

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2,2'-Bipyridine-6,6'-dicarboxylato- $\kappa^3 N, N', O^6$)(6'-carboxy-2,2'-bipyridine-6-carboxylato- $\kappa^3 N, N', O^6$)cobalt(III)

Huimin Wang,^a Xiaojun Gu,^b Bingbing Zhang^a and Haiquan Su^a*

^aCollege of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China Correspondence e-mail: haiquansu@yahoo.com

Received 2 March 2012; accepted 6 March 2012

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.091; data-to-parameter ratio = 11.0.

The Co^{III} atom in the title compound, $[Co(C_{12}H_6N_2O_4)-(C_{12}H_7N_2O_4)]$, is six-coordinated in a distorted octahedral geometry by four N atoms and two O atoms of the chelating 2,2'-bipyridine-6,6'-dicarboxylate and 6'-carboxy-2,2'-bipyridine-6-carboxylate ligands. Intermolecular O-H···O hydrogen bonds and face-to-face π -stacking interactions [centroid–centroid distance = 3.6352 (16) Å] between inversion-related pyridine rings link adjacent mononuclear units into a two-dimensional supramolecular structure, and several intermolecular C-H···O interactions are also observed.

Related literature

For the structure of a Co^{II} compound with pyridine-2,6dicarboxylate and 4,4'-bipyridine, see: Ghosh *et al.* (2005). For the structures and thermal properties of five Ln^{III} (Ln is a lanthanide) compounds with the title ligand, see: Wang *et al.* (2010), for a related Rh^{III} compound with the title ligand, see: Wang *et al.* (2012) and for a related Ni^{II} compound with the title ligand, see: Wang, Su *et al.* (2009). For the structures and magnetic properties of $[Gd^{III}_4Co^{II}Co^{III}(\mu_3-OH)_3(\mu_3-O)-$ (pydc)₆(H₂O)₅]·8H₂O (pydc = 2,5-pyridinedicarboxylate dianion), see: Wang, Yue *et al.* (2009).

Experimental

Crystal data $\begin{bmatrix} Co(C_{12}H_6N_2O_4)(C_{12}H_7N_2O_4) \end{bmatrix} \\ M_r = 544.31 \\ Monoclinic, P2_1/c \\ a = 9.3329 (19) Å \\ b = 13.561 (3) Å \\ c = 16.894 (3) Å \\ \beta = 100.70 (3)^{\circ} \end{bmatrix}$

Data collection

```
Rigaku Saturn CCD area-detector
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
T_{\rm min} = 0.803, T_{\rm max} = 0.933
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.091$ S = 1.063696 reflections 13969 measured reflections 3696 independent reflections 3219 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.043$

V = 2101.0 (7) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.20 \times 0.08 \text{ mm}$

 $\mu = 0.88 \text{ mm}^{-1}$

T = 153 K

Z = 4

335 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O10−H10A···O7 ⁱ	0.82	1.65	2.445 (3)	164
$C15-H15\cdots O2^{i}$	0.93	2.58	3.391 (3)	147
C8−H8···O10 ⁱⁱ	0.93	2.41	3.142 (3)	135
C16−H16···O6 ⁱⁱⁱ	0.93	2.52	3.044 (3)	116
C20−H20···O1 ^{iv}	0.93	2.55	3.315 (3)	140
$C22-H22\cdots O9^{v}$	0.93	2.35	3.091 (3)	136
Symmetry codes:	(i) $x, -y +$	$\frac{3}{2}, z - \frac{1}{2};$ (ii)	$-x + 1, y + \frac{1}{2},$	$-z + \frac{3}{2};$ (iii)
$-x+2, y-\frac{1}{2}, -z+\frac{3}{2}$; (i	v) $-x + 2, -y$	i = 1, -i = 2; (v)	-x+1, -y+1, -y	$-z + \tilde{2}$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

This project was supported financially by the National Natural Science Foundation of China (grant No. 21166014) and a Key Grant of the Inner Mongolia Natural Science Foundation of China (grant No. 2010ZD01).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2056).

References

Brandenburg, K. & Putz, H. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Ghosh, S., Ribas, J. & Bharadwaj, P. (2005). Cryst. Growth Des. 5, 623-629.

Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, H., Gu, X., Zhang, B., Su, H. & Hu, M. (2012). Acta Cryst. E68, m290– m291.
- Wang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352–m353.
- Wang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92–100.
