

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4-Dimethyl-2-[3-nitro-2-phenyl-1-(phenylsulfanyl)propyl]-4,5-dihydro-1,3oxazole

Ignez Caracelli,^a* Julio Zukerman-Schpector,^b José A. F. P. Villar,^c Alfredo R. M. Oliveira^d and Edward R. T. Tiekink^e

^aBioMat-Departamento de Física, Universidade Federal de São Carlos, C.P. 676, 13565-905, São Carlos, SP, Brazil, ^bLaboratório de Cristalografia, Estereodinâmica e, Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Química, C.P. 676, 13565-905, São Carlos, SP, Brazil, ^cUniversidade Federal de São João del Rei, Av. Sebastião Goncalves Coelho, 400, 35501-296, Divinópolis, MG, Brazil. ^dUniversidade Federal do Paraná, Departamento de Ouímica, C.P. 19081. 81531-990, Curitiba, PR, Brazil, and ^eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: ignez@ufscar.br

Received 19 March 2012; accepted 22 March 2012

Key indicators: single-crystal X-ray study; T = 98 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.047; wR factor = 0.114; data-to-parameter ratio = 18.6.

In the title compound, $C_{20}H_{22}N_2O_3S$, the oxazoline ring is planar (r.m.s. deviation = 0.045 Å) and forms dihedral angles of 47.24 (8) and 10.11 (8) $^{\circ}$ with the S- and C-bound phenyl rings, respectively. The nitro group lies to the same side of the molecule as the oxazoline ring but is orientated so as not to interact with the ring. Linear supramolecular chains along [010] are formed via $C-H\cdots O$ and $C-H\cdots S$ contacts. Chains are consolidated into a three-dimensional architecture by $C-H\cdots\pi$ and van der Waals interactions.

Related literature

For background on the biological activities of Rolipram, see: de Visser et al. (2008). For the synthesis of the title compound, see Villar (2008); Oliveira et al. (2007).

15389 measured reflections

Standard reflections: 0

 $R_{\rm int} = 0.035$

4362 independent reflections

4146 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C H N O S	$V_{10040}(c) \overset{1}{3}$
$C_{20}H_{22}N_2O_3S$	V = 1904.8 (6) A
$M_r = 370.47$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 15.339 (3) Å	$\mu = 0.19 \text{ mm}^{-1}$
b = 5.7040 (8) Å	T = 98 K
c = 22.786 (4) Å	$0.25 \times 0.15 \times 0.15$ mm
$\beta = 107.166 \ (2)^{\circ}$	

Data collection

Rigaku AFC12/SATURN724 diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.809, \ \bar{T}_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	235 parameters
$wR(F^2) = 0.114$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
4362 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Colord Colore the	a a menai da a febra	C7 $C12$ and $C15$ $C2$	0 min ag magne activialer
Cg_2 and Cg_3 are the	centrolds of the	$U_1 - U_1 Z$ and $U_1 - U_2$	U FIN9S. FESDECLIVEIV.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14B\cdots O3^{i}$	0.99	2.52	3.376 (2)	145
$C20-H20 \cdot \cdot \cdot S1^{ii}$	0.95	2.79	3.7194 (19)	166
$C8-H8\cdots Cg2^{iii}$	0.95	2.71	3.4345 (18)	134
$C17 - H17 \cdots Cg3^{iv}$	0.95	2.99	3.712 (2)	134

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y + 1, z; (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009): software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank FAPESP, CNPq (grant No. 306532/2009-3 to JZS; grant No. 308116/2010-0 to IC) and CAPES (grant No. 808/2009 to JZS and IC) for financial support. The authors also gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2035).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. ChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Oliveira, A. R. M., Villar, J. A. F. P., Simonelli, F., Gariani, R. A., Wosch, C. L. & Zarbin, H. G. (2007). *Tetrahedron Lett.* **48**, 1507–1509.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Villar, J. A. F. P. (2008). PhD thesis, Universidade Federal do Paraná, Brazil.
de Visser, Y. P., Walther, F. J., Laghmani, E. H., van Wijngaarden, S., Nieuwland, K. & Wagenaar, G. T. (2008). *Eur. Respir. J.* 31, 633–644.
Westrip, S. P. (2010). *J. Appl. Cryst.* 43, 920–925.

supporting information

Acta Cryst. (2012). E68, o1225–o1226 [https://doi.org/10.1107/S1600536812012512]

