organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-(4-Bromobutyl)-9H-carbazole

Qing-Peng Wang, Juan-Juan Chang, Hui-Zhen Zhang, Jing-Song Lv and Cheng-He Zhou*

Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China Correspondence e-mail: zhouch@swu.edu.cn

Received 7 March 2012; accepted 13 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.008 Å; *R* factor = 0.050; *wR* factor = 0.145; data-to-parameter ratio = 15.1.

In the title compound, $C_{16}H_{16}BrN$, the bromobutyl group lies on one side of the carbazole ring plane and has a zigzag shape. The dihedral angle between the two benzene rings is 0.55° . In the crystal, molecules are connected by van der Waals interactions.

Related literature

For charge-transport properties and π -conjugated systems in carbazoles, see: Zhang *et al.* (2010*a*). For the bioactivity of carbazole derivatives, see: Yan *et al.* (2011). For the synthesis of the title compound, see: Zhang *et al.* (2010*b*).

Experimental

Crystal data C₁₆H₁₆BrN

 $M_r = 302.20$

Orthorhombic, *Pbca* a = 7.696 (3) Å b = 22.658 (8) Å c = 16.030 (6) Å V = 2795.3 (18) Å³

Data collection

Bruker SMART CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T = 0.428 $T = 0.455$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ 163 parameters $wR(F^2) = 0.145$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 0.35$ e Å⁻³2460 reflections $\Delta \rho_{min} = -0.42$ e Å⁻³

Z = 8

Mo $K\alpha$ radiation

 $0.35 \times 0.33 \times 0.32$ mm

13981 measured reflections 2460 independent reflections 1252 reflections with $I > 2\sigma(I)$

 $\mu = 2.92 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int}=0.094$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2012B026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2343).

References

- Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Yan, J.-P., Zhou, C.-H., Ji, Q.-G. & Geng, R.-X. (2011). Int. J. Pharm. Res. 38, 118–122.

Zhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010b). Bioorg. Med. Chem. Lett. 20, 1881–1884.

Zhang, F.-F., Zhou, C.-H. & Yan, J.-P. (2010a). Chin. J. Org. Chem. 30, 783-796.

supporting information

Acta Cryst. (2012). E68, o1112 [https://doi.org/10.1107/S1600536812010987]

9-(4-Bromobutyl)-9H-carbazole

Qing-Peng Wang, Juan-Juan Chang, Hui-Zhen Zhang, Jing-Song Lv and Cheng-He Zhou

S1. Comment

Carbazole and its derivatives as an important type of aromatic compounds are being actively investigated for their special structural characteristics with desirable electronic charge-transport properties and π -conjugated system (Zhang *et al.*, 2010*a*). Large amount of bioactive carbazole derivatives have been reported to exert diverse biological activities such as antitumor, antimicrobial, antihistaminic, antioxidative, anti-inflammatory ones and so on (Yan *et al.*, 2011). Our interest is to develop novel carbazole compounds as medicinal agents. Herein, the molecular structure of the title compound, **I**, is reported.

The X-ray analysis of I shows that the carbon C4 and carbazole moiety (N1/C5-C16) belong to the same plane. The bromobutyl moiety lies in the same side of the carbon plane.

S2. Experimental

The title compound was synthesized according to the procedure of Zhang *et al.* (2010*b*). Single crystals were grown by slow evaporation of a solution of I in CHCl₃ at room temperature.

