Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[μ_{2}-aqua-bis[$\mu_{4}-2$-(1H-1,2,3-benzo-triazol-1-yl)acetato]dipotassium]

Qiong Liu

Department of Environment Engineering and Chemistry, Luoyang Institute of Science and Technology, 471023 Luoyang, People's Republic of China
Correspondence e-mail: shujianrufeng@yahoo.com.cn

Received 19 February 2012; accepted 29 February 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \mathrm{~A}$; R factor $=0.069 ; w R$ factor $=0.135$; data-to-parameter ratio $=15.7$.

In the title compound, $\left[\mathrm{K}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, each K^{+}ion is seven-coordinated by one O atom from a bridging water molecule, five carboxylate O atoms and one N atom from a benzotriazole group, forming a distorted mono-capped octahedral geometry. In the crystal, the carboxylate groups act as bridging ligands, forming a two-dimensional polymer parallel to (001). The aqua ligand, which lies on a twofold rotation axis, forms intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds within these layers.

Related literature

For background and the synthesis, see: Hu et al. (2008).

Experimental

Crystal data

$$
\left[\mathrm{K}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \quad M_{r}=448.53
$$

Monoclinic, C2
$a=12.159$ (2) A
$b=4.5893$ (9) \AA
$c=17.666$ (4) \AA
$\beta=104.98$ (3) ${ }^{\circ}$
$V=952.2(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.30 \times 0.20 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.878, T_{\text {max }}=0.937$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.135$
$S=1.05$
2140 reflections
136 parameters
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.46 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
925 Friedel pairs
Flack parameter: -0.02 (9)

Table 1
Selected bond lengths (\AA).

$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.718 (4)	K1-O1	2.872 (4)
$\mathrm{K} 1-\mathrm{O} 3$	2.760 (3)	K1-N2	2.934 (4)
$\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	2.829 (3)	$\mathrm{K} 1-\mathrm{O} 1^{\text {ii }}$	3.287 (3)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.835 (4)		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O}^{\text {iv }}$	$0.87(6)$	$1.87(7)$	$2.729(5)$	$167(7)$

Symmetry code: (iv) $x, y-1, z$.

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from Luoyang Institute of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5422).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hu, T. L., Du, W. P., Hu, B. W., Li, J. R., Bu, X. H. \& Cao, R. (2008). CrystEngComm, 10, 1037-1043.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m379 [https://doi.org/10.1107/S1600536812008963]

Poly[μ_{2}-aqua-bis[μ_{4}-2-(1 H -1,2,3-benzotriazol-1-yl)acetato]dipotassium]

Qiong Liu

S1. Comment

Organic ligands based on azole heterocycles or carboxylate groups which contain N and O donors have both good coordination ability and diverse coordination modes (Hu et al., 2008). Therefore, the ligand 1H-benzotriazole-1-acetic acid was chosen to create coordination architectures. The synthesis of the ligand was the first step. But, when we synthesized the ligand according to the method of literature (see experimental section), the title complex (I) was obtained instead of the target ligand.
The title complex (I) is a polymeric potassium(I) complex of which the asymmetric is shown in Fig. 1. The environment of the K^{I} ion is a distorted mono-capped octahedral geometry. Each K^{1} ion is coordinated by one O atom from a water molecule, five carboxylate O atoms and one N atom from the ligands. The polymeric structure is a two-dimensional layer parallel to (001) (see, Fig .2).

S2. Experimental

Reagents and solvents were of commercially available quality. The title compound was synthesized according to the method of Hu et al. 2008. To a bromoacetonitrile solution of 1 H -Benzotriazole (11.9 g), potassium hydroxide (6.8 g), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(13.8 \mathrm{~g})$ and TEBA (benzyltriethylammoniumchloride, $99 \%, 0.15 \mathrm{~g}$) were added. The mixture was stirred at room temperature for 30 min . After cooling to $283 \mathrm{~K}, 8.4 \mathrm{ml}(0.075 \mathrm{~mol})$ ethyl bromoacetate was added dropwise with further stirring. After standing at room temperature overnight the mixture was filtered and the filtrate was distilled under diminished pressure to obtain a yellow liquid. 100 ml water was added to the yellow liquid and the mixture was left to stand for 12 h at a condition of circumfluence. Single crystals suitable for X-ray diffraction were obtained after removing the solvent and recrystallizing in water and methanol solution ($30 \mathrm{~mL}, 5: 1, v / v$) at room temperature. Yield: 20\%.