4,4-Dimethyl-2-[3-nitro-2-phenyl-1-(phenylsulfanyl)propyl]-4,5-dihydro-1,3-oxazole

Ignez Caracelli, Julio Zukerman-Schpector, José A. F. P. Villar, Alfredo R. M. Oliveira and Edward R. T. Tiekink

S1. Comment

While developing a new route aiming at the synthesis of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]pyrrolidin-2-one (Rolipram), a phosphodiesterase-4 inhibitor which has been shown to have anti-inflammatory properties (de Visser *et al.*, 2008), the title compound, (I), was obtained during a systematic study of the addition reaction of oxazolines to nitro-estyrene (Villar, 2008; Oliveira *et al.* 2007). The crystals were crystallographically characterized and the results are now reported herein.

In (I), Fig. 1, the oxazoline ring is planar (r.m.s. deviation = 0.045 Å) with the maximum deviations being 0.036 (2) Å for the C3 atom and -0.038 (2) Å for the C4 atom. The five-membered ring and the S-bound phenyl ring (C7–C12) are proximate and make a dihedral angle of 47.24 (8)°. The dihedral angles formed by these rings and the C-bound phenyl ring (C15–C20) are 10.11 (8) and 57.13 (8)°, respectively. The nitro group lies to the same side of the molecule as the oxazoline ring but is orientated away from the ring.

In the crystal packing, inversion related molecules are linked *via* C14—H14B···O3 contacts with the resultant dimeric aggregates connected into a linear supramolecular chain along [010] *via* C20—H20···S1 contacts, Fig. 2 and Table 1. Chains are consolidated in the three-dimensional packing by C—H··· π and van der Waals interactions, Fig. 3 and Table 1.

S2. Experimental

The detailed synthesis of the title compound is described in a Ph.D. thesis (Villar, 2008). Crystals were grown by slow evaporation from an ethylacetate/ hexane solution held at 293 K. ¹H-NMR (CDCl₃, 400 MHz): δ (p.p.m.) 1.07 (*s*, 3H); 1.18 (*s*, 3H); 3.87(*d*, 1H, J = 8.15 Hz); 3.93 (*d*, 1H, J = 8.15 Hz); 3.98 (*ddd*, 1H, J = 8.43, 9.15, 5.27 Hz); 4.17 (*d*, 1H, J = 8.43 Hz); 4.97 (*dd*, 1H, J = 13.25, 5.27 Hz); 5.01 (*dd*, 1H, J = 13.25, 9.15 Hz); 7.18–7.34 (*m*, 8H); 7.38–7.42 (*m*, 2H); ¹³C (CDCl₃, 100 MHz) δ (p.p.m.) 162.01; 136.34; 133.75; 132.43; 129.08; 128.91; 128.55; 128.39; 127.93; 79.44; 77.22; 67.44; 49.93; 45.85; 28.04. Analysis found: C 64.83, H 5.97, N 7.61, S 8.85%. C₂₀H₂₂N₂O₃S requires: C 64.84, H 5.99, N 7.56, S 8.65%.

S3. Refinement

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.5U_{eq}(methyl-C)$.

The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).

Figure 2

Supramolecular chain in (I) extending along [010] and sustained by C14—H14B…O3 and C20—H20…S1 contacts, shown as orange and blue dashed lines, respectively.

Figure 3

A view of the unit cell contents of (I) shown in projection down the *b* axis. One supramolecular chain is highlighted in space-filling mode. The C—H···O, C—H···S and C—H··· π contacts are shown as orange, blue and purple dashed lines, respectively.

4,4-Dimethyl-2-[3-nitro-2-phenyl-1-(phenylsulfanyl)propyl]- 4,5-dihydro-1,3-oxazole