 Wang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9, 368–371.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m411–m412 [https://doi.org/10.1107/S1600536812009816]

(2,2'-Bipyridine-6,6'-dicarboxylato- $\kappa^3 N, N', O^6$)(6'-carboxy-2,2'-bipyridine-6-carboxylato- $\kappa^3 N, N', O^6$)cobalt(III)

Huimin Wang, Xiaojun Gu, Bingbing Zhang and Haiquan Su

S1. Comment

In recent years, many bipyridine dicarboxylic acid ligands such as 2,2'-dipyridine-4,4'-dicarboxylic acid, 2,2'-dipyridine-5,5'-dicarboxylic acid and 2,2'-dipyridine-6,6'-dicarboxylic acid have been used in metal–organic coordination chemistry because of their diverse coordination modes, which leads to more stable and fascinating architectures (Wang *et al.*, 2012). Some X-ray crystal structures constructed from the title ligand and metal ions, such as [NiL₂].4H₂O (Wang, Su *et al.*, 2009), [Ln₃L₄(*HL*)(H₂O)₂].12H₂O (Ln=Ce, Nd, Pr) (Wang *et al.*, 2010) and [RhL(*HL*)] (Wang *et al.*, 2012), have been investigated previously. In this work, we report the synthesis and structure of the title compound, and a careful literature survey showed that it is the first compound constructed from Co^{III} ion and the title ligand.

In the title compound, the Co^{III} center is six-coordinated in a distorted octahedral geometry by four N atoms and two O atoms of two chelating ligands *L* and *HL* ($H_2L=2,2'$ -bipyridine-6,6'-dicarboxylic acid) (Fig. 1). Support for the assignment of a +3 oxidation state to Co comes from the Co—N and Co—O bond distances [1.8546 (19) and 1.9941 (19) Å for Co—N bonds and 1.9018 (16) and 1.9055 (18) Å for Co—O bonds which are shorter than those reported for Co^{II} compounds (Ghosh *et al.*, 2005; Wang, Yue *et al.*, 2009). The coordinated bipyridine fragments are nearly coplanar [see torsion angles = 2.0 (3) and 2.2 (3)° in Table 1].

In the structure, the hydrogen-bond donor O10 is connected to the acceptor O7 from adjacent molecule to form a onedimensional chain along the c-axis (O10—H10A···O7ⁱ = 1.65 Å, i = x, -y+3/2, z-1/2, Table 2). Moreover, the adjacent chains are linked into a two-dimensional layer by π - π contacts between inversion-related pyridine rings with Cg7···Cg8ii distance of 3.6352 Å (Fig. 2). Cg7 and Cg8 are the centroids of the pyridine rings (N3, C14–C18) and (N4, C19–C23), respectively (symmetry code: ii = -x, 1-y, -z). Several intermolecular C—H···O interactions contribute to stabilize the crystal structure.

S2. Experimental

The title compound was obtained by the reaction of the mixture of $Co(NO_3)_2.6H_2O$, and 2,2'-dipyridine-6,6'-dicarboxylic acid in a molar ratio of 1:0.8 and 8 ml of water under hydrothermal conditions (at 393 K for 4 days and cooled to room temperature with a 2 K h⁻¹ rate). The brown block crystals were washed by water (Yield: 30%).

S3. Refinement

The H atoms were placed in geometrically idealized positions (C—H = 0.95 Å and O—H = 0.82–0.84 Å) with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figure 1 The structure of the title compound with 50% probability displacement ellipsoids.

Figure 2

The two-dimensional layer structure of the title compound *via* hydrogen bonds and face-to-face π -stacking interactions.