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$ and were included in the refinement in the riding model approximation, with $U_{\mathrm{iso}}(\mathrm{H})$ set to $1.2 U_{\mathrm{eq}}(\mathrm{C})$. The unique water H atom was located in a difference Fourier map, and were refined freely.

Figure 1
The asymmetric unit of the title complex showing 40% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2
A packing diagram of the title compound, viewed along the b axis, showing the two-dimensional layered structure.

Poly[μ_{2}-aqua-bis[$\mu_{4}-2$-(1H-1,2,3-benzotriazol-1- yl)acetato]dipotassium]

Crystal data

$\left[\mathrm{K}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=448.53$
Monoclinic, C2
Hall symbol: C 2y
$a=12.159$ (2) \AA
$b=4.5893$ (9) \AA
$c=17.666$ (4) \AA
$\beta=104.98$ (3) ${ }^{\circ}$
$V=952.2(3) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.878, T_{\text {max }}=0.937$

$$
\begin{aligned}
& F(000)=460 \\
& D_{\mathrm{x}}=1.564 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 4308 \text { reflections } \\
& \theta=3.4-27.6^{\circ} \\
& \mu=0.54 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.3 \times 0.2 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

4827 measured reflections
2140 independent reflections
1508 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-15 \rightarrow 15$
$k=-5 \rightarrow 5$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.135$
$S=1.05$
2140 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0551 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.46$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e} \AA^{-3}$
Absolute structure: Flack (1983), 925 Friedel pairs
Absolute structure parameter: -0.02 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
K1	$0.62160(7)$	$0.3984(3)$	$0.43153(5)$	$0.0478(3)$
O1	$0.3919(3)$	$0.6125(7)$	$0.39356(19)$	$0.0563(9)$
O2	$0.2403(2)$	$0.3829(10)$	$0.41277(15)$	$0.0495(7)$

