Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-Cyclohexylpyrrolidine-1-carbothioamide

Yu-Feng Li

Microscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: liyufeng8111@163.com

Received 20 March 2012; accepted 23 March 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.053; wR factor = 0.190; data-to-parameter ratio = 21.8.

In the title molecule, $C_{11}H_{20}N_2S$, the five-membered ring has an envelope conformation and the cyclohexane ring is in a chair conformation. The N-H group is not involved in any intra- or intermolecular interactions.

Related literature

For the medicinal properties of pyrrolidine compounds, see: Yang et al. (1997). For related structures, see: Köhn et al. (2004); Li (2011).

Experimental

Crystal data

$C_{11}H_{20}N_2S$
$M_r = 212.35$
Orthorhombic, Pbca
a = 9.3808 (19) Å
b = 10.925 (2) Å
c = 23.540 (5) Å

Data collection

Bruker SMART CCD diffractometer 22078 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.190$ S = 1.182766 reflections

V = 2412.6 (8) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 293 K $0.22 \times 0.20 \times 0.18 \; \mathrm{mm}$

2766 independent reflections 1700 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.046$

127 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors would like to thank the Natural Science Foundation of Shandong Province (No. ZR2010BL025).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5439).

References

Bruker (1997). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.

Köhn, U., Günther, W., Görls, H. & Anders, E. (2004). Tetrahedron Asymmetry, 15, 1419–1426.

Li, Y.-F. (2011). Acta Cryst. E67, 01792.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, D., Soulier, J. L., Sicsic, S., Mathe-Allainmat, M., Bremont, B., Croci, T., Cardamone, R., Aureggi, G. & Langlois, M. (1997). J. Med. Chem. 40, 608-621

supporting information

Acta Cryst. (2012). E68, o1220 [https://doi.org/10.1107/S1600536812012627]

N-Cyclohexylpyrrolidine-1-carbothioamide

Yu-Feng Li

S1. Comment

Pyrrolidine compounds have been shown to have medicinal properties (Yang *et al.*, 1997). The molecular structure of the title compound is shown in Fig. 1. The five-membered ring has an envelope conformation with atom C2 forming the flap. The structures related compounds have been determined (Köhn *et al.*, 2004; Li, 2011).

S2. Experimental

A mixture of pyrrolidine (0.6 mol), and *N*-cyclohexylmethanethioamide (0.6 mol) was stirred in refluxing ethanol (14 ml) for 4 h to afford the title compound (0.51 mol, yield 85%). Colourless blocks of the title compound were obtained by recrystallization of a solution of the title compound ethanol at room temperature.

S3. Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93–0.97 Å; N— H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eo}(C,N)$.

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids.

N-Cyclohexylpyrrolidine-1-carbothioamide

Crystal data

 $C_{11}H_{20}N_{2}S$ $M_{r} = 212.35$ Orthorhombic, *Pbca*Hall symbol: -P 2ac 2ab a = 9.3808 (19) Å b = 10.925 (2) Å c = 23.540 (5) Å $V = 2412.6 (8) \text{ Å}^{3}$ Z = 8

Data collection

1700 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.046$
$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.4^{\circ}$
$h = -12 \rightarrow 12$
$k = -13 \rightarrow 14$
$l = -30 \longrightarrow 30$

F(000) = 928

 $\theta = 3.4 - 27.5^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$

Block, colorless

 $0.22 \times 0.20 \times 0.18 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.169 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1700 reflections

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.053$ wR(F ²) = 0.190	Hydrogen site location: inferred from neighbouring sites
<i>S</i> = 1.18	H-atom parameters constrained
2766 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1021P)^2]$
127 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.07717 (8)	0.34275 (5)	0.16033 (2)	0.0727 (3)	
N2	0.1756 (2)	0.57053 (15)	0.14966 (7)	0.0649 (5)	
H2A	0.2105	0.6354	0.1650	0.078*	
N1	0.1569 (2)	0.49963 (16)	0.24023 (7)	0.0625 (5)	
C5	0.1402 (2)	0.47798 (18)	0.18465 (8)	0.0533 (5)	
C6	0.1600 (2)	0.57042 (18)	0.08782 (8)	0.0565 (6)	

