Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis\{N-[(diethylamino)dimethylsilyl]-anilinido- $\kappa^{2} N, N^{\prime}$ \}nickel(II)

Juan Chen ${ }^{\text {a* }}$ and Jing Li ${ }^{\text {b }}$

${ }^{\text {a Department }}$ of Chemistry, Taiyuan Teachers College, Taiyuan 030031, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
Correspondence e-mail: sdbai@sxu.edu.cn
Received 22 February 2012; accepted 26 February 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.040 ; w R$ factor $=0.104 ;$ data-to-parameter ratio $=17.1$.

The mononuclear $\mathrm{Ni}^{\mathrm{II}}$ amide, $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Si}\right)_{2}\right]$, has the $\mathrm{Ni}^{\mathrm{II}}$ atom N, N^{\prime}-chelated by the N-silylated anilinide ligands. The ligands are arranged cis to each other and obey the $C_{2^{-}}$ symmetry operation. The two ends of the $\mathrm{N}-\mathrm{Si}-\mathrm{N}$ chelating unit exhibit different affinities for the metal atom: the Ni $\mathrm{N}_{\text {anilinide }}$ bond length is 1.913 (3) \AA and $\mathrm{Ni}-\mathrm{N}_{\text {amine }}$ is 2.187 (3) \AA. The four-coordinate $\mathrm{Ni}^{\mathrm{II}}$ ion demonstrates a distorted tetrahedral geometry.

Related literature

For related reviews of metal amides, see: Holm et al. (1996); Kempe (2000). For the catalytic applications of related N silylated anilinide group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998); Hill \& Hitchcock (2002); Yuan et al. (2010); Zai et al. (2010). For related organometallic compounds with analogous anilinide ligands, see: Schumann et al. (2000); Chen (2008, 2009).

Experimental

Crystal data
$\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Si}\right)_{2}\right]$
$M_{r}=501.49$
Orthorhombic, Fdd2
$a=21.2631$ (11) \AA
$b=30.0347$ (16) \AA
$c=8.6228(5) \AA$

Data collection

Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.823, T_{\text {max }}=0.855$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
2414 reflections
141 parameters
1 restraint
$V=5506.8(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.81 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$

6217 measured reflections
2414 independent reflections
2145 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.48 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1038 Friedel pairs
Flack parameter: 0.012 (17)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This work was performed under the sponsorship of the Natural Science Foundation of China (20702029) and the Natural Science Foundation of Shanxi Province (2008011024).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2340).

References

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J. (2008). Acta Cryst. E64, m938.
Chen, J. (2009). Acta Cryst. E65, m1307.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gibson, V. C., Kimberley, B. S., White, A. J. P., Williams, D. J. \& Howard, P. (1998). Chem. Commun. pp. 313-314.

Hill, M. S. \& Hitchcock, P. B. (2002). Organometallics, 21, 3258-3262.
Holm, R. H., Kenneppohl, P. \& Solomon, E. I. (1996). Chem. Rev. 96, 22392314.

Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.
Schumann, H., Gottfriedsen, J., Dechert, S. \& Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747-758.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. \& Sun, W. H. (2010). Organometallics, 29, 2085-2092.
Zai, S. B., Liu, F. S., Gao, H. Y., Li, C., Zhou, G. Y., Cheng, S., Guo, L. H., Zhang, L., Zhu, F. M. \& Wu, Q. (2010). Chem. Commun. 46, 4321-4323.

supporting information

Acta Cryst. (2012). E68, m357 [https://doi.org/10.1107/S1600536812008550]

Bis\{N-[(diethylamino)dimethylsilyl]anilinido- $\left.\kappa^{2} N, N^{\prime}\right\}$ nickel(II)