(2,2'-Bipyridine-6,6'-dicarboxylato- $\kappa^3 N, N', O^6)(6'$ - carboxy-2,2'-bipyridine-6-carboxylato- $\kappa^3 N, N', O^6)$ cobalt(III)

Z = 4

F(000) = 1104 $D_x = 1.721 \text{ Mg m}^{-3}$

 $\mu = 0.88 \text{ mm}^{-1}$

Block, brown

 $0.26 \times 0.20 \times 0.08 \text{ mm}$

T = 153 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Crystal data

 $[Co(C_{12}H_6N_2O_4)(C_{12}H_7N_2O_4)]$ $M_r = 544.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.3329 (19) Å b = 13.561 (3) Å c = 16.894 (3) Å $\beta = 100.70$ (3)° V = 2101.0 (7) Å³

Data collection

Rigaku Saturn CCD area-detector diffractometer	13969 measured reflections 3696 independent reflections
Radiation source: fine-focus sealed tube	3219 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
ω and φ scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 8$
(CrystalClear; Rigaku/MSC, 2005)	$k = -16 \rightarrow 16$
$T_{\min} = 0.803, \ T_{\max} = 0.933$	$l = -18 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 1.06	H-atom parameters constrained
3696 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0499P)^2 + 0.3348P]$
335 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.24 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{\min} = -0.47 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Co1	0.84031 (3)	0.73728 (2)	0.932821 (17)	0.02082 (12)	
01	1.01239 (19)	0.73257 (12)	1.01357 (9)	0.0282 (4)	
O2	1.1381 (2)	0.81870 (16)	1.11603 (10)	0.0460 (5)	
05	0.93674 (17)	0.81669 (12)	0.86609 (9)	0.0267 (4)	
O6	1.0973 (2)	0.80414 (14)	0.78364 (11)	0.0450 (5)	

N1	0.8057 (2)	0.85278 (14)	0.98537 (11)	0.0251 (4)
N2	0.6513 (2)	0.77321 (14)	0.86292 (11)	0.0234 (4)
N3	0.9085 (2)	0.63364 (14)	0.87852 (10)	0.0216 (4)
N4	0.7596 (2)	0.62602 (14)	0.98808 (10)	0.0234 (4)
C1	1.0325 (3)	0.80793 (19)	1.06293 (13)	0.0299 (6)
C2	0.9115 (3)	0.88248 (18)	1.04578 (13)	0.0286 (6)
C3	0.9052 (3)	0.97481 (19)	1.07909 (14)	0.0365 (6)
H3	0.9766	0.9956	1.1218	0.044*
C4	0.7900 (3)	1.0357 (2)	1.04739 (16)	0.0416 (7)
H4	0.7823	1.0975	1.0702	0.050*
C5	0.6856 (3)	1.00621 (19)	0.98213 (17)	0.0382 (7)
Н5	0.6106	1.0484	0.9595	0.046*
C6	0.6962 (3)	0.91155 (18)	0.95143 (14)	0.0291 (6)
C7	0.6051 (3)	0.86495 (18)	0.88142 (14)	0.0296 (6)
C8	0.4839 (3)	0.9092 (2)	0.83680 (16)	0.0392 (7)
H8	0.4554	0.9716	0.8505	0.047*
C9	0.4047 (3)	0.8600 (2)	0.77141 (17)	0.0421 (7)
H9	0.3225	0.8888	0.7406	0.051*
C10	0.4492 (3)	0.7678 (2)	0.75259 (17)	0.0396 (7)