Crystal data	
C ₂₀ H ₂₂ N ₂ O ₃ S $M_r = 370.47$ Monoclinic, P2 ₁ /c Hall symbol: -P 2ybc a = 15.339 (3) Å b = 5.7040 (8) Å c = 22.786 (4) Å $\beta = 107.166$ (2)° V = 1904.8 (6) Å ³	F(000) = 784 $D_x = 1.292 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10219 reflections $\theta = 1.9-40.6^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 98 K Block, colourless $0.25 \times 0.15 \times 0.15 \text{ mm}$
Z = 4 Data collection	
Rigaku AFC12K/SATURN724 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995) $T_{min} = 0.809, T_{max} = 1.000$ 15389 measured reflections
ωscans	4362 independent reflections 4146 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.035$	$k = -7 \rightarrow 7$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 2.6^{\circ}$	$l = -29 \rightarrow 29$
$h = -19 \rightarrow 19$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.114$	neighbouring sites
<i>S</i> = 1.11	H-atom parameters constrained
4362 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0504P)^2 + 0.9546P]$
235 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta ho_{\min} = -0.33 \text{ e} \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
S1	0.19877 (2)	0.17504 (7)	0.813988 (16)	0.02204 (11)
01	0.27948 (8)	0.1328 (2)	0.95576 (5)	0.0253 (2)
O2	0.50324 (9)	0.8943 (3)	0.91166 (7)	0.0465 (4)
O3	0.53747 (8)	0.5316 (2)	0.93550 (6)	0.0361 (3)
N1	0.19037 (9)	0.4465 (2)	0.95984 (6)	0.0224 (3)
N2	0.48312 (9)	0.6943 (3)	0.92173 (6)	0.0265 (3)
C1	0.24888 (9)	0.4033 (3)	0.87082 (6)	0.0180 (3)
H1	0.2159	0.5540	0.8571	0.022*
C2	0.23715 (9)	0.3355 (3)	0.93164 (6)	0.0176 (3)
C3	0.25828 (11)	0.1010 (3)	1.01329 (7)	0.0271 (3)
H3A	0.3142	0.1120	1.0486	0.033*
H3B	0.2293	-0.0534	1.0144	0.033*
C4	0.19137 (10)	0.3029 (3)	1.01474 (7)	0.0230 (3)
C5	0.09488 (12)	0.2111 (4)	1.00615 (8)	0.0344 (4)
H5A	0.0754	0.1173	0.9685	0.052*
H5B	0.0531	0.3436	1.0030	0.052*
H5C	0.0943	0.1135	1.0414	0.052*
C6	0.22443 (14)	0.4495 (3)	1.07286 (8)	0.0347 (4)
H6A	0.2863	0.5063	1.0772	0.052*
H6B	0.2248	0.3532	1.1086	0.052*
H6C	0.1835	0.5835	1.0703	0.052*
C7	0.09006 (10)	0.1354 (3)	0.82616 (6)	0.0190 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C8	0.02137 (10)	0.3010 (3)	0.80472 (7)	0.0205 (3)
H8	0.0337	0.4424	0.7866	0.025*
C9	-0.06542 (10)	0.2590 (3)	0.80984 (7)	0.0240 (3)
Н9	-0.1119	0.3737	0.7961	0.029*
C10	-0.08439 (10)	0.0499 (3)	0.83492 (7)	0.0248 (3)
H10	-0.1443	0.0195	0.8371	0.030*
C11	-0.01562 (11)	-0.1148 (3)	0.85681 (7)	0.0250 (3)
H11	-0.0285	-0.2575	0.8741	0.030*
C12	0.07213 (11)	-0.0708 (3)	0.85336(7)	0.0224 (3)
H12	0.1196	-0.1810	0.8695	0.027*
C13	0.35030 (9)	0.4353 (3)	0.87367 (6)	0.0184 (3)
H13	0.3850	0.2917	0.8923	0.022*
C14	0.38517 (10)	0.6438 (3)	0.91664 (7)	0.0220 (3)
H14A	0.3476	0.7838	0.9006	0.026*
H14B	0.3794	0.6082	0.9579	0.026*
C15	0.36148 (9)	0.4727 (3)	0.81003 (6)	0.0179 (3)
C16	0.40566 (10)	0.3047 (3)	0.78483 (7)	0.0224 (3)
H16	0.4303	0.1688	0.8079	0.027*
C17	0.41408 (11)	0.3347 (3)	0.72591 (7)	0.0255 (3)
H17	0.4443	0.2190	0.7090	0.031*
C18	0.37849 (10)	0.5328 (3)	0.69199 (7)	0.0251 (3)
H18	0.3839	0.5528	0.6518	0.030*
C19	0.33489 (11)	0.7019 (3)	0.71705 (7)	0.0245 (3)
H19	0.3108	0.8384	0.6941	0.029*
C20	0.32642 (10)	0.6719 (3)	0.77579 (7)	0.0220 (3)
H20	0.2965	0.7883	0.7927	0.026*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01822 (19)	0.0306 (2)	0.01930 (19)	0.00031 (14)	0.00869 (14)	-0.00508 (14)
O1	0.0314 (6)	0.0267 (6)	0.0215 (5)	0.0077 (5)	0.0136 (5)	0.0083 (4)
O2	0.0322 (7)	0.0477 (8)	0.0588 (9)	-0.0099 (6)	0.0124 (6)	0.0209 (7)
O3	0.0209 (6)	0.0469 (8)	0.0387 (7)	0.0037 (5)	0.0060 (5)	0.0024 (6)
N1	0.0230 (6)	0.0289 (7)	0.0175 (6)	0.0028 (5)	0.0094 (5)	0.0014 (5)
N2	0.0193 (6)	0.0395 (8)	0.0200 (6)	-0.0034 (5)	0.0048 (5)	0.0044 (6)
C1	0.0162 (6)	0.0228 (7)	0.0163 (6)	0.0023 (5)	0.0066 (5)	0.0009 (5)
C2	0.0151 (6)	0.0206 (7)	0.0169 (6)	0.0001 (5)	0.0047 (5)	0.0014 (5)
C3	0.0301 (8)	0.0326 (9)	0.0223 (7)	0.0010 (7)	0.0135 (6)	0.0094 (7)
C4	0.0239 (7)	0.0304 (8)	0.0167 (7)	-0.0033 (6)	0.0089 (6)	0.0007 (6)
C5	0.0269 (8)	0.0541 (11)	0.0263 (8)	-0.0091 (8)	0.0143 (7)	-0.0035 (8)
C6	0.0479 (11)	0.0374 (10)	0.0208 (8)	-0.0101 (8)	0.0133 (7)	-0.0045 (7)
C7	0.0185 (6)	0.0234 (7)	0.0167 (6)	0.0006 (5)	0.0077 (5)	-0.0029 (5)
C8	0.0215 (7)	0.0229 (7)	0.0173 (6)	-0.0005 (5)	0.0058 (5)	-0.0001 (5)
C9	0.0198 (7)	0.0304 (8)	0.0216 (7)	0.0043 (6)	0.0059 (6)	0.0008 (6)
C10	0.0216 (7)	0.0329 (8)	0.0228 (7)	-0.0028 (6)	0.0110 (6)	-0.0037 (6)
C11	0.0319 (8)	0.0240 (8)	0.0232 (7)	-0.0022 (6)	0.0142 (6)	-0.0007 (6)
C12	0.0261 (7)	0.0230 (7)	0.0200 (7)	0.0048 (6)	0.0099 (6)	-0.0001 (6)