Juan Chen and Jing Li

S1. Comment

Metal amides were important substitutes for cyclopentadienyl derivatives and were found to have valuable applications in various industrial and biological processes (Holm et al., 1996; Kempe, 2000). Group 4 metal amides with the N-silylated anilinide ligands were active catalysts for olefin polymerization (Gibson et al., 1998; Hill \& Hitchcock, 2002). Our research interest focused on N-silylated anilinide ligands bearing a pendant amino group. Analogous compounds with different metals including Zn (Schumann et al., 2000), Zr (Chen, 2009) and Fe (Chen, 2008) have been synthesized and the zirconium compounds were reported showing good performance in ethylene polymerization (Yuan et al., 2010). Recently, a kind of bidentate N-donor ligand supported nickel complex activated by MAO was used as a catalyst conducting longstanding living ethylene polymerization (Zai et al., 2010). In view of the importance of these compounds, the synthesis and crystal structure of a new nickel(II) anilinide complex is reported.
The title compound was prepared by one-pot reaction of $\mathrm{LiBu} u^{n}, N-\left[\left(\right.\right.$ diethylamino)dimethylsilyl]aniline and NiCl_{2}. It is monomeric and the ligand has an $\mathrm{N}-\mathrm{Si}-\mathrm{N}$ chelating group. It is presumed that the empty d-orbitals on silicon would interact with the lone-pair electrons on the p-orbital of nitrogen center through a $d \cdots p \pi$ interaction, resulting in a "quasi" conjugated $\mathrm{N} — \mathrm{Si}-\mathrm{N}$ motif. Compared with rigid $\mathrm{N}-\mathrm{C}-\mathrm{N}$ chelating unit in the amidinate ligand, the $\mathrm{N} 1 — \mathrm{Si} 1-\mathrm{N} 2$ chelating group is much flexible. The Ni center is fixed by two ligands. Each ligand bites the center with an N1—Ni1N 2 angle of $77.82(11)^{\circ}$. As biting the metal center, the angle of $\mathrm{N} 1 — \mathrm{Si} 1 — \mathrm{~N} 2$ is constrained to be $95.28(13)^{\circ}$. The two ends of the $\mathrm{N} — \mathrm{Si}-\mathrm{N}$ chelating unit exhibit different affinities for the metal center. $\mathrm{Ni}-\mathrm{N}_{\text {anilinide }}$ bond is 1.913 (3) \AA and $\mathrm{Ni}-\mathrm{N}_{\text {amino }}$ bond is 2.187 (3) \AA. The coordinate geometry of $\mathrm{N}_{\text {anilinide }}$ atom is trigonal planar (sum of three angles around it being 359°). Both distances of Si1—N1 (1.699 (3) \AA) and N1—C1 (1.375 (4) \AA) are short. It suggests a certain degree delocalization of the lone-pair electron density from the p-orbital of N 1 to the π-orbital of the phenylsubstituent. The two ligands around the Ni atom are arranged cis to each other and obey the C_{2} symmetry operation. The four-coordinate Ni atom demonstrates a distorted tetrahedral geometry.

S2. Experimental

A solution of $\mathrm{LiB} B u^{n}(1.6 M, 1.9 \mathrm{ml}, 3.0 \mathrm{mmol})$ in hexane was slowly added into a solution of N-[(diethylamino)dimethylsilyl]aniline $(0.67 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\operatorname{THF}(20 \mathrm{ml})$ at 273 K by syringe. The mixture was stirred at room temperature for two hours and then added to a stirring suspension of $\mathrm{NiCl}_{2}(0.20 \mathrm{~g}, 1.5 \mathrm{mmol})$ in $T H F(20 \mathrm{ml})$ at 273 K . The resulting mixture was stirred at room temperature for 8 h . Then all the volatiles were removed under vacuum. The residue was extracted with toluene $(25 \mathrm{ml})$. The filtrate was concentrated to give the title compound as red crystals (yield $0.39 \mathrm{~g}, 52 \%$). M.p.: 451-452 K. MS (EI, 70 eV): $m / z 502[M]^{+}$. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{Ni}_{2} \mathrm{~N}_{4} \mathrm{Si}_{2}$: C, $57.48 ; \mathrm{H}, 8.44 ; \mathrm{N}, 11.17 \%$. Found: C, 56.99; H, 8.13; N, 10.93\%.