S3. Refinement

H atoms were placed at calculated positions with C—H = 0.93Å (aromatic) and 0.97Å (methylene). The $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

9-(4-Bromobutyl)-9H-carbazole

Crystal data

```
C<sub>16</sub>H<sub>16</sub>BrN
M_r = 302.20
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 7.696 (3) \text{ Å}
b = 22.658 (8) Å
c = 16.030 (6) Å
V = 2795.3 (18) Å<sup>3</sup>
Z = 8
```

Data collection

Bruker SMART CCD	13981 measured reflect
diffractometer	2460 independent refle
Radiation source: fine-focus sealed tube	1252 reflections with
Graphite monochromator	$R_{\rm int} = 0.094$
φ and ω scans	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 2.2$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Sheldrick, 1996)	$k = -26 \rightarrow 23$
$T_{\min} = 0.428, \ T_{\max} = 0.455$	$l = -19 \rightarrow 18$

F(000) = 1232 $D_{\rm x} = 1.436 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1683 reflections $\theta = 2.2 - 20.5^{\circ}$ $\mu = 2.92 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.35 \times 0.33 \times 0.32 \text{ mm}$

ctions ections $I > 2\sigma(I)$ 0

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.145$	neighbouring sites
S = 0.97	H-atom parameters constrained
2460 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0728P)^2]$
163 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	1.17750 (8)	0.51102 (3)	0.14901 (4)	0.0961 (4)
N1	0.4563 (4)	0.63416 (15)	0.0682 (2)	0.0503 (9)
C1	0.9838 (6)	0.5506 (2)	0.0916 (3)	0.0804 (16)
H1A	1.0214	0.5640	0.0371	0.097*
H1B	0.8887	0.5230	0.0840	0.097*
C2	0.9256 (7)	0.6005 (2)	0.1406 (3)	0.0728 (15)
H2A	1.0216	0.6275	0.1495	0.087*
H2B	0.8853	0.5869	0.1946	0.087*
C3	0.7738 (6)	0.6334 (2)	0.0939 (3)	0.0710 (16)
H3A	0.7660	0.6736	0.1143	0.085*
H3B	0.7995	0.6349	0.0347	0.085*
C4	0.6020 (6)	0.60279 (19)	0.1069 (3)	0.0589 (12)
H4A	0.6086	0.5633	0.0837	0.071*
H4B	0.5804	0.5991	0.1662	0.071*
C5	0.3858 (6)	0.6217 (2)	-0.0087 (3)	0.0534 (12)
C6	0.4334 (8)	0.5788 (2)	-0.0656 (3)	0.0744 (15)
H6	0.5249	0.5531	-0.0549	0.089*
C7	0.3397 (11)	0.5757 (3)	-0.1393 (4)	0.107 (2)
H7	0.3692	0.5475	-0.1791	0.128*
C8	0.2017 (10)	0.6140 (4)	-0.1546 (4)	0.106 (3)
H8	0.1403	0.6107	-0.2044	0.127*
C9	0.1550 (7)	0.6562 (3)	-0.0986 (4)	0.0820 (17)
Н9	0.0626	0.6815	-0.1095	0.098*
C10	0.2482 (6)	0.6607 (2)	-0.0248 (3)	0.0546 (12)
C11	0.2370 (5)	0.6987 (2)	0.0468 (3)	0.0517 (12)