N1	$0.3763(3)$	$0.3467(9)$	$0.2538(2)$	$0.0481(10)$
N2	$0.4845(3)$	$0.2466(10)$	$0.2740(2)$	$0.0601(12)$
N3	$0.5400(3)$	$0.3627(15)$	$0.2268(2)$	$0.0670(13)$
C1	$0.3119(3)$	$0.4388(11)$	$0.3754(2)$	$0.0388(11)$
C2	$0.2979(4)$	$0.2654(12)$	$0.2991(3)$	$0.0541(13)$
H2A	0.3078	0.0599	0.3119	0.065^{*}
H2B	0.2208	0.2920	0.2670	0.065^{*}
C3	$0.4673(4)$	$0.5401(12)$	$0.1754(3)$	$0.0489(12)$
C4	$0.4849(5)$	$0.7071(14)$	$0.1142(3)$	$0.0687(16)$
H4A	0.5550	0.7097	0.1023	0.082^{*}
C5	$0.3952(5)$	$0.8677(19)$	$0.0721(3)$	$0.0718(16)$
H5A	0.4048	0.9844	0.0313	0.086^{*}
C6	$0.2893(5)$	$0.8601(15)$	$0.0894(3)$	$0.0667(15)$
H6A	0.2297	0.9691	0.0588	0.080^{*}
C7	$0.2702(4)$	$0.6970(12)$	$0.1501(3)$	$0.0562(13)$
H7A	0.2001	0.6952	0.1620	0.067^{*}
C8	$0.3618(4)$	$0.5360(11)$	$0.1923(3)$	$0.0442(11)$
O3	0.5000	$0.0180(11)$	0.5000	$0.0529(13)$
H3	$0.465(4)$	$-0.090(18)$	$0.461(3)$	$0.083(17)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	$0.0443(5)$	$0.0509(5)$	$0.0467(6)$	$-0.0037(6)$	$0.0089(4)$	$0.0024(6)$
O1	$0.060(2)$	$0.054(2)$	$0.055(2)$	$-0.0158(18)$	$0.0148(16)$	$-0.0082(17)$
O2	$0.0438(15)$	$0.0609(18)$	$0.0465(17)$	$0.003(2)$	$0.0165(12)$	$0.004(2)$
N1	$0.044(2)$	$0.062(3)$	$0.041(2)$	$-0.008(2)$	$0.0158(16)$	$-0.006(2)$
N2	$0.052(3)$	$0.081(3)$	$0.046(3)$	$0.001(2)$	$0.0098(19)$	$-0.003(2)$
N3	$0.050(2)$	$0.095(4)$	$0.058(3)$	$-0.005(3)$	$0.017(2)$	$-0.008(3)$
C1	$0.039(2)$	$0.035(3)$	$0.038(2)$	$0.004(2)$	$0.0025(17)$	$0.007(2)$
C2	$0.057(3)$	$0.062(3)$	$0.045(3)$	$-0.020(2)$	$0.016(2)$	$-0.007(2)$
C3	$0.052(3)$	$0.058(3)$	$0.037(3)$	$-0.010(3)$	$0.013(2)$	$-0.016(2)$
C4	$0.064(4)$	$0.085(4)$	$0.063(4)$	$-0.015(3)$	$0.028(3)$	$-0.013(3)$
C5	$0.103(4)$	$0.069(4)$	$0.051(3)$	$-0.011(5)$	$0.032(3)$	$-0.003(4)$
C6	$0.087(4)$	$0.060(4)$	$0.050(3)$	$0.007(4)$	$0.012(3)$	$0.002(3)$
C7	$0.052(3)$	$0.061(3)$	$0.057(3)$	$0.004(3)$	$0.016(2)$	$-0.016(3)$
C8	$0.045(3)$	$0.052(3)$	$0.037(3)$	$-0.007(2)$	$0.013(2)$	$-0.017(2)$
O3	$0.065(3)$	$0.042(3)$	$0.048(3)$	0.000	$0.008(3)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.718(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.536(6)$
$\mathrm{K} 1-\mathrm{O} 3$	$2.760(3)$	$\mathrm{C} 1-\mathrm{K} 1^{\mathrm{ii}}$	$3.301(4)$
$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$	$2.829(3)$	$\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$	$3.461(5)$
$\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	$2.835(4)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{~K} 1-\mathrm{O} 1$	$2.872(4)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{~K} 1-\mathrm{N} 2$	$2.934(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.386(7)$
$\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$	$3.287(3)$	$\mathrm{C} 3-\mathrm{C} 8$	$1.389(6)$

$\mathrm{O} 1-\mathrm{C} 1$	$1.234(5)$
$\mathrm{O} 1-\mathrm{K} 1^{\mathrm{ii}}$	$3.287(3)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.248(4)$
$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{iv}}$	$2.718(4)$
$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{ii}}$	$2.829(3)$
$\mathrm{O} 2-\mathrm{K} 1^{\mathrm{v}}$	$2.835(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.351(5)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.367(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.444(5)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.314(6)$
$\mathrm{N} 3-\mathrm{C} 3$	$1.362(7)$

$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 3$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1$
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 1$
$\mathrm{O} 2{ }^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{O} 1$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{N} 2$
O3-K1-N2
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{N} 2$
$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{N} 2$
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 2$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O}^{\mathrm{ii}}$
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{ii}}$
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{C}^{\mathrm{ii}}$
$\mathrm{O} 2^{\text {iii }}-\mathrm{K} 1-\mathrm{C}^{\text {ii }}$
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{ii}}$
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{ii}}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{C}^{\mathrm{ii}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{iii}}$
O3-K1-C1 $1^{\text {iii }}$
$\mathrm{O} 2^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{C} 1^{\text {iii }}$
$\mathrm{O} 2^{\text {iii }}-\mathrm{K} 1-\mathrm{C} 1^{\text {iii }}$
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{iii}}$
N2-K1-C1 $1^{\text {iii }}$
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{Cl}^{\mathrm{iii}}$
C1 $1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{C} 1^{\mathrm{iii}}$
1.234 (5)
3.287 (3)
1.248 (4)
2.718 (4)
2.829 (3)
2.835 (4)
1.351 (5)
1.367 (6)
1.444 (5)
1.314 (6)
1.362 (7)
158.80 (10)
86.48 (10)
78.97 (8)
111.47 (9)
82.54 (10)
84.30 (10)
101.92 (10)
73.74 (9)
122.19 (10)
138.77 (10)
105.55 (11)
91.61 (10)
164.82 (13)
82.69 (10)
65.15 (10)
91.55 (9)
67.34 (9)
41.81 (9)
120.67 (8)
80.53 (11)
143.94 (10)
94.83 (10)
66.33 (9)
21.80 (8)
99.89 (11)
100.70 (11)
157.01 (12)
21.59 (9)
92.76 (12)
102.35 (12)
89.46 (10)
19.86 (9)
145.45 (10)
80.89 (11)
130.64 (9)
109.10 (11)