S3. Refinement

The methyl H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Si}$ bonds. The methylene H atoms were constrained with C —H distances of $0.97 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) $-x+3 / 2,-y+1 / 2, z$.

Bis\{N-[(diethylamino)dimethylsilyl]anilinido- $\left.\kappa^{2} N, N^{\prime}\right\}$ nickel(II)

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{Si}\right)_{2}\right]$
$M_{r}=501.49$
Orthorhombic, Fdd2
Hall symbol: F 2 -2d
$a=21.2631$ (11) \AA
$b=30.0347(16) \AA$
$c=8.6228$ (5) \AA
$V=5506.8(5) \AA^{3}$
$Z=8$
$F(000)=2160$

$$
\begin{aligned}
& D_{\mathrm{x}}=1.210 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Melting point }=451-452 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 2035 \text { reflections } \\
& \theta=2.1-26.4^{\circ} \\
& \mu=0.81 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Block, red } \\
& 0.25 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.823, T_{\text {max }}=0.855$

> 6217 measured reflections
> 2414 independent reflections
> 2145 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.029$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-25 \rightarrow 22$
> $k=-36 \rightarrow 34$
> $l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
2414 reflections
141 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0724 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.48$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}
Absolute structure: Flack (1983), 1038 Friedel pairs
Absolute structure parameter: 0.012 (17)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cells.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ni1	0.7500	0.2500	$0.59583(5)$	$0.03740(17)$
Si1	$0.62152(4)$	$0.24725(3)$	$0.62421(11)$	$0.0448(3)$
N1	$0.67563(11)$	$0.23000(10)$	$0.4923(4)$	$0.0430(6)$
N2	$0.67555(11)$	$0.28051(8)$	$0.7349(4)$	$0.0426(6)$
C1	$0.67006(15)$	$0.20291(10)$	$0.3645(4)$	$0.0431(7)$
C2	$0.72350(19)$	$0.18285(13)$	$0.2987(4)$	$0.0564(9)$
H2A	0.7629	0.1889	0.3405	0.068^{*}
C3	$0.7188(2)$	$0.15423(13)$	$0.1727(4)$	$0.0622(10)$
H3A	0.7550	0.1413	0.1318	0.075^{*}
C4	$0.6615(2)$	$0.14486(13)$	$0.1082(5)$	$0.0700(11)$
H4A	0.6585	0.1255	0.0244	0.084^{*}
C5	$0.6092(2)$	$0.16427(14)$	$0.1681(5)$	$0.0663(11)$
H5A	0.5702	0.1585	0.1233	0.080^{*}
C6	$0.61285(17)$	$0.19221(13)$	$0.2936(4)$	$0.0567(9)$
H6A	0.5760	0.2045	0.3330	0.068^{*}

