Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(methacrylato- κ O)bis(2,4,6-trimethyl-pyridine- κN)copper(II)

Ejaz, ${ }^{\text {a }}$ Islam Ullah Khan, ${ }^{\text {a* }}$ Alina Murtaza ${ }^{\text {a }}$ and William T. A. Harrison ${ }^{\text {b }}$
${ }^{\text {a }}$ Materials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ${ }^{\text {b }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: iuklodhi@yahoo.com

Received 30 September 2011; accepted 6 March 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.032 ; w R$ factor $=0.098$; data-to-parameter ratio $=20.7$.

In the monomeric title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{2}\right]$, the $\mathrm{Cu}^{\mathrm{II}}$ atom lies on a centre of inversion. Its coordination by two substituted pyridine ligands and two carboxylate anions leads to a slightly distorted trans- $\mathrm{CuN}_{2} \mathrm{O}_{2}$ square-planar geometry. The dihedral angle between the mean planes of the pyridine (py) ring and the carboxylate group is 74.71 (7) ${ }^{\circ}$. The dihedral angles between the planar $\mathrm{CuN}_{2} \mathrm{O}_{2}$ core and the py ring and carboxylate plane are 67.72 (5) and 89.95 (5) ${ }^{\circ}$, respectively. Based on the refined $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bond lengths, the terminal $=\mathrm{CH}_{2}$ and $-\mathrm{CH}_{3}$ groups of the carboxylate anion may be disordered, but the disorder could not be resolved in the present experiment. Several intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions occur. In the crystal, molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, generating chains propagating in [100].

Related literature

For the crystal structures of related monomeric complexes containing a trans $-\mathrm{CuN}_{2} \mathrm{O}_{2}$ core, see: Borel et al. (1981); Heimer \& Ahmed (1982); Jedrzejas et al. (1994).

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{2}\right]$
$M_{r}=476.06$
Monoclinic, $P 2_{1} / n$
$a=8.2295$ (2) A
$b=17.0921$ (6) \AA
$c=9.1683(3) \AA$
$\beta=109.220(1)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.930, T_{\text {max }}=0.947$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.098$
$S=1.05$
3017 reflections
$V=1217.73(7) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.93 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.08 \times 0.06 \times 0.06 \mathrm{~mm}$

11795 measured reflections 3017 independent reflections 2439 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$

146 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9406(12)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0404(14)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$91.73(6)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.45	3.338 (2)	161
C6-H6A . ${ }^{\text {O }}$	0.96	2.49	3.369 (3)	153
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O}^{\text {ii }}$	0.96	2.48	3.139 (3)	126
$\mathrm{C} 8-\mathrm{H} 84 \cdots \mathrm{O} 1^{\text {ii }}$	0.96	2.49	3.357 (3)	150
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C} \cdots \mathrm{O} 2$	0.96	2.51	3.124 (2)	122

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

[^0]
metal-organic compounds

References

Borel, M. M., Busnot, A., Busnot, F., Leclaire, A. \& Bernard, M. A. (1981). Rev. Chem. Mineral. 18, 74-82.
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Heimer, N. E. \& Ahmed, I. V. (1982). Inorg. Chim. Acta, 65, L65-L66.
Jedrzejas, M. J., Towns, R. L. R., Baker, R. J., Duraj, S. A. \& Hepp, A. F. (1994). Acta Cryst. C50, 1442-1443.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m469-m470 [https://doi.org/10.1107/S1600536812009919]

Bis(methacrylato- κ O)bis(2,4,6-trimethylpyridine- $\kappa \mathrm{N}$)copper(II)

