	
01—H1O····N1 ⁱ	0.79 (4)	2.09 (4)	2.878 (3)	173 (3)	
N2—H2 N ···O1 ⁱ	0.89 (3)	2.26 (3)	3.141 (3)	170 (3)	

Symmetry code: (i) -x, y-1/2, -z+1.