$\mathrm{C} 4-\mathrm{C} 5$	$1.366(8)$
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.399(6)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.376(7)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.383(7)$
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9300
$\mathrm{O} 3-\mathrm{K} 1^{\mathrm{ii}}$	$2.760(3)$
$\mathrm{O} 3-\mathrm{H} 3$	$0.87(6)$

$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{H} 3$
O3-K1-H3
$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{K} 1-\mathrm{H} 3$
O2 $2^{\text {iii- }}$ K1-H3
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{H} 3$
N2-K1—H3
O1 ${ }^{\text {iii-K }} 1-\mathrm{H} 3$
C1 1 ii-K1—H3
C1 $1^{\text {iii- }} \mathrm{K} 1-\mathrm{H} 3$
K1 ${ }^{\text {vi }}-\mathrm{K} 1-\mathrm{H} 3$
K1 ${ }^{\text {vii- }} \mathrm{K} 1-\mathrm{H} 3$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{H} 3$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{K} 1$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{iv}}$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{K} 1^{\text {ii }}$
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{K} 1^{\mathrm{v}}$
N2—N1-C8
N2-N1- C 2
C8—N1- C 2
N3-N2-N1
N3-N2-K1
N1-N2-K1
N2-N3-C3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$
1.366 (8)
0.9300
1.399 (6)
0.9300
1.376 (7)
0.9300
1.383 (7)
0.9300
0.87 (6)
171.8 (13)
16.0 (9)
93.3 (9)
76.6 (13)
71.3 (12)
76.2 (9)
82.9 (10)
82.2 (9)
95.4 (13)
135.8 (9)
84.5 (11)
49.8 (12)
119.5 (3)
79.9 (3)
87.70 (10)
134.2 (4)
100.9 (2)
95.88 (10)
109.7 (3)
111.47 (8)
93.30 (11)
110.1 (3)
120.2 (4)
129.6 (4)
108.6 (4)
104.3 (3)
116.5 (3)
108.3 (4)
127.2 (4)
117.7 (4)
115.0 (4)
78.5 (2)
57.28 (19)
145.0 (3)
94.1 (3)
50.5 (3)