H10	0.3971	0.7335	0.7089	0.048*
C11	0.5733 (3)	0.72615 (19)	0.79957 (14)	0.0281 (6)
C12	0.6111 (3)	0.62148 (19)	0.78089 (13)	0.0286 (6)
C13	1.0147 (3)	0.76672 (18)	0.82270 (14)	0.0272 (6)
C14	0.9955 (2)	0.65787 (18)	0.82720 (12)	0.0240 (5)
C15	1.0604 (3)	0.58537 (19)	0.78857 (13)	0.0302 (6)
H15	1.1204	0.6014	0.7523	0.036*
C16	1.0332 (3)	0.48753 (19)	0.80572 (14)	0.0323 (6)
H16	1.0746	0.4373	0.7800	0.039*
C17	0.9449 (3)	0.46388 (18)	0.86091 (13)	0.0286 (6)
H17	0.9271	0.3985	0.8724	0.034*
C18	0.8844 (3)	0.53988 (17)	0.89816 (13)	0.0232 (5)
C19	0.7946 (3)	0.53543 (17)	0.96114 (13)	0.0236 (5)
C20	0.7504 (3)	0.44827 (19)	0.99124 (14)	0.0298 (6)
H20	0.7748	0.3879	0.9712	0.036*
C21	0.6691 (3)	0.4523 (2)	1.05193 (15)	0.0351 (6)
H21	0.6366	0.3947	1.0727	0.042*
C22	0.6372 (3)	0.5430 (2)	1.08100 (14)	0.0336 (6)
H22	0.5850	0.5469	1.1227	0.040*
C23	0.6831 (3)	0.62865 (19)	1.04793 (13)	0.0272 (5)
C24	0.6458 (3)	0.7264 (2)	1.08152 (15)	0.0319 (6)
O9	0.5735 (2)	0.55690 (13)	0.82239 (10)	0.0396 (5)
07	0.7342 (2)	0.74748 (14)	1.14778 (11)	0.0418 (5)
O10	0.6766 (2)	0.60709 (13)	0.72153 (10)	0.0401 (5)
H10A	0.6806	0.6591	0.6972	0.060*
08	0.5416 (2)	0.77371 (16)	1.04846 (13)	0.0504 (5)

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Col	0.0249 (2)	0.01599 (19)	0.02186 (19)	0.00158 (13)	0.00513 (13)	0.00048 (12)
01	0.0310 (10)	0.0244 (9)	0.0281 (9)	0.0023 (7)	0.0025 (7)	-0.0007 (7)
O2	0.0432 (12)	0.0567 (14)	0.0329 (9)	-0.0020 (10)	-0.0064 (9)	-0.0069 (9)
05	0.0325 (10)	0.0184 (9)	0.0312 (8)	-0.0005 (7)	0.0108 (7)	0.0014 (7)
O6	0.0528 (13)	0.0339 (11)	0.0572 (12)	-0.0022 (9)	0.0331 (10)	0.0083 (9)
N1	0.0325 (12)	0.0199 (11)	0.0246 (9)	0.0003 (9)	0.0097 (9)	-0.0003 (8)
N2	0.0244 (11)	0.0210 (11)	0.0250 (10)	-0.0006 (8)	0.0047 (8)	0.0025 (8)
N3	0.0246 (10)	0.0196 (10)	0.0204 (9)	0.0012 (8)	0.0037 (8)	0.0010 (8)
N4	0.0259 (11)	0.0225 (11)	0.0216 (9)	0.0015 (9)	0.0036 (8)	0.0012 (8)
C1	0.0369 (15)	0.0295 (14)	0.0239 (12)	-0.0025 (12)	0.0076 (11)	0.0032 (10)
C2	0.0384 (15)	0.0260 (13)	0.0239 (12)	-0.0047 (11)	0.0123 (11)	-0.0022 (10)
C3	0.0550 (18)	0.0283 (15)	0.0287 (13)	-0.0095 (13)	0.0143 (12)	-0.0072 (11)
C4	0.0585 (19)	0.0241 (14)	0.0481 (16)	-0.0011 (14)	0.0255 (15)	-0.0100 (12)
C5	0.0461 (17)	0.0222 (14)	0.0509 (16)	0.0084 (12)	0.0211 (14)	0.0005 (12)
C6	0.0319 (14)	0.0241 (13)	0.0345 (13)	0.0029 (11)	0.0143 (11)	0.0010 (11)
C7	0.0301 (14)	0.0255 (14)	0.0354 (13)	0.0058 (11)	0.0118 (11)	0.0073 (11)