supporting information

C12	0.1309 (6)	0.7458 (2)	0.0690 (4)	0.0684 (15)	
H12	0.0438	0.7587	0.0331	0.082*	
C13	0.1557 (7)	0.7729 (3)	0.1436 (4)	0.0810 (17)	
H13	0.0852	0.8046	0.1584	0.097*	
C14	0.2847 (7)	0.7542 (2)	0.1985 (4)	0.0744 (16)	
H14	0.2990	0.7734	0.2493	0.089*	
C15	0.3906 (6)	0.7079 (2)	0.1782 (3)	0.0576 (12)	
H15	0.4762	0.6952	0.2150	0.069*	
C16	0.3682 (5)	0.68078 (19)	0.1028 (3)	0.0462 (11)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0657 (4)	0.1089 (6)	0.1138 (6)	0.0220 (3)	0.0026 (3)	0.0376 (4)
N1	0.046 (2)	0.051 (2)	0.054 (3)	0.0042 (18)	-0.0053 (18)	0.0027 (19)
C1	0.068 (4)	0.086 (4)	0.087 (4)	0.003 (3)	0.000 (3)	0.013 (3)
C2	0.062 (3)	0.089 (4)	0.068 (4)	-0.010 (3)	0.001 (3)	-0.007 (3)
C3	0.049 (3)	0.070 (3)	0.094 (5)	0.004 (2)	0.000 (3)	0.017 (3)
C4	0.046 (3)	0.059 (3)	0.072 (3)	0.006 (2)	-0.002 (3)	0.011 (3)
C5	0.055 (3)	0.047 (3)	0.058 (3)	-0.011 (2)	0.008 (3)	0.006 (3)
C6	0.101 (4)	0.060 (3)	0.062 (4)	-0.010 (3)	0.003 (3)	0.004 (3)
C7	0.171 (8)	0.082 (5)	0.067 (5)	-0.049 (5)	0.010 (5)	-0.003 (4)
C8	0.151 (7)	0.095 (5)	0.072 (5)	-0.050 (5)	-0.043 (5)	0.022 (4)
C9	0.090 (4)	0.085 (4)	0.071 (4)	-0.030 (3)	-0.028 (4)	0.031 (4)
C10	0.050 (3)	0.060 (3)	0.054 (4)	-0.014 (2)	-0.003 (2)	0.015 (3)
C11	0.036 (2)	0.056 (3)	0.063 (4)	-0.002 (2)	0.003 (2)	0.024 (3)
C12	0.053 (3)	0.074 (4)	0.079 (4)	0.011 (3)	0.007 (3)	0.028 (3)
C13	0.075 (4)	0.071 (4)	0.097 (5)	0.020 (3)	0.030 (4)	0.013 (4)
C14	0.087 (4)	0.077 (4)	0.060 (4)	0.007 (3)	0.018 (3)	0.004 (3)
C15	0.056 (3)	0.067 (3)	0.050 (3)	0.003 (3)	0.003 (2)	0.009 (3)
C16	0.043 (3)	0.049 (3)	0.046 (3)	-0.002(2)	0.006 (2)	0.010 (2)

Geometric parameters (Å, °)

Br1—C1	1.968 (5)	С6—Н6	0.9300
N1-C16	1.372 (5)	C7—C8	1.394 (10)
N1C5	1.377 (5)	C7—H7	0.9300
N1C4	1.465 (5)	C8—C9	1.361 (9)
C1—C2	1.447 (7)	C8—H8	0.9300
C1—H1A	0.9700	C9—C10	1.386 (7)
C1—H1B	0.9700	С9—Н9	0.9300
C2—C3	1.575 (6)	C10—C11	1.437 (7)
C2—H2A	0.9700	C11—C12	1.391 (7)
C2—H2B	0.9700	C11—C16	1.411 (6)
C3—C4	1.507 (6)	C12—C13	1.358 (7)
С3—НЗА	0.9700	C12—H12	0.9300
С3—Н3В	0.9700	C13—C14	1.392 (8)
C4—H4A	0.9700	C13—H13	0.9300