Ejaz, Islam Ullah Khan, Alina Murtaza and William T. A. Harrison

S1. Comment

The title compound, (I), is a centrosymmetric neutral monomeric copper(II) complex (Fig. 1). Related structures containing a copper(II) ion bonded to a pair of susbtituted pyridine ligands and a pair of monodentate carboxylate anions have been described previously (Borel et al., 1981; Heimer \& Ahmed, 1982; Jedrzejas et al., 1994).
The Cu ion in (I) lies on an inversion centre, resulting in a slightly distorted trans- $\mathrm{CuN}_{2} \mathrm{O}_{2}$ square planar geometry for the metal ion (Table 1). If a very long contact between Cu1 and O1 [2.8229 (17) \AA] is considered to have any significance as a bond, a grossly disorted trans- $\mathrm{CuN}_{2} \mathrm{O}_{4}$ octahedron results. The mean planes of the pyridine ring (r.m.s. deviation $=$ $0.0099 \AA$) and the carboxylate group (r.m.s. deviation $=0.0003 \AA$) are roughly perpendicular [dihedral angle $=74.71(7)^{\circ}$], which presumably minimises steric interactions between the ligands. The dihedral angles between the planar $\mathrm{CuN}_{2} \mathrm{O}_{2}$ core and the py ring and carboxylate plane are are 67.72 (5) and $89.95(5)^{\circ}$, respectively. The Cu ion is displaced by 0.256 (3) \AA from the py ring plane and by 0.252 (3) \AA from the carboxylate plane. The carboxylate $\mathrm{C}-\mathrm{O}$ bond lengths of 1.222 (2) \AA for O1 and 1.276 (2) \AA for O2 suggest the presence of relatively localised single and double bonds in the anion.

The terminal CH_{2} and CH_{3} groups of the carboxylate anion are probably disordered: the nominal $\mathrm{C} 10-\mathrm{C} 11$ single bond is short $[1.422(4) \AA]$ and the nominal $\mathrm{C} 10=\mathrm{C} 12$ double bond is long [1.378(4) \AA]. This may also correlate with the Hirshfeld rigid bond alert for the $\mathrm{C} 10-\mathrm{C} 12$ bond. The presumed disorder could not be resolved in the present experiment. Several intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions occur (Table 1). In the crystal, the molecules are linked by C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to generate chains in the [100] direction.
In trans-bis(acetato-O)bis(4-methyl pyridine-N)copper(II) (Jedrzejas et al., 1994), (II), the dihedral angle between the ligands is 78.2° (s.u. not stated), and the dihedral angle between the py ring and the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ plane is 31.6°. The uncoordinated $\mathrm{Cu} \cdots \mathrm{O}$ separation of 2.623 (4) \AA in (II) is significantly shorter than that seen in (I). However, it is notable that the carboxylate $\mathrm{C}-\mathrm{O}$ bonds lengths in (II) $[1.227$ (7) and 1.279 (6) \AA] are almost identical to those seen here.

S2. Experimental

Copper sulfate ($0.16 \mathrm{~g}, 1.0 \mathrm{mmol}$) was dissolved in methanol (20 ml). Then, 2,4,6-trimethyl pyridine ($0.264 \mathrm{ml}, 2.0$ mmol) was added to this solution, which turned green. This reaction mixture was refluxed for 30 minutes followed by addition of methacrylic acid $(0.169 \mathrm{ml}, 2.0 \mathrm{mmol})$, at which point the solution remained green. After refluxing for one hour, the solution was filtered and kept for a few days. Blue-green blocks of (I) were obtained from filtrate by slow evaporation.

S3. Refinement

Attempts were made to represent the disordered C 11 (nominal CH_{2} group) and C 12 (nominal CH_{3} group) atoms with a double-site model, but the refinement was unstable. The hydrogen atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=$
$0.93-0.96 \AA$) and refined as riding atoms with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$ or $1.5 \mathrm{U}_{\mathrm{eq}}($ methyl C). The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figure 1
The molecular structure of (I) showing 50% displacement ellipsoids. Symmetry code: (i) $1-x, 1-y, 1-z$.

Figure 2
Fragment of a [100] chain of complex molecules linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (double dashed lines). Symmetry code: (i) $1+x, y, z$.

Bis(methacrylato- κO)bis(2,4,6-trimethylpyridine- κN) copper(II)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}\right)_{2}\right]$
$M_{r}=476.06$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.2295$ (2) Å
$b=17.0921(6) \AA$
$c=9.1683$ (3) \AA
$\beta=109.220(1)^{\circ}$

$$
\begin{aligned}
& V=1217.73(7) \AA^{3} \\
& Z=2 \\
& F(000)=502 \\
& D_{\mathrm{x}}=1.298 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3020 \text { reflections } \\
& \theta=2.4-28.3^{\circ} \\
& \mu=0.93 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=296 \mathrm{~K}$
Block, blue-green