C8	0.0365 (16)	0.0324 (16)	0.0497 (16)	0.0108 (13)	0.0103 (13)	0.0089 (13)
C9	0.0304 (15)	0.0444 (18)	0.0502 (16)	0.0071 (13)	0.0041 (13)	0.0218 (14)
C10	0.0317 (16)	0.0448 (18)	0.0384 (15)	-0.0024 (13)	-0.0036 (12)	0.0092 (13)
C11	0.0280 (14)	0.0306 (14)	0.0260 (12)	-0.0044 (11)	0.0057 (11)	0.0071 (10)
C12	0.0307 (14)	0.0304 (14)	0.0222 (12)	-0.0080 (11)	-0.0014 (11)	0.0017 (11)
C13	0.0277 (14)	0.0241 (13)	0.0295 (13)	0.0013 (11)	0.0044 (11)	0.0032 (10)
C14	0.0243 (13)	0.0265 (13)	0.0208 (11)	-0.0005 (10)	0.0032 (10)	0.0004 (10)
C15	0.0344 (15)	0.0339 (15)	0.0241 (12)	0.0030 (12)	0.0099 (11)	-0.0028 (11)
C16	0.0386 (15)	0.0291 (14)	0.0292 (13)	0.0056 (12)	0.0065 (11)	-0.0088 (11)
C17	0.0350 (15)	0.0198 (13)	0.0291 (12)	0.0002 (11)	0.0012 (11)	-0.0022 (10)
C18	0.0240 (13)	0.0201 (12)	0.0236 (11)	-0.0015 (10)	-0.0001 (10)	-0.0001 (9)
C19	0.0245 (13)	0.0206 (12)	0.0241 (11)	-0.0006 (10)	0.0005 (10)	0.0001 (9)
C20	0.0316 (14)	0.0236 (14)	0.0323 (13)	-0.0008 (11)	0.0011 (11)	0.0027 (10)
C21	0.0356 (15)	0.0312 (15)	0.0373 (14)	-0.0088 (12)	0.0040 (12)	0.0105 (12)
C22	0.0339 (15)	0.0387 (16)	0.0299 (13)	-0.0049 (12)	0.0103 (11)	0.0050 (11)
C23	0.0245 (13)	0.0327 (14)	0.0238 (11)	0.0005 (11)	0.0029 (10)	0.0012 (10)
C24	0.0345 (16)	0.0333 (15)	0.0325 (14)	0.0019 (12)	0.0183 (12)	0.0058 (11)
O9	0.0513 (12)	0.0310 (11)	0.0378 (10)	-0.0101 (9)	0.0116 (9)	0.0074 (8)
07	0.0494 (12)	0.0421 (12)	0.0340 (10)	0.0100 (9)	0.0078 (9)	-0.0072 (8)
O10	0.0612 (13)	0.0283 (10)	0.0332 (10)	-0.0079 (9)	0.0148 (9)	0.0017 (8)
O8	0.0472 (13)	0.0497 (13)	0.0542 (12)	0.0178 (11)	0.0092 (10)	0.0045 (10)

Geometric parameters (Å, °)

Co1—N3	1.8546 (19)	С8—Н8	0.9300
Co1—N1	1.8580 (19)	C9—C10	1.372 (4)
Co1—O5	1.9018 (16)	С9—Н9	0.9300
Co1—O1	1.9055 (18)	C10-C11	1.397 (4)
Co1—N2	1.993 (2)	C10—H10	0.9300

Co1—N4	1.9941 (19)	C11—C12	1.510 (4)
01—C1	1.310 (3)	C12—O9	1.214 (3)
O2—C1	1.212 (3)	C12—O10	1.282 (3)
O5—C13	1.313 (3)	C13—C14	1.491 (3)
O6—C13	1.215 (3)	C14—C15	1.381 (3)
N1—C6	1.338 (3)	C15—C16	1.391 (4)
N1—C2	1.344 (3)	С15—Н15	0.9300
N2—C11	1.339 (3)	C16—C17	1.392 (3)
N2—C7	1.372 (3)	С16—Н16	0.9300
N3—C14	1.334 (3)	C17—C18	1.382 (3)
N3—C18	1.343 (3)	С17—Н17	0.9300
N4—C23	1.342 (3)	C18—C19	1.473 (3)
N4—C19	1.371(3)	C19-C20	1 380 (3)
C1-C2	1 503 (4)	C_{20} C_{21}	1.385(3)
$C^2 - C^3$	1 378 (3)	$C_{20} = H_{20}$	0.9300
$C_2 = C_2$	1 383 (4)	C_{21} C_{22}	1.377(4)
C3_H3	0.9300	C21_H21	0.9300