C7	$0.58850(18)$	$0.20036(14)$	$0.7411(5)$	$0.0668(11)$
H7A	0.5435	0.2026	0.7434	0.100^{*}
H7B	0.6046	0.2019	0.8449	0.100^{*}
H7C	0.6005	0.1725	0.6949	0.100^{*}
C8	$0.55404(18)$	$0.28164(14)$	$0.5536(7)$	$0.0819(15)$
H8A	0.5153	0.2690	0.5902	0.123^{*}
H8B	0.5540	0.2821	0.4423	0.123^{*}
H8C	0.5582	0.3115	0.5921	0.123^{*}
C9	$0.6760(2)$	$0.27464(13)$	$0.9052(5)$	$0.0579(9)$
H9A	0.7149	0.2870	0.9452	0.069^{*}
H9B	0.6764	0.2430	0.9274	0.069^{*}
C10	$0.6211(2)$	$0.29574(18)$	$0.9940(7)$	$0.0892(15)$
H10A	0.6261	0.2903	1.1030	0.134^{*}
H10B	0.5822	0.2829	0.9592	0.134^{*}
H10C	0.6205	0.3273	0.9754	0.134^{*}
C11	$0.67674(16)$	$0.32842(11)$	$0.6879(5)$	$0.0531(9)$
H11A	0.6419	0.3436	0.7375	0.064^{*}
H11B	0.6704	0.3303	0.5766	0.064^{*}
C12	$0.73718(17)$	$0.35238(12)$	$0.7289(6)$	$0.0634(10)$
H12A	0.7347	0.3828	0.6948	0.095^{*}
H12B	0.7719	0.3379	0.6787	0.095^{*}
H12C	0.7432	0.3516	0.8392	0.095^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.0262(3)$	$0.0458(3)$	$0.0402(3)$	$-0.0003(2)$	0.000	0.000
Si1	$0.0273(4)$	$0.0509(5)$	$0.0561(8)$	$0.0002(3)$	$0.0019(4)$	$-0.0001(4)$
N1	$0.0295(13)$	$0.0548(16)$	$0.0446(15)$	$-0.0033(11)$	$-0.0011(12)$	$0.0014(13)$
N2	$0.0320(13)$	$0.0449(15)$	$0.0510(16)$	$0.0044(10)$	$0.0024(13)$	$0.0001(13)$
C1	$0.0439(17)$	$0.0488(17)$	$0.0365(18)$	$-0.0049(13)$	$-0.0020(14)$	$0.0065(14)$
C2	$0.0478(19)$	$0.075(2)$	$0.046(2)$	$-0.0021(17)$	$-0.0036(16)$	$-0.0034(17)$
C3	$0.073(3)$	$0.070(2)$	$0.0439(19)$	$0.008(2)$	$0.004(2)$	$-0.0073(18)$
C4	$0.106(3)$	$0.063(2)$	$0.0407(19)$	$-0.013(2)$	$-0.009(2)$	$-0.0014(18)$
C5	$0.073(3)$	$0.075(3)$	$0.052(2)$	$-0.018(2)$	$-0.012(2)$	$0.0021(19)$
C6	$0.048(2)$	$0.066(2)$	$0.056(2)$	$-0.0136(16)$	$-0.0102(18)$	$0.0067(17)$
C7	$0.062(2)$	$0.070(2)$	$0.068(3)$	$-0.0159(19)$	$0.021(2)$	$0.001(2)$
C8	$0.0393(19)$	$0.080(3)$	$0.126(5)$	$0.0105(18)$	$-0.028(2)$	$0.004(3)$
C9	$0.063(2)$	$0.059(2)$	$0.052(2)$	$0.0005(17)$	$0.0074(18)$	$-0.0018(18)$
C10	$0.089(3)$	$0.102(3)$	$0.077(3)$	$0.010(2)$	$0.027(3)$	$-0.012(3)$
C11	$0.0448(18)$	$0.0486(19)$	$0.066(2)$	$0.0059(14)$	$0.0031(16)$	$-0.0046(16)$
C12	$0.061(2)$	$0.047(2)$	$0.082(3)$	$-0.0021(16)$	$-0.010(2)$	$-0.0029(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ni} 1-\mathrm{N} 1$	$1.913(3)$	C5-C6	$1.372(6)$
$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.913(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.187(3)$	C6-H6A	0.9300