supporting information

C13	0.0156 (6)	0.0238 (7)	0.0175 (6)	0.0032 (5)	0.0074 (5)	0.0034 (5)
C14	0.0177 (7)	0.0307 (8)	0.0190 (7)	-0.0012 (6)	0.0076 (5)	0.0011 (6)
C15	0.0149 (6)	0.0226 (7)	0.0180 (6)	-0.0001 (5)	0.0073 (5)	0.0022 (5)
C16	0.0211 (7)	0.0238 (7)	0.0250 (7)	0.0026 (6)	0.0108 (6)	0.0015 (6)
C17	0.0245 (7)	0.0311 (8)	0.0247 (8)	-0.0004 (6)	0.0133 (6)	-0.0044 (6)
C18	0.0221 (7)	0.0373 (9)	0.0168 (6)	-0.0059 (6)	0.0071 (6)	-0.0012 (6)
C19	0.0238 (7)	0.0295 (8)	0.0193 (7)	0.0002 (6)	0.0051 (6)	0.0059 (6)
C20	0.0229 (7)	0.0247 (8)	0.0199 (7)	0.0038 (6)	0.0086 (6)	0.0023 (6)
C18 C19 C20	0.0221 (7) 0.0238 (7) 0.0229 (7)	0.0373 (9) 0.0295 (8) 0.0247 (8)	0.0168 (6) 0.0193 (7) 0.0199 (7)	-0.0059 (6) 0.0002 (6) 0.0038 (6)	0.0071 (6) 0.0051 (6) 0.0086 (6)	-0.0012 (6) 0.0059 (6) 0.0023 (6)

Geometric parameters (Å, °)