C_{4}	1 388 (4)	$\begin{array}{c} C21 \\ C22 \\ C23 \\ C33 \\$	1.301(3)
$C_4 = C_3$	0.0300	$C_{22} = C_{23}$	0.0300
C_{4}	1 305 (3)	C_{22} C_{23} C_{24}	1 508 (4)
C5_H5	0.0300	$C_{23} = C_{24}$	1.306(4) 1.211(3)
C6 C7	1 466 (2)	$C_{24} = 08$	1.211(3) 1.202(2)
$C_0 = C_1$	1.400(3) 1.275(2)	$C_{24} = 07$	1.295 (5)
$C^{2} = C^{2}$	1.373(3) 1.292(4)	010—HI0A	0.8200
0-09	1.382 (4)		
N3 Col N1	168 01 (8)	C7 C8 H8	120.3
$N_{3} = Co_{1} = O_{5}$	100.91 (0) 93.91 (9)	$C_{1} = C_{2} = H_{2}$	120.3
$N_1 = Co_1 = O_5$	87.00 (8)	$C_{2} = C_{3} = 118$	120.3 110.0(2)
$N^2 = C_{21} = O_1$	07.09(0)	$C_{10} = C_{9} = C_{8}$	119.0 (2)
$N_1 = C_{01} = O_1$	90.45 (8) 92.26 (9)	$C_{10} C_{20} C_{10} $	120.5
$05 C_{21} 01$	00.84(7)	$C_{0} = C_{10} = C_{11}$	120.3 110.5(2)
$N_2 = C_{01} = N_2$	90.04(7)	C_{9}	119.5 (5)
$N_{1} = C_{01} = N_{2}$	105.87(8)	C_{11} C_{10} H_{10}	120.5
N1 = C01 = N2	02.17 (0) 99.54 (7)	N2 C11 C10	120.5
03-01-N2	88.54 (7)	N2 - C11 - C10	122.1(2)
01 - 01 - N2	105.55(7)	$N_2 = C_1 = C_{12}$	120.1(2)
N3 - C01 - N4	81.31(8)	C10 - C12 - C12	117.0(2)
N1 = C01 = N4	107.45 (8)	09-012-010	125.0(3)
05-01-N4	105.32(7)	09-012-011	117.0(2)
01 - 01 - N4	88.91 (/)	010-012-011	118.0(2)
N2—Col—N4	95.32 (8)	06-013-05	124.1 (2)
C1 = 01 = C01	113.37 (13)	$U_0 - U_{13} - U_{14}$	122.4 (2)
$C_{13} = C_{01}$	114.27 (15)	U5	113.5 (2)
$C_0 - N_1 - C_2$	122.8 (2)	N3-C14-C15	120.3 (2)
Co-NI-Col	118.95 (16)	N3-C14-C13	111.7 (2)
C2—NI—Col	116.55 (16)	C15—C14—C13	127.8 (2)
C11 - N2 - C/	117.8 (2)	C14—C15—C16	117.9 (2)
C11—N2—Col	130.32 (17)	C14—C15—H15	121.1
C7—N2—Col	111.60 (15)	C16—C15—H15	121.1

C14 N3 C18	122.9(2)	C15 C16 C17	120.9(2)
C14 = N3 = C18	122.9(2) 116.17(16)	$C_{15} = C_{16} = C_{17}$	120.9 (2)
C14 - N3 - C01	110.17(10) 120.42(15)	$C_{13} = C_{10} = H_{10}$	119.0
C10 - N5 - C01	120.42 (13)		119.0
C23—N4—C19	117.8 (2)		118.4 (2)
C23—N4—Col	129.24 (17)	С18—С17—Н17	120.8
C19—N4—Co1	112.87 (15)	С16—С17—Н17	120.8
02—C1—O1	124.4 (2)	N3—C18—C17	119.5 (2)
O2—C1—C2	122.7 (2)	N3—C18—C19	111.17 (19)
O1—C1—C2	112.8 (2)	C17—C18—C19	129.3 (2)
N1—C2—C3	120.1 (2)	N4—C19—C20	122.6 (2)
N1-C2-C1	111.4 (2)	N4—C19—C18	113.95 (19)
C3—C2—C1	128.3 (2)	C20-C19-C18	123.4 (2)
C2—C3—C4	118.3 (2)	C19—C20—C21	118.8 (2)
С2—С3—Н3	120.9	С19—С20—Н20	120.6
С4—С3—Н3	120.9	C21—C20—H20	120.6
C3—C4—C5	121.1 (2)	C22—C21—C20	118.9 (2)
C3—C4—H4	119 5	C22—C21—H21	120.5
$C_5 - C_4 - H_4$	119.5	C_{20} C_{21} H_{21}	120.5