$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	43.10 (5)
O3-K1-K1 ${ }^{\text {vi }}$	120.37 (5)
$\mathrm{O} 2^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	43.41 (9)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	101.65 (7)
O1-K1-K1 ${ }^{\text {vi }}$	119.37 (7)
N2-K1-K1 ${ }^{\text {vi }}$	147.99 (10)
O1ii-K1-K1 ${ }^{\text {vi }}$	59.71 (6)
$\mathrm{C} 1^{1 i}-\mathrm{K} 1-\mathrm{K} 1^{\text {vi }}$	54.26 (8)
C1 ${ }^{\text {iiii }}$-K1-K1 ${ }^{\text {vi }}$	92.65 (8)
O2 ${ }^{\text {i }}$-K1-K1 $1^{\text {vii }}$	100.47 (7)
O3-K1-K1 ${ }^{\text {vii }}$	78.52 (5)
$\mathrm{O} 2{ }^{\text {iii }}$-K1-K1 $1^{\text {vii }}$	41.03 (8)
$\mathrm{O} 2{ }^{\text {iii] }}$-K1-K1 $1^{\text {vii }}$	43.29 (5)
O1-K1-K1 ${ }^{\text {vii }}$	150.66 (8)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{K} 1^{\text {vii }}$	125.69 (9)
$\mathrm{O} 1^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {vii }}$	80.15 (7)
$\mathrm{C} 1{ }^{\text {iii }} \mathrm{K} 1-\mathrm{K} 1^{\text {vii }}$	58.57 (9)
C1 $1^{\text {iii }}$-K1-K1 $1^{\text {vii }}$	50.74 (7)
K1 ${ }^{\text {vi }}$-K1-K1 $1^{\text {vii }}$	67.72 (3)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	122.38 (7)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	39.22 (9)
$\mathrm{O} 2^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	76.91 (6)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	120.90 (6)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	50.16 (7)
N2-K1-K1i	103.29 (9)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{ii}}$	42.14 (6)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	55.66 (8)
C1 ${ }^{\text {iii }}$-K1-K1 $1^{\text {ii }}$	140.67 (8)
$\mathrm{K} 1^{\mathrm{vi}}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	101.41 (4)
$\mathrm{K} 1^{\text {vii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {ii }}$	101.41 (4)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	160.5 (3)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-40.9 (3)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-106.1 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	16.6 (4)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	58.8 (3)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-109.9 (3)
$\mathrm{C} 1{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-102.1 (3)
$\mathrm{C} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	47.4 (4)
$\mathrm{K} 1{ }^{\text {vi}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-157.0 (3)
$\mathrm{K} 1{ }^{\text {vii }} \mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-60.5 (4)
$\mathrm{K} 1{ }^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1$	-77.0 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-122.46 (8)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	36.13 (8)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-29.10 (15)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	93.58 (13)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	135.76 (13)
$\mathrm{O} 1^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-32.88 (11)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{K} 1^{v}$	$129.5(3)$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$	$75.00(9)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$114.4(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6
$\mathrm{~N} 3-\mathrm{C} 3-\mathrm{C} 4$	$130.2(5)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{C} 8$	$108.9(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$120.8(5)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$117.4(5)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	121.3
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	121.3
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$121.2(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.4
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	119.4
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$122.3(6)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	118.9
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	118.9
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$115.9(5)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	122.1
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	122.1
N1-C8-C7	$133.5(4)$
N1-C8-C3	$104.0(4)$
C7-C8-C3	$122.4(5)$
K1-O3-K1i	$101.56(17)$
K1-O3-H3	$103(4)$
K1 1 ii-O3-H3	$120(4)$

$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{K}_{1}{ }^{\mathrm{ii}}$
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{K} 1^{v}$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$
$\mathrm{K}^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$
$\mathrm{K} 1^{\mathrm{v}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{K} 1^{\mathrm{v}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{K} 1^{v}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{ii}}$
$\mathrm{K} 1^{\mathrm{iv}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{K} 1^{\mathrm{ii}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{K} 1^{\mathrm{v}}$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$
129.5 (3)
75.00 (9)
114.4 (4)
108.7
108.7
108.7
108.7
107.6
130.2 (5)
108.9 (4)
120.8 (5)
11.4 (5)
21.3
121.3
121.2 (6)
119.4
119.4
122.3 (6)
118.9
118.9
115.9 (5)
122.1
22.1
133.5 (4)
104.0 (4)
122.4 (5)

103 (4)
120 (4)
32.1 (5)
-65.4 (4)
-146.9 (4)
81.5 (2)
155.27 (17)
73.78 (9)
-147.7 (4)
-38.3 (5)
59.3 (5)
31.3 (5)
140.8 (3)
-121.7 (4)
-109.5 (3)
97.5 (2)
153.0 (4)
-97.5 (2)
79.5 (6)