Data collection

Bruker APEXII CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.930, T_{\max }=0.947$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.098$
$S=1.05$
3017 reflections
146 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.08 \times 0.06 \times 0.06 \mathrm{~mm}$

$$
\begin{aligned}
& 11795 \text { measured reflections } \\
& 3017 \text { independent reflections } \\
& 2439 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=2.9^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-22 \rightarrow 21 \\
& l=-12 \rightarrow 12
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0554 P)^{2}+0.2257 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} *^{2} U_{\text {eq }}$
Cu1	0.5000	$0.66520(18)$	0.5000	0.5000
N1	$0.6584(2)$	$0.64975(10)$	$0.54344(15)$	$0.03574(11)$
C1	$0.7823(2)$	$0.70758(11)$	$0.64342(19)$	$0.0418(4)$
C2	0.7740	0.7465	0.7546	$0.0468(4)$
H2	$0.7941(2)$	$0.59402(10)$	$0.48251(18)$	0.056^{*}
C5	$0.2632(2)$	$0.57402(11)$	$0.2626(2)$	$0.0381(3)$
C9	$0.9184(2)$	$0.70825(11)$	$0.6297(2)$	$0.0437(4)$
C3	$0.7956(2)$	$0.53238(12)$	$0.3681(2)$	$0.0481(4)$
C8	0.7929	0.4817	0.4124	$0.0473(4)$
H8A	0.8984	0.5372	0.3410	0.071^{*}
H8B	0.6967	0.5385	0.2772	0.071^{*}
H8C	$0.9208(2)$	$0.65059(11)$	$0.5248(2)$	0.071^{*}
C4	1.0089	0.6499	0.4821	$0.0456(4)$
H4			0.055^{*}	

C6	$0.5137(3)$	$0.64778(13)$	$0.7083(3)$	$0.0599(5)$
H6A	0.4061	0.6456	0.6253	0.090^{*}
H6B	0.5173	0.6940	0.7686	0.090^{*}
H6C	0.5250	0.6024	0.7725	0.090^{*}
C10	$0.1618(3)$	$0.59108(12)$	$0.0974(2)$	$0.0568(5)$
C7	$1.0593(3)$	$0.76821(15)$	$0.6826(4)$	$0.0776(7)$
H7A	1.0113	0.8174	0.6986	0.116^{*}
H7B	1.1137	0.7743	0.6053	0.116^{*}
H7C	1.1429	0.7513	0.7776	0.116^{*}
C11	$-0.0020(4)$	$0.62688(19)$	$0.0676(4)$	$0.0899(9)$
H11A	-0.0557	0.6336	-0.0418	0.135^{*}
H11B	0.0123	0.6770	0.1175	0.135^{*}
H11C	-0.0730	0.5942	0.1069	0.135^{*}
C12	$0.2280(5)$	$0.57196(18)$	$-0.0179(3)$	$0.0934(9)$
H12A	0.1650	0.5824	-0.1205	0.112^{*}
H12B	0.3358	0.5486	0.0070	0.112^{*}
O1	$0.2181(2)$	$0.60068(11)$	$0.36686(17)$	$0.0675(4)$
O2	$0.39586(16)$	$0.53088(9)$	$0.28566(14)$	$0.0477(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.03618(17)$	$0.03855(17)$	$0.03315(16)$	$0.00306(11)$	$0.01229(11)$	$-0.00093(11)$
N 1	$0.0376(7)$	$0.0391(7)$	$0.0338(7)$	$0.0041(6)$	$0.0111(5)$	$-0.0006(5)$
C 1	$0.0445(9)$	$0.0422(9)$	$0.0369(8)$	$0.0073(7)$	$0.0111(7)$	$-0.0017(7)$
C 2	$0.0508(10)$	$0.0402(9)$	$0.0429(9)$	$0.0065(8)$	$0.0067(8)$	$-0.0061(7)$
C 5	$0.0382(8)$	$0.0397(8)$	$0.0357(8)$	$0.0064(7)$	$0.0110(6)$	$0.0032(6)$
C9	$0.0429(9)$	$0.0445(9)$	$0.0413(9)$	$-0.0048(7)$	$0.0105(7)$	$0.0056(7)$
C3	$0.0410(9)$	$0.0397(9)$	$0.0554(10)$	$0.0020(7)$	$0.0048(8)$	$0.0008(8)$
C8	$0.0463(10)$	$0.0512(10)$	$0.0501(10)$	$0.0021(8)$	$0.0234(8)$	$-0.0064(9)$
C4	$0.0385(9)$	$0.0440(9)$	$0.0541(10)$	$0.0036(7)$	$0.0148(8)$	$0.0042(8)$
C6	$0.0649(12)$	$0.0605(12)$	$0.0639(12)$	$0.0007(10)$	$0.0341(10)$	$-0.0178(10)$
C10	$0.0626(12)$	$0.0492(11)$	$0.0448(10)$	$-0.0087(9)$	$-0.0011(9)$	$0.0090(8)$
C7	$0.0593(14)$	$0.0602(14)$	$0.105(2)$	$-0.0122(11)$	$0.0164(13)$	$-0.0197(14)$
C11	$0.0769(17)$	$0.089(2)$	$0.0811(18)$	$0.0016(15)$	$-0.0048(13)$	$0.0307(16)$
C12	$0.131(2)$	$0.101(2)$	$0.0391(11)$	$0.0127(19)$	$0.0155(13)$	$-0.0022(13)$
O1	$0.0591(9)$	$0.0941(12)$	$0.0519(8)$	$0.0208(8)$	$0.0218(7)$	$0.0076(8)$
O2	$0.0486(7)$	$0.0534(7)$	$0.0385(6)$	$0.0038(6)$	$0.0109(5)$	$0.0035(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9406(12)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{Cu}-\mathrm{O} 2^{\mathrm{i}}$	$1.9406(12)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.0404(14)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0404(14)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 1-\mathrm{C} 1$	$1.352(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 5$	$1.352(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.381(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	0.9600