C_{4} C_{5} C_{6}	119.5	$C_{20} = C_{21} = H_{21}$	120.0(2)
$C_{4} = C_{5} = C_{0}$	120.0	$C_{21} = C_{22} = C_{23}$	120.0(2)
C_{4}	120.9	$C_{21} = C_{22} = H_{22}$	120.0
	120.9	C25-C22-H22	120.0
NI	119.3 (2)	N4-C23-C22	121.8(2)
	111.8 (2)	N4	119.9 (2)
C5—C6—C7	128.8 (2)	C22—C23—C24	118.3 (2)
N2—C7—C8	122.1 (2)	O8—C24—O7	127.6 (3)
N2—C7—C6	114.5 (2)	O8—C24—C23	120.9 (2)
C8—C7—C6	123.3 (2)	O7—C24—C23	111.4 (2)
C7—C8—C9	119.4 (3)	C12—O10—H10A	109.5
N3—Co1—O1—C1	167.56 (17)	Co1—N1—C6—C7	8.9 (3)
N1—Co1—O1—C1	-3.23 (16)	C4—C5—C6—N1	-0.1 (4)
O5-Co1-O1-C1	83.75 (16)	C4—C5—C6—C7	-176.8(2)
N2—Co1—O1—C1	-3.7 (4)	C11—N2—C7—C8	-0.7 (3)
N4—Co1—O1—C1	-110.93 (17)	Co1—N2—C7—C8	174.33 (19)
N3—Co1—O5—C13	-6.93 (16)	C11—N2—C7—C6	-180.0(2)
N1-Co1-05-C13	166.73 (16)	Co1—N2—C7—C6	-5.0(2)
$01-C_01-05-C_{13}$	83 42 (16)	N1-C6-C7-N2	-2.0(3)
N_{2} Col 0_{2} Cl 3_{2}	-111.04(16)	C_{5} C_{6} C_{7} N_{2}	174.9(2)
N_{4} Col O_{5} Cl3	-5 5 (4)	N1 - C6 - C7 - C8	174.9(2) 178.8(2)
N_{1}^{2} Col N_{1}^{1} C6	114.4(4)	$C_{5} = C_{6} = C_{7} = C_{8}$	-4.4(4)
N_{3} C_{1} N_{1} C_{6}	114.4(4)	$C_{3} = C_{0} = C_{1} = C_{0}$	4.4(4)
$O_{1} = C_{1} = N_{1} = C_{0}$	170.72 (10)	$N_2 - C_7 - C_8 - C_9$	0.3(4)
$V_1 = V_0 = V_1 = V_0$	1/0.72(19)	C_{-}	1/9.7(2)
N2 - C01 - N1 - C0	-9.38 (18)	$C_{1} = C_{2} = C_{10} = C_{11}$	0.0 (4)
N4—Co1—N1—C6	-102.53 (18)	C8-C9-C10-C11	-0.2 (4)
N3—Co1—N1—C2	-51.4 (5)	C/—N2—C11—C10	0.5 (3)
O5—Co1—N1—C2	-86.23 (17)	Co1—N2—C11—C10	-173.46 (18)
O1—Co1—N1—C2	4.96 (16)	C7—N2—C11—C12	-174.5 (2)
N2—Co1—N1—C2	-175.15 (17)	Co1—N2—C11—C12	11.6 (3)

N4—Co1—N1—C2	91.71 (17)	C9—C10—C11—N2	0.0 (4)
N3—Co1—N2—C11	11.2 (2)	C9-C10-C11-C12	175.1 (2)
N1—Co1—N2—C11	-178.3 (2)	N2-C11-C12-O9	77.1 (3)
O5—Co1—N2—C11	94.5 (2)	C10-C11-C12-O9	-98.1 (3)
O1—Co1—N2—C11	-177.8 (3)	N2-C11-C12-O10	-104.8(3)
N4—Co1—N2—C11	-71.3 (2)	C10-C11-C12-O10	80.0 (3)
N3—Co1—N2—C7	-163.00 (15)	Co1—O5—C13—O6	-171.1 (2)
N1—Co1—N2—C7	7.52 (15)	Co1-05-C13-C14	7.4 (2)
O5—Co1—N2—C7	-79.74 (16)	C18—N3—C14—C15	3.0 (3)
01—Co1—N2—C7	8.0 (4)	Co1—N3—C14—C15	175.12 (17)
N4—Co1—N2—C7	114.45 (16)	C18—N3—C14—C13	-174.2(2)
N1—Co1—N3—C14	-30.2(5)	$C_01 - N_3 - C_14 - C_{13}$	-2.1(2)
$05-C_01-N_3-C_{14}$	4.85 (16)	06—C13—C14—N3	175.0 (2)
$01 - C_01 - N_3 - C_{14}$	-85.95 (16)	05-C13-C14-N3	-3.6(3)
N_2 —Co1—N3—C14	91 80 (16)	06-C13-C14-C15	-19(4)
N4—Co1—N3—C14	-17478(17)	05-C13-C14-C15	179 5 (2)
N1 - Co1 - N3 - C18	142 1 (4)	N_{3} C14 C15 C16	-0.7(3)