$\mathrm{C} 1{ }^{\text {iii }}$ - $\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-25.14 (12)
C1 ${ }^{\text {iii- }}$ K1-O1-K1 ${ }^{\text {ii }}$	124.37 (17)
$\mathrm{K} 1{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	-79.99 (9)
$\mathrm{K} 1{ }^{\text {vii }}-\mathrm{K} 1-\mathrm{O} 1-\mathrm{K} 1^{\text {ii }}$	16.52 (19)
C8-N1-N2-N3	-0.8 (6)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	-176.7 (4)
C8-N1-N2-K1	116.5 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{K} 1$	-59.4 (5)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	24.2 (4)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	-168.4 (4)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	-117.3 (5)
$\mathrm{O} 2{ }^{\text {iii }}$-K1-N2-N3	-86.1 (4)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	120.4 (4)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	139.7 (3)
C1ii-K1-N2-N3	175.8 (4)
C1 ${ }^{\text {iii- }}$-K1-N2-N3	-66.1 (4)
$\mathrm{K} 1{ }^{\text {vi}}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	14.2 (5)
K1 ${ }^{\text {vii }}$-K1-N2-N3	-91.4 (4)
$\mathrm{K} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3$	153.8 (4)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	-95.4 (3)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	72.0 (3)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	123.1 (4)
$\mathrm{O} 2^{\text {iii }}$-K1-N2-N1	154.3 (4)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	0.8 (3)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	20.0 (5)
$\mathrm{C} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	56.2 (5)
C1 ${ }^{\text {iii- }}$-K1-N2-N1	174.2 (4)
$\mathrm{K} 1{ }^{\text {vi}}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	-105.4 (3)
K1 ${ }^{\text {vii }} \mathrm{K} 1-\mathrm{N} 1-\mathrm{N}$ - 1	149.0 (3)
$\mathrm{K} 1{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 1$	34.2 (3)
N1-N2-N3-C3	0.0 (6)
$\mathrm{K} 1-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 3$	-124.8 (4)
$\mathrm{K} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	113.6 (5)

C8-N1-C2-C1	-95.5 (5)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-4.9 (6)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	175.9 (4)
$\mathrm{K} 1 \mathrm{ii}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-116.0 (5)
K1 ${ }^{\text {- }} \mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	117.6 (4)
N2-N3-C3-C4	-179.2 (5)
N2-N3-C3-C8	0.7 (6)
N3-C3-C4-C5	-179.5 (6)
C8-C3-C4-C5	0.6 (7)
C3-C4-C5-C6	-1.0 (9)
C4-C5-C6-C7	1.4 (10)
C5-C6-C7-C8	-1.2 (8)
N2-N1-C8-C7	-179.7 (5)
C2-N1-C8-C7	-4.3 (9)
N2-N1-C8-C3	1.2 (5)
C2-N1-C8-C3	176.6 (4)
C6-C7-C8-N1	-178.2 (5)
C6-C7-C8-C3	0.7 (7)
N3-C3-C8-N1	-1.1 (5)
C4-C3-C8-N1	178.8 (5)
N3-C3-C8-C7	179.6 (5)
C4-C3-C8-C7	-0.5 (7)
$\mathrm{O} 2 \mathrm{i}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{1 i}$	35.2 (2)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{1 i}$	82.75 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {ii }}$	168.36 (6)
$\mathrm{O} 1-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {ii }}$	-45.72 (7)
$\mathrm{N} 2-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {ii }}$	-109.23 (9)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{1 i}$	40.61 (7)
$\mathrm{C} \mathrm{i}^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {ii }}$	64.09 (10)
C1 ${ }^{\text {iii }}$-K1-O3-K1 ${ }^{\text {ii }}$	169.75 (7)
$\mathrm{K} 1{ }^{\text {vi }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {ii }}$	69.19 (5)
$\mathrm{K} 1{ }^{\text {vii }}-\mathrm{K} 1-\mathrm{O} 3-\mathrm{K} 1^{\text {ii }}$	124.62 (4)

Symmetry codes: (i) $x+1 / 2, y+1 / 2, z$; (ii) $-x+1, y,-z+1$; (iii) $x+1 / 2, y-1 / 2, z$; (iv) $x-1 / 2, y-1 / 2, z$; (v) $x-1 / 2, y+1 / 2, z$; (vi) $-x+3 / 2, y+1 / 2,-z+1$; (vii) $-x+3 / 2, y-1 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{\text {viii }}$	$0.87(6)$	$1.87(7)$	$2.729(5)$	$167(7)$

Symmetry code: (viii) $x, y-1, z$.