H6A	0.0941	0.5046	0.0773	0.068*
C7	0.3007 (3)	0.54772 (19)	0.05863 (8)	0.0604 (6)
H7A	0.3378	0.4686	0.0701	0.072*
H7B	0.3687	0.6098	0.0702	0.072*
C9	0.2197 (3)	0.6700 (2)	-0.02522 (9)	0.0637 (6)
H9A	0.2865	0.7359	-0.0179	0.076*
H9B	0.2032	0.6664	-0.0659	0.076*
C10	0.0817 (2)	0.6969 (2)	0.00449 (10)	0.0647 (6)
H10A	0.0103	0.6382	-0.0076	0.078*
H10B	0.0490	0.7778	-0.0064	0.078*
C11	0.0964 (2)	0.6912 (2)	0.06890 (10)	0.0657 (6)
H11A	0.1569	0.7578	0.0817	0.079*
H11B	0.0034	0.7015	0.0862	0.079*
C8	0.2838 (3)	0.5505 (2)	-0.00562 (8)	0.0655 (6)
H8A	0.3763	0.5396	-0.0233	0.079*
H8B	0.2230	0.4834	-0.0175	0.079*
C4	0.2130 (3)	0.6141 (2)	0.26409 (9)	0.0751 (7)
H4A	0.1503	0.6824	0.2557	0.090*
H4B	0.3073	0.6319	0.2493	0.090*
C3	0.2184 (4)	0.5887 (3)	0.32761 (10)	0.0947 (10)
H3A	0.3120	0.5596	0.3388	0.114*
H3B	0.1960	0.6619	0.3492	0.114*
C2	0.1095 (5)	0.4934 (3)	0.33665 (10)	0.1053 (11)
H2B	0.0163	0.5302	0.3418	0.126*
H2C	0.1320	0.4451	0.3700	0.126*
C1	0.1110 (4)	0.4151 (3)	0.28475 (9)	0.0917 (9)
H1A	0.1776	0.3477	0.2888	0.110*
H1B	0.0169	0.3826	0.2768	0.110*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.1120 (6)	0.0526 (4)	0.0536 (4)	-0.0127 (3)	-0.0018 (3)	-0.0005 (2)
N2	0.0950 (14)	0.0592 (11)	0.0406 (9)	-0.0187 (10)	0.0007 (8)	-0.0041 (7)
N1	0.0922 (14)	0.0560 (10)	0.0393 (9)	0.0013 (9)	0.0052 (9)	-0.0024 (7)
C5	0.0651 (13)	0.0519 (11)	0.0429 (10)	0.0033 (9)	0.0023 (9)	-0.0004 (8)
C6	0.0732 (14)	0.0557 (12)	0.0408 (10)	-0.0137 (10)	-0.0010 (9)	-0.0014 (8)
C7	0.0765 (14)	0.0565 (12)	0.0482 (11)	0.0150 (10)	-0.0002 (10)	0.0070 (9)
C9	0.0625 (14)	0.0741 (14)	0.0545 (12)	-0.0005 (10)	-0.0019 (10)	0.0182 (10)
C10	0.0600 (14)	0.0720 (14)	0.0620(13)	0.0034 (11)	-0.0089 (10)	0.0097 (11)
C11	0.0650 (14)	0.0706 (14)	0.0617 (13)	0.0093 (11)	0.0000 (10)	-0.0031 (11)
C8	0.0774 (15)	0.0722 (14)	0.0468 (11)	0.0104 (12)	0.0073 (10)	0.0057 (10)
C4	0.1016 (19)	0.0753 (14)	0.0484 (12)	-0.0030 (14)	-0.0013 (12)	-0.0143 (11)
C3	0.139 (3)	0.096 (2)	0.0492 (13)	0.0122 (19)	-0.0130 (15)	-0.0142 (12)
C2	0.155 (3)	0.119 (3)	0.0421 (14)	0.003 (2)	0.0090 (15)	0.0021 (14)
C1	0.156 (3)	0.0742 (17)	0.0452 (13)	-0.0016 (16)	0.0119 (14)	0.0066 (11)