Ni1-N2	2.187 (3)
Ni1-Si1 ${ }^{\text {i }}$	2.7441 (8)
Ni1-Sil	2.7441 (8)
Si1-N1	1.699 (3)
Si1-N2	1.797 (3)
Si1-C7	1.869 (4)
Si1-C8	1.870 (4)
N1-C1	1.375 (4)
N2-C9	1.479 (5)
N2-C11	1.495 (4)
C1-C6	1.399 (5)
C1-C2	1.406 (5)
C2-C3	1.389 (5)
C2-H2A	0.9300
C3-C4	1.369 (6)
C3-H3A	0.9300
C4-C5	1.359 (6)
C4-H4A	0.9300
N1-Ni1-N1 ${ }^{\text {i }}$	124.35 (18)
N1-Ni1-N2 ${ }^{\text {i }}$	136.28 (10)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 2^{\text {i }}$	77.82 (11)
N1-Ni1-N2	77.82 (11)
N1- ${ }^{\text {i }}$ - $11-\mathrm{N} 2$	136.28 (10)
N2- ${ }^{\text {i }}$ - $11-\mathrm{N} 2$	113.51 (15)
N1-Ni1-Si1 ${ }^{\text {i }}$	150.95 (9)
N1-Ni1-Sil ${ }^{\text {i }}$	37.73 (9)
N2 ${ }^{\text {i }}$-Ni1- $\mathrm{Sil}^{\text {i }}$	40.81 (7)
N2-Ni1-Si1 ${ }^{\text {i }}$	131.23 (8)
N1—Ni1—Sil	37.73 (9)
N1 ${ }^{\text {i }}$-Ni1-Si1	150.95 (9)
N2 ${ }^{\text {i }}$-Ni1-Sil	131.23 (8)
N2—Ni1—Sil	40.81 (7)
Si1- ${ }^{\text {i }}$ Ni1— ${ }^{\text {Sil }}$	169.77 (4)
N1-Si1-N2	95.28 (13)
N1-Si1-C7	112.69 (18)
N2-Si1-C7	111.89 (18)
N1-Si1-C8	118.0 (2)
N2-Si1-C8	110.88 (17)
C7-Si1-C8	107.7 (2)
C7-Si1-Ni1	116.41 (13)
C8-Si1-Ni1	135.91 (16)
C1-N1-Sil	131.2 (2)
C1-N1-Ni1	129.1 (2)
Si1-N1-Ni1	98.73 (15)
C9-N2-C11	112.6 (3)
C9-N2-Sil	117.7 (2)
C11-N2-Si1	113.7 (2)

C7-H7A	0.9600
С7- 77 -	0.9600
C7-H7C	0.9600
C8-H8A	0.9600
С8-Н8B	0.9600
С8-H8C	0.9600
C9-C10	1.534 (6)
C9—H9A	0.9700
C9-H9B	0.9700
C10-H10A	0.9600
C10-H10B	0.9600
C10-H10C	0.9600
C11-C12	1.515 (5)
C11-H11A	0.9700
C11-H11B	0.9700
C12-H12A	0.9600
C12-H12B	0.9600
C12-H12C	0.9600
C3-C4-H4A	120.4
C4-C5-C6	121.0 (4)
C4-C5-H5A	119.5
C6-C5-H5A	119.5
C5-C6-C1	122.3 (4)
C5-C6-H6A	118.8
C1-C6-H6A	118.8
Si1-C7-H7A	109.5
Si1-C7-H7B	109.5
H7A-C7-H7B	109.5
Si1-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
Sil-C8-H8A	109.5
Sil-C8-H8B	109.5
H8A-C8-H8B	109.5
Si1-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
N2-C9-C10	116.2 (4)
N2-C9-H9A	108.2
C10-C9-H9A	108.2
N2-C9-H9B	108.2
C10-C9-H9B	108.2
H9A-C9-H9B	107.4
C9-C10-H10A	109.5
C9-C10-H10B	109.5
H10A-C10-H10B	109.5
C9-C10-H10C	109.5

C9-N2-Ni1	119.3 (2)	H10A-C10-H10C	109.5
C11-N2-Ni1	104.02 (19)	H10B-C10-H10C	109.5
Si1-N2-Nil	86.48 (12)	N2-C11-C12	114.1 (3)
N1-C1-C6	124.1 (3)	N2-C11-H11A	108.7
N1-C1-C2	120.5 (3)	C12-C11-H11A	108.7
C6-C1-C2	115.4 (3)	N2-C11-H11B	108.7
C3-C2-C1	121.5 (4)	C12-C11-H11B	108.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.2	H11A-C11-H11B	107.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.2	C11-C12-H12A	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.6 (4)	C11-C12-H12B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.7	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	109.5
C2-C3-H3A	119.7	C11-C12-H12C	109.5
C5-C4-C3	119.1 (4)	$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5
C5-C4-H4A	120.4	$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}$	109.5

Symmetry code: (i) $-x+3 / 2,-y+1 / 2, z$.