S1—C7	1.7837 (15)	C8—C9	1.391 (2)
S1—C1	1.8372 (15)	C8—H8	0.9500
O1—C2	1.3601 (18)	C9—C10	1.390 (2)
O1—C3	1.4520 (17)	С9—Н9	0.9500
O2—N2	1.221 (2)	C10—C11	1.390 (2)
O3—N2	1.2250 (19)	C10—H10	0.9500
N1—C2	1.2652 (19)	C11—C12	1.394 (2)
N1—C4	1.4914 (19)	C11—H11	0.9500
N2—C14	1.5004 (19)	C12—H12	0.9500
C1—C2	1.4996 (19)	C13—C15	1.5246 (18)
C1—C13	1.5487 (19)	C13—C14	1.533 (2)
C1—H1	1.0000	С13—Н13	1.0000
C3—C4	1.549 (2)	C14—H14A	0.9900
С3—НЗА	0.9900	C14—H14B	0.9900
С3—Н3В	0.9900	C15—C16	1.392 (2)
C4—C6	1.521 (2)	C15—C20	1.393 (2)
C4—C5	1.527 (2)	C16—C17	1.397 (2)
С5—Н5А	0.9800	C16—H16	0.9500
С5—Н5В	0.9800	C17—C18	1.387 (2)
C5—H5C	0.9800	C17—H17	0.9500
С6—Н6А	0.9800	C18—C19	1.389 (2)
С6—Н6В	0.9800	C18—H18	0.9500
С6—Н6С	0.9800	C19—C20	1.393 (2)
С7—С8	1.392 (2)	C19—H19	0.9500
C7—C12	1.394 (2)	C20—H20	0.9500
C7—S1—C1	101.31 (6)	С7—С8—Н8	120.1
C2—O1—C3	105.29 (11)	C10—C9—C8	120.25 (14)
C2—N1—C4	106.52 (13)	С10—С9—Н9	119.9
O2—N2—O3	124.43 (14)	С8—С9—Н9	119.9
O2—N2—C14	117.89 (14)	C9—C10—C11	119.91 (14)
O3—N2—C14	117.67 (14)	C9—C10—H10	120.0
C2-C1-C13	112.63 (11)	C11-C10-H10	120.0
C2—C1—S1	109.23 (10)	C10-C11-C12	120.06 (15)
C13—C1—S1	108.62 (9)	C10-C11-H11	120.0
C2—C1—H1	108.8	C12—C11—H11	120.0
C13—C1—H1	108.8	C7—C12—C11	119.83 (14)