C1-C6	1.496 (3)
C2-C3	1.382 (3)
C2-H2	0.9300
C5-C4	1.381 (3)
C5-C8	1.490 (2)
C9-O1	1.222 (2)
C9-O2	1.276 (2)
C9-C10	1.498 (3)
C3-C4	1.382 (3)
C3-C7	1.503 (3)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	180.0
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	88.27 (6)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	91.73 (6)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	91.73 (6)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	88.27 (6)
N1- ${ }^{\text {i }}$ - $1-\mathrm{N} 1$	180.0
C1-N1-C5	118.81 (15)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$	121.25 (11)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cu} 1$	119.66 (11)
N1-C1-C2	121.22 (16)
N1-C1-C6	118.00 (16)
C2-C1-C6	120.77 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.78 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6
C3-C2-H2	119.6
N1-C5-C4	121.21 (15)
N1-C5-C8	117.99 (15)
C4-C5-C8	120.81 (15)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 2$	123.32 (17)
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$	120.46 (18)
O2-C9-C10	116.23 (17)
C4-C3-C2	117.10 (17)
C4-C3-C7	121.63 (19)
C2-C3-C7	121.26 (19)
C5-C8-H8A	109.5
C5-C8-H8B	109.5
H8A-C8-H8B	109.5
C5-C8-H8C	109.5
H8A-C8-H8C	109.5
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	115.81 (13)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	-64.19 (13)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	-70.31 (12)
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	109.69 (12)
C5-N1-C1-C2	-1.6 (2)
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	172.38 (13)
C5-N1-C1-C6	179.36 (16)

$\mathrm{C} 10-\mathrm{C} 12$	$1.378(4)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.422(4)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9600
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	0.9600
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	0.9300
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9300

H8B-C8-H8C 109.5
C5-C4-C3 120.81 (17)
119.6
119.6
109.5
109.5
109.5
109.5
109.5
109.5
122.9 (2)
120.0 (2)
117.1 (2)
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
109.5
120.0
120.0
120.0
113.19 (11)
2.3 (3)
-176.5 (2)
-0.7 (3)
179.34 (17)
-1.5 (3)
177.2 (2)
169.3 (2)

$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-6.7(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.7(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$178.31(18)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$2.3(2)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-171.75(12)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 8$	$-177.78(16)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 8$	$8.2(2)$

$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 12$	$-10.8(3)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-10.9(3)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$169.0(2)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 2-\mathrm{Cu} 1$	$8.1(2)$
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 2-\mathrm{Cu} 1$	$-171.85(13)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 9$	$86.87(13)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 9$	$-93.13(13)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4 — \mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.45	$3.338(2)$	161
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1$	0.96	2.49	$3.369(3)$	153
$\mathrm{C} 6-\mathrm{H} 6 C \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.48	$3.139(3)$	126
$\mathrm{C} 8-\mathrm{H} 8 A \cdots 1^{\mathrm{i}}$	0.96	2.49	$3.357(3)$	150
$\mathrm{C} 8-\mathrm{H} 8 C \cdots \mathrm{O} 2$	0.96	2.51	$3.124(2)$	122

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2095).