05-01-N3-018	177.15(18)	C_{13} C_{14} C_{15} C_{16}	176.0(2)
$01 - C_01 - N_3 - C_{18}$	86 35 (18)	C_{14} C_{15} C_{16} C_{17}	-0.9(4)
N_{2} Col N_{3} Cla	-95.90(18)	C_{15} C_{16} C_{17} C_{18}	0.2(4)
$N_{-}C_{01} N_{-}N_{-}C_{18}$	-2.48(17)	C14 - N3 - C18 - C17	-37(3)
N_{3} Col N_{4} C23	2.48(17) 178 3 (2)	$C_{1} = N_{3} = C_{18} = C_{17}$	-175.46(16)
$N_1 = C_0 = N_4 = C_{23}$	50(2)	C14 - N3 - C18 - C19	175 02 (10)
Ω_{5} Col N4 C23	3.0(2)	$C_{14} = 103 = C_{18} = C_{19}$	175.02(19)
$O_{3} = C_{01} = N_{4} = C_{23}$	170.9(2) 97.71(10)	$C_{16} C_{17} C_{18} N_2$	3.3(3)
$N_{1} = C_{01} = N_{4} = C_{23}$	-78.42(10)	$C_{10} - C_{17} - C_{18} - N_3$	2.0(3)
$N_2 = C_0 I = N_4 = C_{23}$	78.42(19)	$C_{10} = C_{17} = C_{18} = C_{17}$	170.3(2)
$N_{1} = C_{01} = N_{4} = C_{19}$	(13)	C_{23} N4 C_{19} C_{20}	2.2(3)
N1 - C01 - N4 - C19	-1/2.30(13)	$C_{01} = N_{4} = C_{19} = C_{20}$	177.24 (10)
$O_{1} = C_{01} = N_{4} = C_{10}$	-0.3(4)	C_{23} N4 C_{19} C_{18}	-1/7.24(19)
$V_{1} = C_{1} = N_{4} = C_{19}$	-89.01(10)	12 - 14 - 19 - 18	0.4(2)
$N_2 = Co1 = N_4 = C_{19}$	104.20 (10)	N_{3} C_{18} C_{19} N_{4}	-2.2(3)
$C_{01} = 01 = C_{1} = 02$	-1//.4(2)	17 - 18 - 19 - 14	1/0.4(2)
$C_0 = 0 = 0 = 0$	1.1(2)	$N_3 = C_{18} = C_{19} = C_{20}$	1/8.4(2)
$C_0 = N_1 = C_2 = C_3$	4.3 (3)	C17 - C18 - C19 - C20	-3.0(4)
$C_0 = N_1 = C_2 = C_3$	169.50 (18)	N4-C19-C20-C21	-0.9 (4)
$C_0 - N_1 - C_2 - C_1$	-1/0.7(2)	C18 - C19 - C20 - C21	1/8.4 (2)
Col-Nl-C2-Cl	-5.5(2)	C19 - C20 - C21 - C22	-1.0(3)
02-CI-C2-NI	-1/8.7(2)	$C_{20} = C_{21} = C_{22} = C_{23}$	1.8 (4)
OI = CI = C2 = NI	2.8(3)	C19 - N4 - C23 - C22	-1.4(3)
02-01-02-03	6.8 (4)	Co1—N4—C23—C22	-178.62 (18)
01-C1-C2-C3	-171.7(2)	C19—N4—C23—C24	178.1 (2)
NI-C2-C3-C4	-1.5 (4)	Col - N4 - C23 - C24	0.9 (3)
C1—C2—C3—C4	172.5 (2)	C21—C22—C23—N4	-0.5(4)
$C_2 - C_3 - C_4 - C_5$	-2.0(4)	C21—C22—C23—C24	180.0 (2)
C3—C4—C5—C6	2.8 (4)	N4—C23—C24—O8	82.6 (3)
C2—N1—C6—C5	-3.5 (3)	C22—C23—C24—O8	-97.9 (3)
Col—N1—C6—C5	-168.27 (18)	N4—C23—C24—O7	-99.5 (3)
C2—N1—C6—C7	173.7 (2)	C22—C23—C24—O7	80.1 (3)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O10—H10A…O7 ⁱ	0.82	1.65	2.445 (3)	164
C15—H15…O2 ⁱ	0.93	2.58	3.391 (3)	147
C8—H8…O10 ⁱⁱ	0.93	2.41	3.142 (3)	135
C16—H16…O6 ⁱⁱⁱ	0.93	2.52	3.044 (3)	116
C20—H20…O1 ^{iv}	0.93	2.55	3.315 (3)	140
С22—Н22…О9 ^v	0.93	2.35	3.091 (3)	136

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+2, y-1/2, -z+3/2; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+2.