S1—C1—H1	108.8	C7—C12—H12	120.1
N1-C2-O1	119.64 (13)	C11—C12—H12	120.1
N1—C2—C1	125.53 (14)	C15—C13—C14	112.52 (12)
O1—C2—C1	114.79 (12)	C15—C13—C1	111.73 (11)
O1—C3—C4	104.63 (12)	C14—C13—C1	105.96 (11)
O1—C3—H3A	110.8	C15—C13—H13	108.8
С4—С3—НЗА	110.8	C14—C13—H13	108.8
01—C3—H3B	110.8	C1-C13-H13	108.8
C4—C3—H3B	110.8	N2-C14-C13	110.55 (12)
H3A—C3—H3B	108.9	N2-C14-H14A	109.5
N1-C4-C6	110.28 (13)	C13—C14—H14A	109.5
N1-C4-C5	108.13 (13)	N2-C14-H14B	109.5
C6-C4-C5	111 19 (13)	C13—C14—H14B	109.5
N1-C4-C3	103 49 (11)	H14A—C14—H14B	108.1
$C_{6}-C_{4}-C_{3}$	111 99 (14)	C16-C15-C20	119.01 (13)
$C_{5} - C_{4} - C_{3}$	111.99 (11)	C16 - C15 - C13	120.08(13)
C4-C5-H5A	109 5	$C_{10} = C_{15} = C_{13}$	120.00(13) 120.90(13)
$C_4 = C_5 = H_5 R$	109.5	$C_{15} = C_{15} = C_{15}$	120.90(13) 120.45(14)
$H_{5A} = C_{5} = H_{5B}$	109.5	$C_{15} = C_{16} = C_{17}$	120.45 (14)
$113A - C_3 - 115B$	109.5	$C_{13} = C_{10} = H_{10}$	119.8
	109.5	C17 - C10 - H10	119.0
H5D C5 H5C	109.5	$C_{10} = C_{17} = C_{10}$	120.10 (13)
$H_{A} = H_{A}$	109.5	С16—С17—П17	119.9
C4 - C6 - H6A	109.5	C10 - C17 - H17	119.9
	109.5	C17 - C18 - C19	119.66 (14)
H6A - C6 - H6B	109.5	C1/-C18H18	120.2
C4—C6—H6C	109.5	C19—C18—H18	120.2
H6A—C6—H6C	109.5	C18—C19—C20	120.17 (15)
H6B—C6—H6C	109.5	С18—С19—Н19	119.9
C8—C7—C12	120.02 (13)	С20—С19—Н19	119.9
C8—C7—S1	120.32 (11)	C19—C20—C15	120.54 (14)
C12—C7—S1	119.50 (11)	С19—С20—Н20	119.7
C9—C8—C7	119.85 (14)	С15—С20—Н20	119.7
С9—С8—Н8	120.1		
C7 S1 C1 C2	49 40 (11)	C ⁹ C7 C12 C11	$2 \in (2)$
$C_{-}S_{1} - C_{-}C_{2}$	48.49 (11)	$C_{0} - C_{12} - C_{11}$	2.0(2)
$C_{1} = C_{1} = C_{1}$	1/1.09(10) 2 19(19)	SI = C/ = CI2 = CI1	-1/2.84(12)
C4 = N1 = C2 = C1	-3.18(18)	C10-C11-C12-C7	-2.0(2)
C4 - NI - C2 - CI	1/4./0(13) 1.22(18)	$C_2 - C_1 - C_{13} - C_{15}$	1/2.00(12)
$C_{3} = 01 = C_{2} = 01$	-1.22(18)	SI = CI =	51.47(14)
$C_3 = C_1 = C_2 = C_1$	-1/9.33(12)	$C_2 = C_1 = C_{13} = C_{14}$	-64.52 (15)
$CI_3 = CI = C_2 = NI$	123.03 (16)	SI = CI = CI3 = CI4	1/4.35 (9)
SI = CI = C2 = NI	-116.19 (15)	02 - N2 - C14 - C13	127.19 (16)
C13 - C1 - C2 - O1	-58.99 (16)	$U_3 - N_2 - C_{14} - C_{13}$	-52.53 (18)
SI - CI - C2 - OI	61.79(14)	C15—C13—C14—N2	-56.37 (16)
$C_2 = 01 = C_3 = C_4$	4.81 (16)	C1—C13—C14—N2	-178.76 (11)
C2—N1—C4—C6	125.75 (15)	C14—C13—C15—C16	127.36 (14)
C2—N1—C4—C5	-112.49 (15)	C1—C13—C15—C16	-113.57 (15)
C2—N1—C4—C3	5.81 (16)	C14—C13—C15—C20	-53.86 (18)

01-C3-C4-N1 01-C3-C4-C6 01-C3-C4-C5 C1-S1-C7-C8 C1-S1-C7-C12 C12-C7-C8-C9 S1-C7-C8-C9 C7-C8-C9-C10 C8-C9-C10-C11 C9-C10-C11-C12	-6.40 (16) -125.16 (14) 109.57 (14) 75.16 (13) -109.45 (12) -0.8 (2) 174.58 (11) -1.6 (2) 2.1 (2) -0.3 (2)	C1-C13-C15-C20 C20-C15-C16-C17 C13-C15-C16-C17 C15-C16-C17-C18 C16-C17-C18-C19 C17-C18-C19-C20 C18-C19-C20-C15 C16-C15-C20-C19 C13-C15-C20-C19	65.21 (18) -0.5 (2) 178.30 (14) 0.1 (2) 0.4 (2) -0.4 (2) 0.0 (2) 0.4 (2) -178.36 (14)
--	---	--	---

Hydrogen-bond geometry (Å, °)

Please define Cg2 and Cg3

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C14—H14 <i>B</i> ···O3 ⁱ	0.99	2.52	3.376 (2)	145
C20—H20…S1 ⁱⁱ	0.95	2.79	3.7194 (19)	166
C8— $H8$ ··· $Cg2$ ⁱⁱⁱ	0.95	2.71	3.4345 (18)	134
C17—H17···· <i>Cg</i> 3 ^{iv}	0.95	2.99	3.712 (2)	134

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+2; (ii) *x*, *y*+1, *z*; (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) -*x*+1, *y*+1/2, -*z*+1/2.