C4—H4B	0.9700	C14—C15	1.367 (6)
C5—C6	1.382 (6)	C14—H14	0.9300
C5—C10	1.403 (6)	C15—C16	1.368 (6)
C6—C7	1.386 (8)	C15—H15	0.9300
C16—N1—C5	108.9 (4)	С7—С6—Н6	121.3
C16—N1—C4	125.6 (4)	C6—C7—C8	121.0 (7)
C5—N1—C4	125.5 (4)	С6—С7—Н7	119.5
C2—C1—Br1	109.7 (4)	С8—С7—Н7	119.5
C2—C1—H1A	109.7	C9—C8—C7	121.5 (6)
Br1—C1—H1A	109.7	С9—С8—Н8	119.2
C2—C1—H1B	109.7	С7—С8—Н8	119.2
Br1—C1—H1B	109.7	C8—C9—C10	118.5 (6)
H1A—C1—H1B	108.2	С8—С9—Н9	120.7
C1—C2—C3	110.0 (4)	С10—С9—Н9	120.7
C1—C2—H2A	109.7	C9—C10—C5	120.1 (5)
C3—C2—H2A	109.7	C9—C10—C11	133.9 (5)
C1—C2—H2B	109.7	C5-C10-C11	106.0 (4)
C3—C2—H2B	109.7	C12—C11—C16	118.5 (5)
H2A—C2—H2B	108.2	C12—C11—C10	134.4 (5)
C4—C3—C2	111.6 (4)	C16—C11—C10	107.1 (4)
С4—С3—НЗА	109.3	C13—C12—C11	119.4 (5)
С2—С3—НЗА	109.3	C13—C12—H12	120.3
C4—C3—H3B	109.3	C11—C12—H12	120.3
С2—С3—Н3В	109.3	C12—C13—C14	121.3 (5)
НЗА—СЗ—НЗВ	108.0	C12—C13—H13	119.4
N1—C4—C3	113.0 (4)	C14—C13—H13	119.4
N1—C4—H4A	109.0	C15—C14—C13	120.6 (5)
C3—C4—H4A	109.0	C15—C14—H14	119.7
N1—C4—H4B	109.0	C13—C14—H14	119.7
C3—C4—H4B	109.0	C14—C15—C16	118.6 (4)
H4A—C4—H4B	107.8	C14—C15—H15	120.7
N1—C5—C6	129.1 (5)	C16—C15—H15	120.7
N1-C5-C10	109.5 (4)	C15—C16—N1	129.8 (4)
C6—C5—C10	121.4 (5)	C15—C16—C11	121.6 (4)
C5—C6—C7	117.4 (6)	N1—C16—C11	108.5 (4)
С5—С6—Н6	121.3		
Br1—C1—C2—C3	178.5 (3)	C9—C10—C11—C12	-1.1 (9)
C1—C2—C3—C4	80.9 (5)	C5-C10-C11-C12	179.6 (5)
C16—N1—C4—C3	-83.0 (5)	C9—C10—C11—C16	179.2 (5)
C5—N1—C4—C3	96.9 (5)	C5-C10-C11-C16	-0.1 (5)
C2-C3-C4-N1	176.7 (4)	C16—C11—C12—C13	-0.3 (7)
C16—N1—C5—C6	179.6 (4)	C10-C11-C12-C13	180.0 (5)
C4—N1—C5—C6	-0.3 (7)	C11—C12—C13—C14	-0.3 (8)
C16—N1—C5—C10	-0.2 (5)	C12-C13-C14-C15	0.2 (8)
C4—N1—C5—C10	179.8 (4)	C13—C14—C15—C16	0.6 (7)
N1—C5—C6—C7	-180.0 (5)	C14—C15—C16—N1	179.9 (4)

C10—C5—C6—C7	-0.2 (7)	C14-C15-C16-C11	-1.2 (6)
C5—C6—C7—C8	-0.6 (8)	C5—N1—C16—C15	179.2 (4)
C6—C7—C8—C9	0.6 (10)	C4—N1—C16—C15	-0.9 (7)
C7—C8—C9—C10	0.1 (9)	C5—N1—C16—C11	0.2 (4)
C8—C9—C10—C5	-0.9 (7)	C4-N1-C16-C11	-179.9 (3)
C8—C9—C10—C11	179.9 (5)	C12-C11-C16-C15	1.1 (6)
N1-C5-C10-C9	-179.2 (4)	C10-C11-C16-C15	-179.1 (4)
C6—C5—C10—C9	0.9 (7)	C12-C11-C16-N1	-179.8 (3)
N1-C5-C10-C11	0.2 (5)	C10-C11-C16-N1	0.0 (5)
C6—C5—C10—C11	-179.6 (4)		