Geometric parameters (Å, °)

S1—C5	1.691 (2)	C10—H10A	0.9700	
N2—C5	1.346 (3)	C10—H10B	0.9700	
N2—C6	1.463 (2)	C11—H11A	0.9700	
N2—H2A	0.8600	C11—H11B	0.9700	
N1—C5	1.339 (3)	C8—H8A	0.9700	
N1-C1	1.462 (3)	C8—H8B	0.9700	
N1—C4	1.469 (3)	C4—C3	1.522 (3)	
C6—C7	1.509 (3)	C4—H4A	0.9700	
C6—C11	1.515 (3)	C4—H4B	0.9700	
С6—Н6А	0.9800	C3—C2	1.475 (4)	
С7—С8	1.521 (3)	C3—H3A	0.9700	
C7—H7A	0.9700	C3—H3B	0.9700	
С7—Н7В	0.9700	C2—C1	1.491 (4)	
C9—C10	1.500 (3)	C2—H2B	0.9700	
С9—С8	1.510 (3)	C2—H2C	0.9700	
С9—Н9А	0.9700	C1—H1A	0.9700	
С9—Н9В	0.9700	C1—H1B	0.9700	
C10-C11	1.524 (3)			
C5—N2—C6	125.71 (17)	C10-C11-H11A	109.4	
C5—N2—H2A	117.1	C6—C11—H11B	109.4	
C6—N2—H2A	117.1	C10-C11-H11B	109.4	
C5—N1—C1	123.67 (19)	H11A—C11—H11B	108.0	
C5—N1—C4	124.49 (18)	C9—C8—C7	111.29 (18)	
C1—N1—C4	111.69 (18)	C9—C8—H8A	109.4	
N1	115.87 (18)	C7—C8—H8A	109.4	
N1	121.75 (16)	C9—C8—H8B	109.4	
N2	122.37 (15)	C7—C8—H8B	109.4	
N2—C6—C7	111.45 (17)	H8A—C8—H8B	108.0	
N2-C6-C11	109.34 (16)	N1—C4—C3	103.42 (19)	
C7—C6—C11	110.72 (16)	N1—C4—H4A	111.1	
N2—C6—H6A	108.4	C3—C4—H4A	111.1	
С7—С6—Н6А	108.4	N1C4H4B	111.1	
С11—С6—Н6А	108.4	C3—C4—H4B	111.1	
С6—С7—С8	110.99 (18)	H4A—C4—H4B	109.0	
С6—С7—Н7А	109.4	C2—C3—C4	104.3 (2)	
С8—С7—Н7А	109.4	С2—С3—Н3А	110.9	
С6—С7—Н7В	109.4	C4—C3—H3A	110.9	
С8—С7—Н7В	109.4	С2—С3—Н3В	110.9	
H7A—C7—H7B	108.0	C4—C3—H3B	110.9	
С10—С9—С8	111.75 (18)	НЗА—СЗ—НЗВ	108.9	
С10—С9—Н9А	109.3	C3—C2—C1	106.3 (2)	
С8—С9—Н9А	109.3	C3—C2—H2B	110.5	
С10—С9—Н9В	109.3	C1—C2—H2B	110.5	
С8—С9—Н9В	109.3	C3—C2—H2C	110.5	
H9A—C9—H9B	107.9	C1—C2—H2C	110.5	

supporting information

C9—C10—C11	112.17 (18)	H2B—C2—H2C	108.7
C9—C10—H10A	109.2	N1—C1—C2	103.2 (2)
C11—C10—H10A	109.2	N1—C1—H1A	111.1
C9—C10—H10B	109.2	C2—C1—H1A	111.1
C11-C10-H10B	109.2	N1—C1—H1B	111.1
H10A—C10—H10B	107.9	C2—C1—H1B	111.1
C6—C11—C10	111.34 (18)	H1A—C1—H1B	109.1
C6—C11—H11A	109.4		